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Abstract. We prove the existence of admissible inertial manifolds for the
second order in time evolution equations of the form

ẍ+ 2εẋ+Ax = f(t, x)

when A is positive definite and self-adjoint with a discrete spectrum and the
nonlinear term f satisfies the ϕ-Lipschitz condition, that is, ‖f(t, x)−f(t, y)‖ 6
ϕ(t)

∥∥Aβ(x− y)
∥∥ for ϕ belonging to one of the admissible Banach function

spaces containing wide classes of function spaces like Lp-spaces, the Lorentz
spaces Lp,q, and many other function spaces occurring in interpolation theory.

1. Introduction and preliminaries

To deal with the asymptotic behavior problem of nonlinear differential equa-
tions, one of the interests is to find the conditions for the existence of inertial
manifolds. These Lipschitz finite-dimensional manifolds, which were introduced
by Foias, Sell, and Temam [8], attract all solutions of the corresponding evolu-
tion equations at an exponential rate. Therefore, if such a manifold exists, it
allows us to apply the reduction principles to consider the asymptotic behavior of
the solutions to the (partial differential) evolution equation by determining the
structures of its induced solutions on that inertial manifold, which turn out to be
solutions to some induced ordinary differential equations.

The existence of inertial manifolds has been studied by many authors and has
been proved for several important classes of evolution equations such as dissipa-
tive partial differential equations (see [6]), reaction-diffusion equations (see [10]),
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some specific class of semi-linear parabolic equations (see [4]), and for second
order in time equations [4, Section 7]. Lately, the notion of inertial manifolds has
been transformed and extended to some other general classes of partial differ-
ential equations (PDE) like non-autonomous PDE (see, e.g., [9]), retarded PDE
(see, e.g., [2]), and stochastic PDE (see, e.g., [1, 3, 5]). Recently, a more general
concept of inertial manifolds has been introduced in [12], namely, the admissible
inertial manifolds, which are constituted by trajectories of solutions belonging to
admissible function spaces (such as Lp spaces, Lorentz spaces Lp,q, etc). Then,
the existence of such an admissible inertial manifold for a class of delay equations
with suitable conditions has been proved in our work [13]. In this paper, by a
suitable method and assumptions, we extend the obtained results in [12, 13] to
second order in time evolution equation of the form

ẍ(t) + 2εẋ(t) + Ax(t) = f(t, x(t)), t > s, s ∈ R, ε > 0,

x(s) = xs,0, s ∈ R,
ẋ(s) = xs,1,

(1.1)

where A is in general an unbounded linear operator on a separable Hilbert space
X, which satisfies Assumption 1.1; f : R × Xβ → X is a continuous nonlinear
operator, where Xβ := D(Aβ) is the domain of the fractional power Aβ for 0 6
β 6 1/2, in particular D(A0) = X.

Assumption 1.1. A is a positive definite, self-adjoint operator with a discrete
spectrum, say

0 < µ1 6 µ2 6 · · · 6 µk 6 · · · each with finite multiplicity, and lim
k→∞

µk =∞,

and assume that {ek}∞k=1 is the orthonormal basis in X consisting of the corre-
sponding eigenfunctions of the operator A (i.e., Aek = µkek).

Now, let H = D(A1/2) × X. It is clear that H is a separable Hilbert space
with the inner product

(U, V ) = (Ax0, y0) + (x1, y1),

where U = (x0, x1) and V = (y0, y1) are elements of H . In H , problem (1.1)
can be rewritten as a system of first order

dU(t)

dt
+AU(t) = F(t, U(t)), t > s,

U(s) = Us,
(1.2)

where

U(t) := (x(t), ẋ(t)) and Us = (xs,0, xs,1).

Here the linear operator A and the mapping F are defined by

AU = (−x1, Ax0 + 2εx1) on the domain D(A) = D(A)×D(A1/2),

F(t, U(t)) = (0, f(t, x0(t))) for U = (x0, x1).
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It is easy to verify that the eigenvalues and eigenvectors of the operator A have
the form

λ±N = ε±
√
ε2 − µN , g±N = (eN ,−λ±NeN) for all N = 1, 2, . . . ,

where µN and eN are eigenvalues and eigenvectors of the operator A.
Then, there are three main difficulties when working with abstract problem

(1.2): Firstly, since the nonlinearity f is ϕ-Lipschitz, then F is not uniform
Lipschitz continuous, so the theorem of the existence and uniqueness of solution
to (1.2) is not available; Secondly, the semigroup e−tA is defined on X while the
surfaces of the inertial manifolds belong to H , that means that the standard
perturbation arguments for evolutionary processes under graph transformations
cannot be applied directly; Thirdly, the differential operators A does not satisfy
[12, Standing Hypothesis 2.1 ]. This means that the obtained result in [12] cannot
be translated to our case.

To overcome these difficulties, we reformulate the definition of an inertial man-
ifold such that it contains the existence and uniqueness theorem as its property.
Next, we build the structure of bounded solutions (in negative half-line) to (1.2)
using Lyapunov–Perron’s equation such that we can use the dichotomy estimates
to prove the existence and uniqueness of solutions to (1.2). So, by using di-
chotomy estimates on e−tA, admissibility of function spaces, and suitable form
of Lyapunov–Perron’s equation, we present the structure of an admissible iner-
tial manifold. Consequently, we obtain the existence of an admissible inertial
manifold for which it is mentioned above and an example on the damped wave
equation is given to illustrate our result.

Now, let the condition ε2 > µN+1 hold for some integer N . We consider the
decomposition of the space H into the orthogonal sum

H = H1 ⊕H2,

where

H1 = span{(ek, 0), (0, ek) : k = 1, . . . , N},

H2 = span{(ek, 0), (0, ek) : k > N + 1} (here C denotes the closure of the set C).

We will use the following inner products in H1 and H2, respectively:

〈U, V 〉1 = ε2(x0, y0)− (Ax0, y0) + (εx0 + x1, εy0 + y1),

〈U, V 〉2 = (Ax0, y0)− (ε2 − 2µN+1)(x
0, y0) + (εx0 + x1, εy0 + y1).

Here U = (x0, x1) and V = (y0, y1) are elements from the corresponding subspace
Hi. Using (1.3), we define a new inner product and norm in H by

〈U, V 〉 = 〈U1, V1〉1 + 〈U2, V2〉2, |U | = 〈U,U〉1/2.
where U = U1 + U2 and V = V1 + V2 are decompositions of the elements U and
V into the orthogonal terms Vi, Ui ∈Hi, i = 1, 2.

Lemma 1.2 ([4, Lemma 7.1]). The estimates

|U |1 >
1

µβN

√
ε2 − µN‖Aβx0‖, U = (x0, x1) ∈H1,
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|U |2 >
1

µβN+1

δN,ε‖Aβx0‖, U = (x0, x1) ∈H2,

hold for 0 6 β 6 1/2. Here

δN,ε :=
√
µN+1 min

{
1,

√
ε2 − µN+1

µN+1

}
. (1.3)

In particular, this lemma implies the estimate

‖Aβx0‖ 6 µβN+1δ
−1
N,ε|U |, (1.4)

for any U = (x0, x1) ∈H , where 0 6 β 6 1/2 and δN,ε has the form (1.3).
We now fix an integer N and consider the subspaces

H ±
1 := span{g±k : k 6 N},

which are orthogonal for the Hermitian inner products 〈·, ·〉, so H1 = H +
1 ⊕H −

1 .
This means that H = H +

1 ⊕H −
1 ⊕H2 and H +

1 , H −
1 , H2 are closed subspaces

of H . Then, we denote by PH −
1

, PH +
1

, PH2 the orthoprojectors onto the subspace

H −
1 , H +

1 , H2 in H corresponding.

Lemma 1.3 ([4, Lemma 7.2]). We have∣∣e−tAPH2

∣∣ 6 e−λ
−
N+1t,

∣∣∣etAPH −
1

∣∣∣ 6 e−λ
−
N t,

∣∣∣e−tAPH +
1

∣∣∣ 6 e−λ
+
N t for all t > 0,

here | · | is the operator norm induced by the corresponding vector norm.

Set P ≡ PH −
1

and Q := I−P = PH +
1

+PH2 . Lemma 1.3 implies the dichotomy
estimates ∣∣etAP ∣∣ 6 eλ

−
N |t|, t ∈ R,∣∣e−tA(I − P )
∣∣ 6 e−λ

−
N+1t, t > 0.

We can define the Green function as follows:

G(t, τ) =

{
e−(t−τ)A[I − P ] for all t > τ,

−e−(t−τ)AP for all t 6 τ.
(1.5)

Then G(t, τ) maps H into H . Moreover, by dichotomy estimates, we have

eγ(t−τ)|G(t, τ)| 6 e−α|t−τ | for all t, τ ∈ R, (1.6)

where

α :=
λ−N+1 − λ

−
N

2
and γ :=

λ−N+1 + λ−N
2

.

Now, let I ⊆ R. We recall some notions on Banach function spaces as follows
(see [12, 13]).

Definition 1.4. A vector space EI of real-valued Borel-measurable functions on I
(modulo λ-null-functions) is a Banach function space (over (I,B, λ)) if

(1) EI is Banach lattice with respect to a norm ‖·‖EI
, that is, (EI, ‖·‖EI

) is a
Banach space, and if ϕ ∈ EI, ψ is a real-valued Borel-measurable function
such that |ψ(·)| 6 |ϕ(·)|, λ-a.e., then ψ ∈ EI and ‖ψ‖EI

6 ‖ϕ‖EI
,
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(2) the characteristic functions χA belong to EI for all A ∈ B of finite mea-
sure, and

sup
t∈I

∥∥χ[t,t+1]

∥∥
EI
<∞ ; inf

t∈I

∥∥χ[t,t+1]

∥∥
EI
> 0,

(3) EI ↪→ L1,loc(I), that is, for each compact interval J ⊂ I, there exists a
number βJ > 0 such that

∫
J
|f(t)| dt 6 βJ ‖f‖EI

for all f ∈ EI .

Definition 1.5. Let EI be a Banach function space and let X be a Banach space
endowed with the norm ‖·‖. Then,

EI := E (I, X) := {h : I→ X| h is strongly measurable and ‖h(·)‖ ∈ EI}

is a Banach space with respect to the norm

‖h‖EI
:= ‖ ‖h(·)‖ ‖EI

.

We call EI the Banach space corresponding to the Banach function space EI.

Definition 1.6 (Admissibility). The Banach function space EI is called admissible
if the following properties hold:

(i) There is a constant M > 1 such that for every compact interval [a, b] ⊂ I,
and for all ϕ ∈ EI we have

b∫
a

|ϕ(t)| dt 6 M(b− a)∥∥χ[a,b]

∥∥
EI

‖ϕ‖EI
. (1.7)

(ii) For all ϕ ∈ EI, the function Λ1 ∈ EI where (Λ1ϕ)(t) =
t∫

t−1
ϕ(τ)dτ .

(iii) EI is T+
τ -invariant for all τ ∈ I, where

• if I = (−∞, t0] and for some t0 ∈ R, then

(T+
τ ϕ)(t) =

{
ϕ(t− τ) for t 6 τ + t0,

0 for t > t0;

• if I = R, then

(T+
τ ϕ)(t) = ϕ(t− τ), for t ∈ R.

(iv) EI is T−τ -invariant for all τ ∈ I, where
• if I = (−∞, t0] and for some t0 ∈ R, then

(T−τ ϕ)(t) =

{
ϕ(t+ τ) for t 6 t0 − τ,
0 for t > t0;

• if I = R, then

(T−τ ϕ)(t) = ϕ(t+ τ), for t ∈ R.

Furthermore, there are constants N1, N2 such that ‖T+
τ ‖ 6 N1, ‖T−τ ‖ 6 N2 for

all τ ∈ I.
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Example 1.7 ([12]). The spaces Lp(R), 1 6 p 6∞, the space

M(R) :=

f ∈ L1,loc(R) : sup
t∈R

t∫
t−1

|f(τ)| dτ <∞


endowed with the norm

‖f‖M := sup
t∈R

t∫
t−1

|f(τ)| dτ,

and many other function spaces occurring in interpolation theory, for example,
the Lorentz spaces Lp,q, 1 < p < ∞, 1 < q < ∞, . . . are admissible Banach
function spaces.

Remark 1.8. If EI is the admissible Banach function space, then EI ↪→M(I).

Proposition 1.9. Let EI be an admissible Banach function space. Then the fol-
lowing assertions hold.

(i) Let ϕ ∈ L1,loc (I) such that ϕ > 0 and Λ1ϕ ∈ EI. For σ > 0, we define
functions Λ′σϕ, Λ′′σϕ by

(Λ′σϕ)(t) =

t∫
−∞

e−σ(t−s)ϕ(s)ds

and

(Λ′′σϕ)(t) =


∞∫
t

e−σ(s−t)ϕ(s)ds, if I = R,
t0∫
t

e−σ(s−t)ϕ(s)ds if I = (−∞, t0].

Then, Λ′σϕ and Λ′′σϕ belong to EI. Moreover, we have

‖Λ′σϕ‖EI
6

N1

1− e−σ
‖Λ1ϕ‖EI

and ‖Λ′′σϕ‖EI
6

N2

1− e−σ
‖Λ1ϕ‖EI

(1.8)

for constants N1, N2 defined as in Definition 1.6.
(ii) EI contains exponentially decaying functions e−a|t|, for all t ∈ I and any

fixed constant a > 0.
(iii) EI does not contain exponentially growing functions eb|t|, for all t ∈ I and

any fixed constant b > 0.

We next recall the definition of associate spaces of admissible Banach spaces
on I as follows.

Definition 1.10. Let EI be an admissible Banach space, and we denote by S(EI)
the unit sphere in EI. Consider, the set E ′I of all measurable real-valued functions
ψ on I such that

ϕψ ∈ L1(I),
∫
I

|ϕ(t)ψ(t)| dt 6 k, for all ϕ ∈ S(EI),



ADMISSIBLE INERTIAL MANIFOLDS 161

where k depends only on ψ and

L1(I) =

g : I→ I|g is measurable and

∫
I

|g(t)| dt <∞

 .

Then, E ′I is a normed space with the norm given by

‖ψ‖E′I := sup


∫
I

|ϕ(t)ψ(t)| dt : ϕ ∈ S(EI)

 for ψ ∈ E ′I,

and we call E ′I the associate space of EI.

Remark 1.11. Let EI be an admissible Banach function space and let E ′I be its
associate space. Then, we have the following Hölder inequality:∫

I

|ϕ(t)ψ(t)| dt 6 ‖ϕ‖EI
‖ψ‖E′I , for all ϕ ∈ EI, ψ ∈ E ′I. (1.9)

Remark 1.12. In the case when I = R, we write E,E instead of ER and ER.

Throughout this paper, we assume the following assumption.

Assumption 1.13. (i) The function space EI and its associate space E ′I are
admissible spaces.

(ii) For the function ϕ ∈ E ′I and fixed ν > 0, the function hν defined by

hν(t) :=
∥∥e−ν|t−·|ϕ(·)

∥∥
E′I

for t ∈ I

belongs to EI.

Remark 1.14. If we set

EI := {h : I→H | h is strongly measurable and ‖h(·)‖ ∈ EI}
respect to the norm

‖h‖EI :=
∥∥‖h(·)‖

∥∥
EI
,

then EI is the Banach space corresponding to the Banach function space EI.

Remark 1.15. In the case of infinite-dimensional phase spaces, instead of (1.2),
we consider the integral equation

U(t) = e−(t−s)AU(s) +

∫ t

s

e−(t−ξ)AF(ξ, U(ξ))dξ for a.e. t > s. (1.10)

By a solution of equation (1.10), we mean a strongly measurable function U(t)
defined on an interval J with the values in H that satisfies (1.10) for t, s ∈ J . We
note that the solution U of equation (1.10) is called a mild solution of equation
(1.2). We refer the reader to [14] for more detailed treatments on the relations
between classical and mild solutions of evolution equations (see also [4,7,11,15]).

To obtain the existence of an admissible inertial manifold for equation (1.10),
besides Assumptions 1.1 and 1.13, we also need the ϕ-Lipschitz property of the
nonlinear term f in the following definition.
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Definition 1.16 (ϕ-Lipschitz function). Let E be an admissible Banach function
space on R and let ϕ be a positive function belonging to E. A function f : R ×
Xβ → X is said to be ϕ-Lipschitz if f satisfies

(i) ‖f(t, x)‖ 6 ϕ(t)
(
1 +

∥∥Aβx∥∥) for a.e. t ∈ R and for all x ∈ Xβ,

(ii) ‖f(t, x1) − f(t, x2)‖ 6 ϕ(t)
∥∥Aβ(x1 − x2)

∥∥ for a.e. t ∈ R and for all
x1, x2 ∈ Xβ.

Proposition 1.17. Let F(t, U) = (0, f(t, u0)), where U = (x0, x1) ∈ H and the
nonlinear term f(t, u0) is ϕ-Lipschitz. Then we have

|F(t, U)| 6 ϕ(t) + ψ(t)|U |, (1.11)

|F(t, U)−F(t, V )| 6 ψ(t)|U − V |, (1.12)

where

ψ(t) = ϕ(t)µβN+1δ
−1
N,ε = ϕ(t)µ

β− 1
2

N+1δ
−1
N,ε max

{
1,

√
µN+1

ε2 − µN+1

}
.

Proof. Firstly, by inequality (1.11), we have

|F(t, U)| = ‖f(t, u0)‖ 6 ϕ(t)(1 + ‖Aβu0‖)

6 ϕ(t)
(

1 + µβN+1δ
−1
N,ε|U |

)
= ϕ(t) + ψ(t)|U |.

Also, by inequality (1.11), we estimate the following:

|F(t, U)−F(t, V )| = ‖f(t, u0)− f(t, v0)‖
6 ϕ(t)‖Aβ(u0 − v0)‖
6 ϕ(t)µβN+1δ

−1
N,ε|U − V |

= ψ(t)|U − V |.

The proof is complete. �

Remark 1.18. For the sake of simplicity, for all t ∈ R, by putting

κ(t) := max{ϕ(t), ψ(t)} = max

{
ϕ(t), ϕ(t)µ

β− 1
2

N+1δ
−1
N,ε max

{
1,

√
µN+1

ε2 − µN+1

}}
,

if f is ϕ-Lipschitz, then F is κ-Lipschitz, meaning that

|F(t, U)| 6 κ(t)(1 + |U |),
|F(t, U)−F(t, V )| 6 κ(t)|U − V |.

2. Admissible inertial manifolds

Now, we construct the form of the solutions of equation (1.10), which belongs
to rescaledly admissible spaces on the half-line (−∞, t0] in the following lemma.

Lemma 2.1. Let the operator A satisfy Assumption 1.1. Let E, E ′, and ϕ ∈ E ′
be as in Assumption 1.13. Let f : R×Xβ → X be ϕ-Lipschitz. For fixed t0 ∈ R,
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let U(t), t 6 t0 be a solution to equation (1.10) such that U(t) ∈ D(A) for all
t 6 t0 and the function

Z(t) =
∣∣e−γ(t0−t)U(t)

∣∣ for all t 6 t0

belongs to E(−∞,t0]. Then, U(t) satisfies

U(t) = e−(t−t0)Av1 +

∫ t0

−∞
G(t, τ)F(τ, U(τ))dτ for all t 6 t0, (2.1)

where v1 ∈ PH , and G(t, τ) is Green’s function defined as in (1.5).

Proof. Put

Y (t) :=

∫ t0

−∞
G(t, τ)F(τ, U(τ))dτ for all t 6 t0. (2.2)

By the definition of G(t, τ), we have that Y (t) ∈ H for t 6 t0. Since F is
κ-Lipschitz, using estimates (1.6), for t 6 t0, we obtain∣∣e−γ(t0−t)Y (t)

∣∣ 6 ∫ t0

−∞

∣∣eγ(t−τ)G(t, τ)
∣∣κ(τ)e−γ(t0−τ) (1 + |U(τ)|) dτ

6
∫ t0

−∞

∣∣eγ(t−τ)G(t, τ)
∣∣κ(τ)

(
e−γ(t0−τ) + |Z(τ)|

)
dτ. (2.3)

Putting W (t) := e−γ(t0−t) + |Z(t)| for all t 6 t0, we have that the function W
belongs to E(−∞,t0] and∫ t0

−∞

∣∣eγ(t−τ)G(t, τ)
∣∣κ(τ)W (τ)dτ 6

∫ t0

−∞
e−α|t−τ |κ(τ)W (τ)dτ

6
∥∥e−α|t−·|k(·)

∥∥
E′

(−∞,t0]

‖W‖E(−∞,t0]
. (2.4)

Since K(t) =
∥∥e−α|t−·|k(·)

∥∥
E′

(−∞,t0]

belongs to E(−∞,t0], using the admissibility of

E(−∞,t0], we obtain that

e−γ(t0−·)Y (·) ∈ E(−∞,t0]

and ∥∥e−γ(t0−·)Y (·)
∥∥

E(−∞,t0]
6 ‖K(·)‖E(−∞,0]

‖W‖E(−∞,0]
.

Next, by computing directly, we verify that Y (·) satisfies the integral equation

Y (t0) = e−(t0−t)AY (t) +

∫ t0

t

e−(t0−τ)AF(τ, U(τ))dτ for t 6 t0. (2.5)

Indeed, substituting Y from (2.2) to the right-hand side of (2.5), we get

e−(t0−t)AY (t) +

∫ t0

t

e−(t0−τ)AF(τ, U(τ))dτ

= e−(t0−t)A
∫ t0

−∞
G(t, τ)F(τ, U(τ))dτ +

∫ t0

t

e−(t0−τ)AF(τ, U(τ))dτ

= e−(t0−t)A
∫ t

−∞
e−(t−τ)A(I − P )F(τ, U(τ))dτ
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−e−(t0−t)A
∫ t0

t

e−(t−τ)APF(τ, U(τ))dτ +

∫ t0

t

e−(t0−τ)AF(τ, U(τ))dτ

=

∫ t

−∞
e−(t0−τ)A(I − P )F(τ, U(τ))dτ

−
∫ t0

t

e−(t0−t)Ae−(t−τ)APF(τ, U(τ))dτ +

∫ t0

t

e−(t0−τ)AF(τ, U(τ))dτ

=

∫ t0

−∞
e−(t0−τ)A(I − P )F(τ, U(τ))dτ =

∫ t0

−∞
G(t0, τ)F(τ, U(τ))dτ = Y (t0),

here we use the fact that

e−(t0−t)Ae−(t−τ)AP = e−(t0−τ)AP, for all t 6 τ 6 t0.

Thus, we have

Y (t0) = e−(t0−t)AY (t) +

∫ t0

t

e−(t0−τ)AF(τ, U(τ))dτ.

On the other hand,

U(t0) = e−(t0−t)AU(t) +

∫ t0

t

e−(t0−τ)AF(τ, U(τ))dτ.

Then U(t0)− U(t0) = e−(t0−t)A[U(t)− Y (t)].
Now, we need to prove that U(t0) − Y (t0) ∈ PH . Indeed, by applying the
operator I − P to the expression

U(t0)− Y (t0) = e−(t0−t)AU(t)− Y (t)],

we have

‖(I − P )[U(t0)− Y (t0)]‖ =
∥∥e−(t0−t)A(I − P )[U(t)− Y (t)]

∥∥
6 e−λ

−
N+1(t0−t) · ‖I − P‖ ·

∣∣e−γ(t0−t)[U(t)− Y (t)]
∣∣ .
(2.6)

Since

esssup
t6t0

∣∣e−γ(t0−t)[U(t)− Y (t)]
∣∣ < +∞,

letting t→ −∞, we obtain

‖(I − P )[U(t0)− Y (t0)]‖ = 0 hence (I − P )[U(t0)− Y (t0)] = 0.

Thus, v1 := U(t0)− Y (t0) ∈ PH . Using the fact that the restriction of e−(t0−t)A

on PH is invertible with the inverse e−(t−t0)A, we obtain

U(t) = e−(t−t0)Av1 + Y (t)

= e−(t−t0)Av1 +

∫ t0

−∞
G(t, τ)F(τ, U(τ))dτ for t 6 t0.

The proof is completed. �
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Remark 2.2. Equation (2.1) is called Lyapunov–Perron equation, which will be
used to determine the inertial manifold for equation (1.10). By computing di-
rectly, we can see that the converse of Lemma 2.1 is also true. This means that
all solutions of equation (2.1) satisfy equation (1.10) for t 6 t0.

We now show the existence of rescaling bounded solutions to (1.10) on negative
half-line in the following lemma.

Lemma 2.3. Let the operator A satisfy Assumption 1.1. Let E, E ′, and ϕ ∈ E ′
be as in Assumption 1.13. For all t ∈ R, we define the function K by

K(t) =
∥∥e−α|t−·|κ(·)

∥∥
E′
, (2.7)

where

κ(·) := max

{
ϕ(·), ϕ(·)µβ−

1
2

N+1δ
−1
N,ε max

{
1,

√
µN+1

ε2 − µN+1

}}
.

If f : R × Xβ → X is ϕ-Lipschitz such that k = ‖K(·)‖E < 1, then there
corresponds to each v1 ∈ PH one and only one solution U(·) of equation (1.10)
on (−∞, t0] satisfying the condition PU(t0) = v1, and

Z(t) = |e−γ(t0−t)U(t)|, t 6 t0

belongs to E(−∞,t0] for each t0 ∈ R.

Proof. Denote

E γ,t0 :=
{
V : (−∞, t0]→H | V is strongly measurable,

∣∣∣e−γ(t0−·)V (·)
∣∣∣ ∈ E(−∞,t0]

}
endowed with the norm

‖V ‖γ :=
∥∥∣∣e−γ(t0−·)V (·)

∣∣∥∥
E(−∞,t0]

. (2.8)

For each t0 ∈ R and v1 ∈ PH , we prove that the linear transformation T defined
by

(TU)(t) = e−(t−t0)Av1 +

∫ t0

−∞
G(t, τ)F(τ, U(τ))dτ for t 6 t0 (2.9)

acts from E γ,t0 into itself and is a contraction. In fact, for U(·) ∈ E γ,t0 , we have
that

|F(t, U(t))| 6 κ(t) (1 + |U(t)|) .
Therefore, putting

Y (t) := e−(t−t0)Av1 +

∫ t0

−∞
G(t, τ)F(τ, U(τ))dτ for t 6 t0,

we derive that∣∣e−γ(t0−t)Y (t)
∣∣ 6 e−α(t0−t)‖v1‖+

∫ t0

−∞

∣∣eγ(t−τ)G(t, τ)
∣∣κ(τ)e−γ(t0−τ) (1 + |U(τ)|) dτ

(2.10)

for all t 6 t0.
Using the estimate (2.4), we obtain∣∣e−γ(t0−t)Y (t)

∣∣ 6 ‖v‖+K(t) ‖W‖E(−∞,t0]
for all t 6 t0,
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where W (t) := e−γ(t0−t)(1 + |U(t)|).
Since e−α(t0−·) and K(·) belong to E(−∞,t0], then Y (·) ∈ E γ,t0 and

‖Y (·)‖γ 6 ‖v‖+ k ‖W‖E(−∞,t0]
.

Therefore, the linear transformation T acts from E γ,t0 to E γ,t0 .
For X, Z ∈ E γ,t0 , we now estimate∣∣e−γ(t0−t)(TX(t)− TZ(t))

∣∣ 6 ∫ t0

−∞

∣∣e−γ(t0−t)G(t, τ)
∣∣ ‖F(τ,X(τ))−F(τ, Z(τ))‖dτ

6
∫ t0

−∞

∣∣e−γ(t0−t)G(t, τ)
∣∣κ(τ)e−γ(t0−τ) |X(τ)− Z(τ)| dτ.

Again, using (2.4), we derive

‖TX(·)− TZ(·)‖γ 6 k‖X(·)− Z(·)‖γ.
Hence, since k < 1, we obtain that T : E γ,t0 → E γ,t0 is a contraction. Thus, there
exists a unique U(·) ∈ E γ,t0 such that TU = U . By the definition of T , we have
that U(·) is the unique solution in E γ,t0 of equation (1.10) for t 6 t0. By Lemma
2.1 and Remark 2.2, we have that U(·) is the unique solution in E γ,t0 of equation
(1.10) for t 6 t0. �

By the above results, we can define the admissible inertial manifold for (1.10)
as follows.

Definition 2.4. Let E be an admissible function space and let E be a Banach
space corresponding to E. An admissible inertial manifold of E -class for (1.10)
is a collection of Lipschitz surfaces M = {Mt}t∈R in X such that Mt is the graph
of a Lipschitz function

Φt : PH → (I − P )H ,

that is,
Mt = {U + ΦtU : U ∈ PH } for t ∈ R (2.11)

and the following conditions are satisfied:

(i) The Lipschitz constants of Φt are independent of t, that is, there exists a
constant C independent of t such that

|ΦtU1 −ΦtU2| 6 C|U1 − U2| for all t ∈ R and U1, U2 ∈ PH . (2.12)

(ii) There exists γ > 0 such that to each U0 ∈Mt0 there corresponds one and
only one solution U(·) to (1.10) on (−∞, t0] satisfying that U(t0) = U0

and the function
V (t) = e−γ(t0−t)U(t) (2.13)

belongs to E(−∞,t0] for each t0 ∈ R.
(iii) {Mt}t∈R is positively invariant under (1.10), that is, if a solution U(t),

t > s of (1.10) satisfies Us ∈Ms, then we have that U(t) ∈Mt for t > s.
(iv) {Mt}t∈R exponentially attracts all the solutions to (1.10), that is, for any

solution U(·) of (1.10) and any fixed s ∈ R, there is a positive constant
H such that

distH (U(t),Mt) 6 He−γ(t−s) for t > s, (2.14)
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where γ is the same constant as the one in (2.13), and distH denotes the
Hausdorff semi-distance generated by the norm in H .

Now, we show the existence of admissible inertial manifolds for (1.10) in the
following theorem.

Theorem 2.5. Let the operator A satisfy Assumption 1.1. Let E, E ′, and ϕ ∈ E ′
be as in Assumption 1.13. Let f be ϕ-Lipschitz. If

k < 1 and
kN2

(1− k)(1− e−α)
‖Λ1ϕ‖∞ + k < 1, (2.15)

then equation (1.10) has an admissible inertial manifold of E -class.

Proof. We start by defining a collection of surfaces {Mt0}t0∈R by

Mt0 := {V + Φt0V | V ∈ PH },

here Φt0 : PH → (I − P )H is defined by

Φt0(V ) =

∫ t0

−∞
e−(t0−τ)A(I − P )F(τ, U(τ))dτ = (I − P )U(t0), (2.16)

where U(·) is the unique solution in E γ,t0 of equation (1.10) satisfying that
PU(t0) = V (note that the existence and uniqueness of such U(·) is proved
in Lemma 2.3).

Next, we prove Φt0 is Lipschitz continuous with Lipschitz constant independent
of t0. Indeed, for V1 and V2 belonging to PH , we have

|Φt0(V1)−Φt0(V2)| 6
∫ t0

−∞

∣∣e−(t0−s)A(I − P )
∣∣ |F(s, U1(s))−F(s, U2(s))| ds

=

∫ t0

−∞
|G(t0, s)| |F(s, U1(s))−F(s, U2(s))| ds

6
∫ t0

−∞

∣∣eγ(t0−s)G(t0, s)
∣∣κ(s)

∣∣e−γ(t0−s) (U1(s)− U2(s))
∣∣ ds

6 k|U1(·)− U2(·)|γ (here we use the estimate (2.4)).
(2.17)

We now estimate |U1(·) − U2(·)|γ. Since Ui(·) is the unique solution in E γ,t0 of
equation (1.10) on (−∞, t0] satisfying PUi(t0) = Vi with i = 1, 2, respectively,
we have that∣∣e−γ(t0−t) (U1(t)− U2(t))

∣∣
=

∣∣∣∣e−γ(t0−t)(e−(t−t0)A(V1 − V2) +

∫ t0

−∞
G(t, τ)[F(τ, U1(τ))−F(τ, U2(τ))]dτ

)∣∣∣∣
6 |V1 − V2|+ k|U1(·)− U2(·)|γ for all t 6 t0.

Hence, we obtain

|U1(·)− U2(·)|γ 6 |V1 − V2|+ k|U1(·)− U2(·)|γ.
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Therefore, since k < 1, we get

|U1(·)− U2(·)|γ 6
1

1− k
|V1 − V2| .

Substituting this inequality to (2.17), we obtain

|Φt0(V1)−Φt0(V2)| 6
k

1− k
|V1 − V2| .

This yields that Φt0 is Lipschitz continuous with the Lipschitz constant
k

1− k
independent of t0. We thus obtain the property (i) in Definition 2.4 of the Ad-
missible Inertial Manifold.

The property (ii) of the Admissible Inertial Manifold follows from Lemmas 2.3
and 2.1 and Remark 2.2.

To prove the property (iii), let U(·) be a solution to equation (1.10) satisfying
U(s) = Us ∈Ms, that is, U(s) = PU(s) + Φs(PU(s)). Then, we fix an arbitrary
number t0 ∈ [s,∞) and define a function W (·) on (−∞, t0] by

W (t) =

{
U(t) if t ∈ [s, t0],

V (t) if t ∈ (−∞, s],

where V (·) is the unique solution in E γ,t0 of equation (1.10) satisfying V (s) =
U(s) ∈Ms. Then, using equation (1.10) and (2.16), we obtain

W (t) = e−(t−s)A (PU(s) + Φs(PU(s))) +

∫ t

s

e−(t−τ)AF(τ,W (τ))dτ

= e−(t−s)A (PU(s)) +

∫ t

−∞
e−(t−τ)A(I − P )F(τ,W (τ))dτ

+

∫ t

s

e−(t−τ)APF(τ,W (τ))dτ for s 6 t 6 t0. (2.18)

Obviously, equation (2.18) also remains true for t ∈ (−∞, s]. Now, in equation
(2.18) setting t = t0 and applying the projection P , we obtain

PW (t0) = e−(t0−s)A (PU(s)) +

∫ t0

s

e−(t0−τ)APF(τ,W (τ))dτ for s 6 t0.

It follows from the above equation that

PU(s) = e(t0−s)A (PU(t0))−
∫ t0

s

e(t0−s)Ae−(t0−τ)APF(τ,W (τ))dτ

= e−(s−t0)A (PU(t0))−
∫ t0

s

e−(s−τ)APF(τ,W (τ))dτ for s 6 t0. (2.19)

Substituting this form of PU(s) to equation (2.18), we obtain

W (t) = e−(t−t0)APU(t0) +

∫ t

t0

e−(t−τ)APF(τ,W (τ))dτ

+

∫ t

−∞
e−(t−τ)A(I − P )F(τ,W (τ))dτ
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= e−(t−t0)APU(t0) +

∫ t0

−∞
G(t, τ)F(τ,W (τ))dτ for t 6 t0. (2.20)

Therefore, U(t0) = W (t0) = PU(t0) + Φt0 (PU(t0)) for all t0 > s.
Lately, we prove the property (iv) of the admissible inertial manifold. To do

this, we prove that for any solution U(·) to equation (1.10) and any s ∈ R there
is a solution U?(·) of (1.10) such that U?(t) ∈Mt for t > s and

|U(t)− U?(t)| 6 η

1− L
e−γ(t−s) for all t > s, and some constant η, (2.21)

where L :=
kN2

(1− k)(1− e−α)
‖Λ1ϕ‖∞ + k < 1 is given as in (2.15). The solution

U?(·) is called an induced trajectory.
We find the induced trajectory in the form U?(t) = U(t) +W (t) with

‖W‖s,+ = esssup
t>s

eγ(t−s) |W (t)| <∞. (2.22)

Substituting U?(·) into (1.10), we obtain that U?(·) is a solution to (1.10) for
t > s if and only if W (·) is a solution to the equation

W (t) = e−(t−s)AW (s) +

∫ t

s

e−(t−ξ)A[F(ξ, U(ξ) +W (ξ))−F(ξ, U(ξ))]dξ. (2.23)

For the sake of simplicity in the presentation, we put

F (t,W ) = F(t, U +W )−F(t, U)

and set

Ls,+∞ =
{
V : [s,∞)→H | V is strongly measurable and esssup

t>s
eγ(t−s)|V (t)| <∞

}
endowed with the norm ‖ · ‖s,+ defined as in (2.22).

Then, by the same way as in Lemma 2.1 and Remark 2.2, we can prove that a
function W (·) ∈ Ls,+∞ is a solution to (2.23) if and only if it satisfies

W (t) = e−(t−s)AX0 +

∫ ∞
s

G(t, τ)F (τ,W (τ))dτ for t > s and X0 ∈ (I − P )H .

(2.24)
Here the value X0 ∈ (I − P )H is chosen such that U?(s) = U(s) +W (s) ∈Ms,
that is,

(I − P )(U(s)−W (s)) = Φs (P (U(s) +W (s))) .

From (2.24), it follows that

W (s) = X0 −
∫ ∞
s

e−(s−τ)APF (τ,W (τ))dτ. (2.25)

Hence

P (U(s) +W (s)) = PU(s)−
∫ ∞
s

e−(s−τ)APF (τ,W (τ))dτ,

and therefore

X0 = (I−P )W (s) = −(I−P )U(s)+Φs

(
PU(s)−

∫ ∞
s

e−(s−τ)APF (τ,W (τ))dτ

)
.

(2.26)
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Substituting this form of X0 into (2.24), we obtain

W (t) = e−(t−s)A
[
−(I − P )U(s) + Φs

(
PU(s)−

∫ ∞
s

e−(s−τ)APF (τ,W (τ))dτ

)]
+

∫ ∞
s

G(t, τ)F (τ,W (τ))dτ for t > s. (2.27)

What we have to do now to prove the existence of U? satisfying (2.21) is to prove
that equation (2.27) has a solution W (·) ∈ Ls,+∞ . To do this we prove that the
linear transformation T defined by

(TX)(t) = e−(t−s)A
[
−(I − P )U(s) + Φs

(
PU(s)−

∫ ∞
s

e−(s−τ)APF (τ,X(τ))dτ

)]
+

∫ ∞
s
G(t, τ)F (τ,X(τ))dτ for t > s.

acts from Ls,+∞ into itself and is a contraction.
Indeed, for X(·) ∈ Ls,+∞ , we have that |F (t,X(t))| 6 κ(t)|X(t)|. Therefore,

putting

q(X) := −(I − P )U(s) + Φs

(
PU(s)−

∫ ∞
s

e−(s−τ)APF (τ,X(τ))dτ

)
,

we can estimate

eγ(t−s) |(TX)(t)| 6 eγ(t−s)
∣∣∣e−(t−s)Aq(X)

∣∣∣+

∫ ∞
s

∣∣∣eγ(t−τ)G(t, τ)
∣∣∣κ(τ)eγ(τ−s) |X(τ)| dτ

6
∥∥∥eγ(t−s)e−(t−s)Aq(X)

∥∥∥+

∫ ∞
s

∣∣∣eγ(t−τ)G(t, τ)
∣∣∣κ(τ)dτ‖X(·)‖s,+.

(2.28)

Using the Lipschitz property of Φs and for t > s, we now estimate the first term
in the right-hand side of the above formula. In fact,∣∣∣eγ(t−s)e−(t−s)Aq(X)

∣∣∣ 6 ∣∣∣eγ(t−s)e−(t−s)A(−(I − P )U(s) + Φs(PU(s)))
∣∣∣

+
∣∣∣eγ(t−s)e−(t−s)A(q(X) + (I − P )U(s)−Φs(PU(s)))

∣∣∣
6 e(γ−λ

−
N+1)(t−s)

(
|(−(I − P )U(s) + Φs(PU(s)))|

+ |(q(X) + (I − P )U(s)−Φs(PU(s)))|
)

6 η + |(q(X) + (I − P )U(s)−Φs(PU(s)))|

6 η +

∣∣∣∣Φs

(
Pu(s)−

∫ ∞
s

e−(s−τ)APF (τ,X(τ))dτ

)
−Φs(PU(s))

∣∣∣∣
6 η +

k

1− k

∣∣∣∣∫ ∞
s

e−(s−τ)APF (τ,X(τ))dτ

∣∣∣∣
6 η +

k

1− k

∫ ∞
s

e−α(τ−s)κ(τ)
∣∣∣eγ(τ−s)X(τ)

∣∣∣ dτ
6 η +

[
kN2

(1− k)(1− e−α)
‖Λ1ϕ‖∞

]
‖X(·)‖s,+.
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Substituting these estimates to (2.28), we obtain TX ∈ Ls,+∞ and

‖TX‖s,+ 6 η +

[
kN2

(1− k)(1− e−α)
‖Λ1ϕ‖∞ + k

]
‖X(·)‖s,+. (2.29)

Therefore, the linear transformation T acts from Ls,+∞ to Ls,+∞ .
Now, using the fact that

|F (t,W1)− F (t,W2)| 6 κ(t) |W1 −W2|
and for X, Z ∈ Ls,+∞ , for all t > s, we now estimate∣∣eγ(t−s) (TX(t)− TZ(t))

∣∣ 6 k

1− k

∣∣∣∣∫ ∞
s

e−(s−τ)AP
(
F (τ,X(τ))− F (τ, Z(τ))

)
dτ

∣∣∣∣
+

∫ ∞
s

∣∣eγ(t−s)G(t, τ)
∣∣ |F (τ,X(τ))− F (τ, Z(τ))|dτ

6
k

1− k

∫ ∞
s

e−α(τ−s)κ(τ)
∣∣eγ(τ−s) [X(τ)− Z(τ)]

∣∣ dτ
+

∫ ∞
s

∣∣eγ(t−τ)G(t, τ)
∣∣κ(τ)eγ(τ−s) |X(τ)− Z(τ)| dτ

6

[
kN2

(1− k)(1− e−α)
‖Λ1ϕ‖∞ + k

]
‖X(·)− Z(·)‖s,+.

Therefore,

‖TX(·)− TZ(·)‖s,+ 6
[

kN2

(1− k)(1− e−α)
‖Λ1ϕ‖∞ + k

]
‖X(·)− Z(·)‖s,+.

Hence, if
kN2

(1− k)(1− e−α)
‖Λ1ϕ‖∞ + k < 1,

then we obtain that T : Ls,+∞ → Ls,+∞ is a contraction. Thus, there exists a unique
W (·) ∈ Ls,+∞ such that TW = W. By the definition of T , we have that W (·) is the
unique solution in Ls,+∞ of equation (2.27) for t > s. Also, using (2.29), we have
the estimate for ‖W (·)‖s,+ as

‖W (·)‖s,+ 6
η

1− L
.

Furthermore, by the determination of W , we obtain the existence of the solution
U? = U +W to equation (1.10) such that U?(t) ∈Mt for t > s, and U? satisfies
inequality (2.21) yielding that

|U?(t)− U(t)| = |W (t)| 6 η

1− L
e−γ(t−s) for all t > s.

By putting H :=
η

1− L
, it follows from this inequality that

distH (U(t),Mt) 6 He−γ(t−s).

Therefore, {Mt}t∈R exponentially attracts every solution U(·) of integral equation
(1.10). �
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Remark 2.6. By the definition of the constant k, the condition (2.15) is fulfilled
if the difference λN+1 − λN is sufficiently large, and/or the norm ‖Λ1ϕ‖∞ =

supt∈R
∫ t
t−1 ϕ(τ)dτ is sufficiently small.

3. Example

Consider the semilinear damped wave equation
∂2u

∂t2
(t, x) + 2ε

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) + a(t) ln (1 + |u(t, x)|) , 0 < x < π, t > t0

u(t, 0) = u(t, π) = 0 t > t0

u(t0, x) = φ1(x),
∂u

∂t
(t0, x) = φ2(x), 0 < x < π,

(3.1)

where φ1, φ2 are given initial functions and a(t) is defined by

a(t) =

 n if t ∈
[
n− 1

2n+c
, n+

1

2n+c

]
for n = 1, 2, . . . .

0 otherwise.
(3.2)

We now take X = L2 (0, π), and let A : X → X be defined by

Au = −∂
2u

∂x2

on the domain

D(A) = H1
0 (0, π) ∩H2(0, π).

Then, A satisfies Assumption 1.1, that is, A is a positive operator with discrete
point spectrum

12, 22, . . . , n2, . . .

and λN+1 − λN = 2N + 1.
Note that, D(A1/2) = H1

0 (0, π).
Let f : R × D(A1/2) be defined by f(t, u) = a(t) ln (1 + |u|). It is obvious

that f is ϕ-Lipschitz with ϕ(t) = a(t) for all t ∈ R. Furthermore, since ϕ can
take any arbitrarily large value, then ϕ /∈ L∞. Now, if we take E = Lp(R) with

1 < p <∞, then E ′ = Lq(R) for
1

p
+

1

q
= 1 and we have

∫
R

|ϕ(t)|q dt =
∑
n∈N

n+
1

2n+c∫
n−

1

2n+c

nqdt =
∑
n∈N

nq
1

2n+c−1
< +∞,
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that is, ϕ ∈ E ′. But

‖Λ1ϕ‖∞ = sup
t∈R

t+1∫
t

ϕ(τ)dτ = sup
t>0

t+1∫
t

a(τ)dτ 6 2 sup
n∈N

n+
1

2n+c∫
n−

1

2n+c

ndτ 6
1

2c−2
.

So, by Remark 2.6, equation (3.1) has an admissible inertial manifold of E -class
if N and/or c are large enough (here, E is the Banach space corresponding to
Lp(R)).
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