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SOME CLASSES OF PROBABILISTIC INNER PRODUCT
SPACES AND RELATED INEQUALITIES
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Communicated by A.M. Peralta

Abstract. We give a new definition for probabilistic inner product spaces,
which is sufficiently general to encompass the most important class of proba-
bilistic inner product spaces (briefly, PIP spaces). We have established certain
classes of PIP spaces and especially, illustrated that how to construct a real
inner product from a Menger PIP space. Finally, we have established the
analogous of Cauchy–Schwarz inequality in this general PIP spaces.

1. Introduction and preliminaries

A distribution function (briefly, a d.f.) [2, 3, 8, 9] is a function F from the
extended real line R̄ = [−∞,+∞] into the unit interval I = [0, 1] that is nonde-
creasing and satisfies F (−∞) = 0 and F (+∞) = 1.

The set of all d.f.’s will be denoted by ∆ and the subset of all F ’s in ∆ satisfying
F (0) = 0 will be denoted by ∆+. The sets ∆ and ∆+ are partially ordered by the
usual point wise partial ordering of functions: ε∞ is the minimal element of both
∆ and ∆+, ε−∞ is the maximal element of ∆, and ε0 is the maximal element of
∆+.

For every a ∈]−∞,+∞[, the function

εa(x) :=

{
0, x ∈ ]−∞, a],

1, x ∈ ]a,+∞[,
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is a distribution function and the function ε∞ is defined by

ε∞(t) :=

{
0, x ∈ ]−∞,+∞[,

1, x = +∞.

The space ∆+ can be metrized in several ways [9], but we shall here adopt the
Sibley metric dS. Let F and G be d.f.’s, let h be in ]0, 1[, and let (F,G;h) denote
the condition:

G(x) ≤ F (x+ h) + h for every x ∈
]
0,

1

h

[
.

Then the Sibley metric [9] dS is defined by

dS(F,G) := inf{h ∈]0, 1[: both (F,G;h) and (G,F ;h) hold}.
In particular, under the usual pointwise ordering of functions, ε0 is the maximal
element of ∆+.

A triangle function [6, 7] is a binary operation on ∆+, namely a function τ :
∆+ × ∆+ −→ ∆+ that is associative, commutative, and nondecreasing in each
place and has ε0 as identity, this is, for all F,G and H in ∆+, we have

(TF1): τ(τ(F,G), H) = τ(F, τ(G,H)),
(TF2): τ(F,G) = τ(G,F ),
(TF3): F ≤ G =⇒ τ(F,H) ≤ τ(G,H),
(TF4): τ(F, ε0) = τ(ε0, F ) = F .

Moreover, a triangle function is continuous if it is continuous in the metric space
(∆+, dS).

Typical continuous triangle functions [7] are

τT (F,G)(x) = sup
s+t=x

{T (F (s), G(t))}

and
τT ∗(F,G) = inf

s+t=x
{T ∗(F (s), G(t)}.

Here T is a continuous t-norm, that is, a continuous binary operation on [0, 1] that
is commutative, associative, nondecreasing in each variable and has 1 as identity;
T ∗ is a continuous t-conorm, namely a continuous binary operation on [0, 1] which
is related to the continuous t-norm T through T ∗(x, y) = 1−T (1−x, 1−y). Let us
recall among the triangular function one has the function defined via T (x, y) =
min(x, y) = M(x, y) and T ∗(x, y) = max(x, y) or T (x, y) = Π(x, y) = xy and
T ∗(x, y) = Π∗(x, y) = x+ y − xy.

Definition 1.1 ([7,12]). A probabilistic normed space, which will henceforth be
called briefly a PN space, is a quadruple (V, ν, τ, τ ∗), where V is a linear space, τ
and τ ∗ are continuous triangle functions, and the mapping ν : V →4+ satisfies,
for all p and q in V, the conditions

(N1): νp = ε0 if, and only if, p = θ (θ is the null vector in V );
(N2): For all p ∈ V ν−p = νp;
(N3): νp+q ≥ τ (νp, νq);
(N4): For all α ∈ [0, 1] νp ≤ τ ∗

(
ναp,, ν(1−α)p

)
.
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The function ν is called the probabilistic norm. If (V, ν, τ, τ ∗) satisfies the
condition, weaker than (N1),

νθ = ε0,

then it is called a probabilistic pseudo-normed space (briefly, a PPN space). If
τ = τT and τ ∗ = τT ∗ for some continuous t-norm T and its t-conorm T ∗, then
(V, ν, τT , τT ∗) is denoted by (V, ν, T ) and is a Menger PN space.

Definition 1.2 ([7]). A probabilistic normed space of Šerstnev (briefly a Šerstnev
space) is a triple (V, ν, τ), where V is a (real or complex) linear space, ν is
a mapping from V into 4+, and τ is a continuous triangle function and the
following conditions are satisfied for all p and q in V :

(N1) νp = ε0 if and only if p = θ (θ is the null vector in V );
(N2) νp+q ≥ τ(νp, νq);

(Š) For all α ∈ R\{0}, for all x ∈ R+ ναp(x) = νp

(x
α

)
.

Notice that condition (Š) implies

(N3) ν−p = νp for all p ∈ V.

Example 1.3 ([7]). Let (V, ‖.‖) be a normed space, and define νp := ε‖p‖. Let τ
be a triangle function such that

τ (εa, εb) = εa+b

for all a, b ≥ 0 and let τ ∗ be a triangle function with τ ≤ τ ∗. For instance, it
suffices to take τ = τT and τ ∗ = τT ∗ , where T is a continuous t-norm and T ∗ is
its t-conorm. Then (V, ν, τ, τ ∗) is a PN space.

Example 1.4 ([7]). Let (V, ‖.‖) be a real normed space. Define a map ν : V →
4+ by

νp(t) =


t

t+ ‖p‖
if t ∈]0,+∞[,

1, t = +∞,

and triangle functions defined by ΠΠ (F,G) (t) = F (t)G(t) and ΠΠ∗ (F,G) (t) =
F (t) +G(t)− F (t)G(t). Then (V, ν,ΠΠ,ΠΠ∗) is a PN space, called the canonical
PN space associated with the normed space (V, ‖.‖) .

Let F ∈ 4+; then define F∧(t) = sup{u ∈ (0,+∞) ;F (u) < t}. The triangle
function τM is constructed through the left-continuous t-norm M via

τM(F,G)(x) := sup{M(F (u), G(v))|Sum(u, v) = x}. (1.1)

If F and G are strict increasing d.f.’s, then the supremum on the right-hand
side of (1.1) is attained precisely when F (u) = G(v). Turning this observation
around, we see that for any t in [0, 1], there exist unique values ut and vt such
that F (ut) = G(vt) = t and τM(F,G)(ut + vt) = t. Inverting, one has

[τM(F,G)]−1(t) = ut + vt = F−1(t) +G−1(t),

whence
[τM(F,G)]−1 = F−1 +G−1. (1.2)
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Display (1.2) remains valid for any F,G in ∆+, that is,

[τM(F,G)]∧ = F∧ +G∧, (1.3)

from which we have
τM(F,G) = [F∧ +G∧]∧. (1.4)

Equation (1.4) shows that the operation τM in ∆+ is equivalent to point-wise
addition on the space of (left-continuous) quasi-inverses. Since the latter opera-
tion is simpler than the former, this is a useful result, applied in what follows.

Next, since F∧ and G∧ are nondecreasing, we may write

F∧(x) +G∧(x) = inf{Sum(F∧(u), G∧(v))|M(u, v) = x}. (1.5)

The expressions on the right-hand sides of (1.1) and (1.5) are dual in the sense
that each may be obtained from the other as follows: Interchange M and Sum,
interchange sup and inf, and replace functions by their quasi-inverses. Further-
more, (1.3) and (1.4) show that each expression is the quasi-inverse of the other.
These observations, together with the definition of τT,L by

τT,L(F,G)(x) = sup{T (F (u), G(v))|L(u, v) = x},
suggest that the foregoing relationships remain valid when M is replaced by any
continuous t-norm T and Sum by any L.

Schweizer and Sklar [9] introduced the first definition of probabilistic inner
product spaces (i.e., briefly PIP spaces) in their book “Probabilistic Metric Spaces”
[9], but the biggest challenge for us and other mathematicians was how to give
a concise, logical and functional definition for PIP spaces. In 1986, Zhang [1]
proposed a modified definition of PIP spaces and established some convergence
theorems, the Schwarz inequality, and the orthogonal properties of PIP spaces.
Zhang defined the probabilistic inner product in the following way.

Definition 1.5 ([1]). A probabilistic inner product space is a triplet (S,F , δ),
where S is a real vector space, δ is a t-norm, and F is a mapping from S×S → ∆+

(Fp,q(x) denotes the value of Fp,q at x ∈ R) satisfying the following conditions:
For all p, q, r ∈ S and α ∈ R
(P-1) Fp,q(0) = 0;
(P-2) Fp,q = Fq,p;
(P-3) Fp,p(x) = ε0(t) for all x ∈ R if and only if p = 0;

(P-4) Fp,q(x) :=


Fp,q

(
t

α

)
, α < 0,

ε0(x), α = 0,

1−Fp,q
(
t

α
+

)
, x > 0,

where Fp,q
(
t

α
+

)
is the right-hand limit of Fp,q at

t

α
;

(P-5) Fp+q,r(x) = sup
u+v=x;u,v∈R

∆ (Fp,r(u),Fq,r(v)) .

Many authors tried to develop various analogue results in PIP space with the
definition of (1.1), but they could not achieve it to a possible extent. Motivated
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by this definition and the idea used by Zhang [1], the authors of this paper define
the generalized probabilistic inner product spaces with the help of a t-norm and
a t-conorm.

Definition 1.6 ([7]). A copula is a function C : [0, 1]2 → [0, 1] that satisfies the
following conditions:

(C1): C(0, t) = C(t, 0) = 0 and C(1, t) = C(t, 1) = t for every t ∈ [0, 1];
(C2): C is 2-increasing, that is, for all s, s′, t and t′ in [0, 1], with s ≤ s′

and t ≤ t′, we have

C(s′, t′)− C(s′, t)− C(s, t′) + C(s, t) ≥ 0.

Definition 1.7 ([7]). For every F ∈ ∆, the d.f. F ∈ ∆ is defined as

F (t) := `−(1− F (t))

for every t ∈ R. Note that F = F for every F ∈ ∆ and that F = F if and only if
F is symmetric.

Lemma 1.8 ([7]). For a d.f. F ∈ ∆, τM(F, F̄ ) = ε0 if and only if F = εc for
some c ∈ R

Theorem 1.9 ([7]). For a pair (V, ν) that satisfies conditions (N1) and (N2), the
following statements are equivalent:

(a) (V, ν) satisfies also condition (Š);
(b) For all p ∈ V and for all α ∈ [0, 1], we have

νp = τM(ναp, ν(1−α)p).

2. Probabilistic inner product spaces

In this section, we have redefined the probabilistic inner product space given
by Alsina, and Schweizer, Sempi, and Sklar [4]. This new class of probabilistic
inner product spaces will help us to find various analogous results in PIP spaces
from our classical inner product spaces and we provide many examples.

The first thing to notice when going from real inner product to probabilistic
inner product is that since real inner products can assume negative values, we need
to deal with distribution functions (d.f.’s) in ∆ rather than with d.f.’s confined
to the subspace ∆+.

Definition 2.1 ([7]). A multiplication on ∆ is a binary operation τ on ∆ that
is commutative, associative, nondecreasing on each place, and whose restriction
to ∆+ is a triangle function.

Multiplications of particular interest to us in this paper are the extensions of
the functions τT and τS [7, 9] defined on ∆×∆ by

τT (F,G) (x) := sup
u+v=x

T [F (u), G(v)]

and

τS (F,G) (x) := l−
(

inf
u+v=x

S[F (u), G(v)]

)
,
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respectively. Here T is a continuous t-norm and S is a continuous t-conorm and for
any F ∈ ∆, l−F is the left continuous normalization of F, that is, l−F (x) = F (x−)
for every x ∈ R.

Definition 2.2. A probabilistic inner product space (briefly, PIP space) is a
quadruple (V,G, τ, τ ∗) , where V is a real linear space, τ and τ ∗ are multiplications
on ∆ such that τ ≤ τ ∗ and G is a mapping from V × V into ∆ such that, if Gp,q
denotes the value of G at the point (p, q) (i.e., given any point x ∈ R, the value
Gp,q(x) is interpreted as the probability that the inner product of p and q is less
than x) and if the function ν : V → ∆+ is defined via:

The probabilistic version of usual case where the norm satisfies ‖p‖2 = 〈p, p〉
leads to axiom (P0), because

νp(x) = P (‖p‖ < x) = P
(
〈p, p〉 < x2

)
= Gp,p(x

2).

(P0) νp(x) :=

{
Gp,p(x2), x > 0,

0, x ≤ 0.

For all p, q, r ∈ V , the following conditions hold:

(P1) Gp,p ∈ ∆+ and G0,0 = ε0, where θ is the null vector in V ;
(P2) Gp,p ≤ ε0 if p 6= θ;
(P3) Gθ,p = ε0;
(P4) Gp,q = Gq,p;
(P5) Gp,q(x) = Ḡp,q(x) = l− (1− Gp,q(−x)) for all x ∈ R;
(P6) νp+q ≥ τ (νp, νq) ;
(P7) νp ≤ τ ∗

(
ναp, ν(1−α)p

)
for every α ∈ I = [0, 1];

(P8) τ (Gp,r,Gq,r) ≤ Gp+q,r ≤ τ ∗ (Gp,r,Gq,r) ;
(P9) If {xn} converges to x and {yn} converges to y, then Gxn,yn converges to

Gx,y.
If τ = τT and τ ∗ = τT ∗ for some continuous t-norm T and its associated t-conorm
T ∗, then (V,G, τT , τT ∗) is a Menger PIP space, which we denote by (V,G, T ) .
If τ ∗ = τM and equality holds in (P7), then (V,G, τT , τM) is a Šerstnev PIP
space. If (P1) and (P3)–(P8) are satisfied, then (V,G, τT , τT ∗) is a probabilistic
pseudo-inner product space.

It is immediate that (V, ν, τT , τT ∗) is a probabilistic norm and we shall refer to
ν as a probabilistic norm derived from a probabilistic inner product G. Note that,
if (V,G, τT , τM) is a Šerstnev PIP space, then in view of the fact that ν−p = νp,
and (P7) may be replaced by

νλp(x) = νp

(
x

|λ|

)
,

for all λ and x in R, where by convention, νp

(x
0

)
= ε0(x).

Definition 2.3. Let (V,G, τ, τ ∗) be a PIP space. Then, a sequence {xn} in X is
said to converge to x ∈ X if for every ε > 0 and for every α ∈ (0, 1], there exists
k ∈ N such that Gxn−x,xn−x(ε) > 1− α.
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Definition 2.4. Let (V,G, τ, τ ∗) be a PIP space. Then a sequence {xn} in V is
said to be a Cauchy sequence in X if for every ε > 0 and for every α ∈ (0, 1],
there exists k ∈ N such that Gxn−xm,xn−xm(ε) > 1− α when m,n ≥ k.

Definition 2.5. A PIP space (V,G, τ, τ ∗) is said to be probabilistic Hilbert space
if every Cauchy sequence converges in V.

The following theorems establish a new class of probabilistic inner product
spaces.

Theorem 2.6. Let (Rn, 〈., .〉) be an inner product space. Then the quadruple
(Rn,G, τΠ, τΠ∗) , where

Gp,q(x) :=


0, x < 0,

e−
√
〈p,q〉, x ∈]0,+∞[,

1, x = +∞,
and

νp(x) :=


0, x ≤ 0,

e−‖p‖, x ∈]0,+∞[

1, x = +∞,
,

is a Menger probabilistic inner product space for τΠ = ΠΠ and τΠ∗ = ΠΠ∗ .

Proof. We have Gp,q(x) = e−
√
〈p,q〉 implies νp(x) = e−

√
〈p,p〉 = e−‖p‖ for x ∈

]0,+∞[.
(P6) One can see that, νp+q = e−‖p+q‖ ≥ e−‖p‖−‖q‖ and ΠΠ (νp, νq) = e−‖p‖e−‖q‖ =

e−‖p‖−‖q‖ implies that νp+q ≥ ΠΠ (νp, νq) .
(P7) We have to show that νp ≤ τ ∗

(
ναp, ν(1−α)p

)
for every α ∈ I = [0, 1].

Therefore, νp = e−‖p‖ ≤ e−α‖p‖+e−(1−α)‖p‖−e−‖p‖ if and only if 2e−‖p‖ ≤ e−α‖p‖+
e−(1−α)‖p‖. Multiplying both sides by e‖p‖, we get 2 ≤ eα‖p‖ + e(1−α)‖p‖, which is
true.

(P8) We have Gp+q,r = e−
√
〈p+q,r〉 ≥ e−

√
〈p,r〉e−

√
〈q,r〉, which is true, because√

a+ b ≤
√
a+
√
b in R+.

Now it is necessary to see that Gp+q,r ≤ ΠΠ∗ (Gp,r,Gq,r) , and one has

Gp+q,r = e−
√
〈p+q,r〉 ≤ e−

√
〈p,r〉 + e−

√
〈q,r〉 − e−

(√
〈p,r〉+
√
〈q,r〉

)
implies that

e−
√
〈p,r〉+〈q,r〉 + e−

√
〈p,r〉−
√
〈q,r〉 ≤ e−

√
〈p,r〉 + e−

√
〈q,r〉.

Multiplying both sides by e
√
〈p,r〉+〈q,r〉, we get

1 + e−
√
〈p,r〉−
√
〈q,r〉+
√
〈p,r〉+〈q,r〉 ≤ e−

√
〈p,r〉+
√
〈p,r〉+〈q,r〉 + e−

√
〈q,r〉+
√
〈p,r〉+〈q,r〉

≤ e−
√
〈p,r〉 + e−

√
〈q,r〉,

which is true.
Finally, as a consequence, the quadruple (Rn,G, τΠ, τΠ∗) is a Menger PIP space

with a real inner product. �
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The next theorem illustrates how we can induce a real inner product from a
Menger probabilistic inner product. Then one can say that every Menger PIP
space is a real inner product space.

Theorem 2.7. Let (V,G,M) be a Menger PIP space. Then V is a real inner
product space. That is, there exists a real inner product 〈., .〉 : V × V → R such
that Gp,q = ε〈p,q〉 for all p, q ∈ V.

Proof. Since τM = τM∗ , it follows from P(8) that, for all p.q, r ∈ V,

Gp+q,r = τM (Gp,r,Gq,r) .
Letting q = −p and using P(3) and P(5) yield

ε0 = τM
(
Gp,r, Ḡp,r

)
.

By Lemma 1.8, for each distribution function F ∈ ∆, τM
(
F, F̄

)
= ε0 if and

only if F = εc for some c ∈ R. Applying Lemma 1.8, one has G∧p,r = c.
Now, define 〈., .〉 : V × V → R by 〈p, q〉 = G∧p,q for all p, q ∈ V. Notice that by

duality, one has

〈p+ q, r〉 = G∧p+q,r = [τM (Gp,r,Gq,r)]∧ = G∧p,r + G∧q,r = 〈p, r〉+ 〈q, r〉.

This completes the proof. �

Theorem 2.8. The quadruple (R2, 〈., .〉, F,M) is a simple space generated by
(R2, 〈., .〉) and F is a d.f. different from ε0 and ε∞. Moreover R2 is a Menger
PIP space under M and a Šerstnev space. For p, q, r ∈ R \ {0}, define

νp(t) := F

(
t√
〈p, p〉

)
and Gp,q(x) = F

(
x
√
p, q

)
for x > 0 and νθ = ε0.

Proof. (P6) By the property of duality, we have

[τM (νp, νq)]
∧ = ν∧p + ν∧q

= ‖p‖F∧ + ‖q‖F∧

= (‖p‖+ ‖q‖)F∧

≥ ‖p+ q‖F∧ = ν∧p+q.

Finally one has νp+q ≥ τM (νp, νq) . Since, p = αp + (1 − α)p, by (P6), one has
νp ≥ τM

(
ναp, ν(1−α)p

)
for α ∈ [0, 1] .

From (P6) and (P7), we have νp(t) = τM
(
ναp, ν(1−α)p

)
. As a consequence,

(R2, 〈., .〉, F,M) is a Šerstnev space.
P(8) One can see that

G∧p+q,r(t) =

[
F

(
t√

〈p+ q, r〉

)]∧
=
√
〈p+ q, r〉 ≤

(√
〈p, r〉+

√
〈q, r〉

)
F∧.

So, Gp+q,r(t) ≥ τM (Gp,r,Gq,r) and Gp+q,r(t) ≤ τM∗ (Gp,r,Gq,r) . Since τM = τM∗ ,
finally in (P8) the equality holds. �
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Theorem 2.9. Let (R2,G, τ,ΠM) , where R2 is a real vector space, τ and ΠM

are multiplications in ∆ such that τ ≤ ΠM , and G is a mapping from R2 ×R2 in
to ∆ such that Gp,q denotes the value of G at the pair (p, q), and if the function
ν : R2 × R2 → ∆ defined via,

νp(x) :=

{
Gp,p(x2), x > 0,

0, x ≤ 0.

Then, for all p, q, r ∈ R2, the following results hold:

(1) (R2,G, τ,ΠM) is a PIP space with G : R2 × R2 → ∆ by (p, q) 7−→ Gp,q and
Gp,q := εβ+√〈p,q〉

β

, β ∈ (0,+∞), and let τ be the triangle function such that

τ (εc, εd) ≤ εc+d for c, d > 0.
(2) (R2,G, τ,ΠM) is neither a topological vector space nor a Šerstnev space.

Proof. (1) (P8) We have

Gp+q,r(t) = εβ+√〈p,q〉
β

= εβ+√〈p,r〉+〈q,r〉
β

= εβ+√〈p,r〉+〈q,r〉
β

≥ εβ+√〈p,q〉
β

+
β+
√
〈q,r〉
β

= τ (Gp,r,Gq,r) .

We need to check Gp+q,r ≤ ΠM (Gp,r,Gq,r). We know that, ΠM � τ, and as a
consequence ΠM � τ, in ∆+. It is immediate from the above case. Moreover,
τ (Gp,r,Gq,r) ≤ ΠM (Gp,r,Gq,r) , and finally (R2,G, τ,ΠM) is a PIP space.

(2) (R2, ν, τ,ΠM) is neither a topological vector space nor a Šersternev space.
It follows from [9, Lemma 7.2.13] that

τM
(
ναp, ν(1−α)p

)
= τM

εβ + α‖p‖
β

, εβ + (1− α)‖p‖
β


= ε2β + ‖p‖

β

≤ εβ + ‖p‖
β

= νp.

As a consequence, for every t ∈
[
1 +
‖p‖
β
, 2 +

‖p‖
β

]
, one has

τM
(
ναp, ν(1−α)p

)
(t) < νp(t),

so that the space considered is not a Šersternev space. In other hand, let {αn}
be a sequence of real numbers such that lim

n→∞
αn = 0. Then, for every p 6= θ, we
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have

lim
n→+∞

ναnp = lim
n→+∞

εβ + ‖p‖
β

= ε1 6= ε0.

Therefore, (R2, ν, τ,ΠM) is not a topological vector space. �

2.1. EN spaces. EN spaces, shortly to be defined, provides an important class
of PN spaces. Their importance derives from the role they play in the study of
convergence of random variables.

Definition 2.10 ([7]). Let (Ω,A, P ) be a probability space, let (V, 〈., .〉) be a real
inner product space, and let S be a set of functions from Ω in to V. Then (S,G) is
an EN-space with base (Ω,A, P ) and target (V, 〈., .〉) if the following conditions
holds:

(i) S under pointwise addition and scalar multiplication, is a real linear space.
The zero element in S is a constant function θ given by θ(ω) = n for all
ω ∈ Ω, where n is the null vector in V.

(ii) For all p, q ∈ V and for all x ∈ R, the set {ω ∈ Ω : 〈p(ω), q(ω)〉 < x}
belongs to A, that is, the composite function 〈p, q〉 from Ω in to R defined
by 〈p, q〉(ω) = 〈p(ω), q(ω)〉 is P-measurable, or, in other words, it is a real
random variable.

(iii) For all p, q ∈ V,G(p, q) is the distribution function of 〈p, q〉, that is, for all
x ∈ R,

G(p, q)(x) = P{ω ∈ Ω : 〈p(ω), q(ω)〉 < x}.
If for any p ∈ V, 〈p, q〉 = 0 a.s. only if p = θ, then (V,G) is a canonical EN-space
(E-normed space).

Theorem 2.11. If (V,G) is an EN-space, then (V,G, τW , τW ∗) is a pseudo-PIP
space. If (V,G) is a canonical EN space, then (V,G, τW , τW ∗) is a PIP space, that
is, (V,G,W ) is a Menger PIP space.

Proof. The properties from (P1),(P3),(P4), and (P5) are immediate, as is (P2)
when (V,G) is canonical.

Next, it follows from the definition of EN spaces that (V, ν) is an E-normed
space. As shown in [9], such a space is a pseudo-PN space in the sense of Šerstnev
in which τ = τW . Condition (P6) is just the triangle inequality for this space.
Since conditions ν−p = νp and νp = τM

(
ναp, ν(1−α)p

)
for all p ∈ V and α ∈ (0, 1),

taken together are equivalent to Šerstnev condition,

ναp (x) = νp

(
x

|α|

)
for all p ∈ V and α ∈ R.

(P7) holds with τ = τM and since, τM = τM∗ , a fortiory with τ = τW ∗ .

Gp+q,r(x) = P{ω ∈ Ω : 〈p(ω) + q(ω, r(ω))〉 < x}
= P{ω ∈ Ω : 〈p(ω), r(ω)〉+ 〈q(ω), r(ω)〉 < x}.

Thus Gp+q,r is the distribution function of the sum of the random variables 〈p, r〉
and 〈q, r〉.
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(P6) For all p, q, r ∈ V, and for every t > 0, let u, v ∈ [0,+∞) be such that
u + v = t. Define the sets A,B, and C by A = {ω ∈ Ω : ‖p(ω)‖ < u}, B =
{ω ∈ Ω : ‖q(ω)‖ < v}, and C = {ω ∈ Ω : ‖p(ω) + q(ω)‖ < t}. Since the
norm ‖.‖, satisfies the triangle inequality, it follows that A ∪ B ⊂ C, so that
P (C) ≥ P (a ∪B) ≥ W (P (A), P (B)) .

For every p ∈ V and for every t > 0, define a mapping ν : V → ∆+ via

νp(t) := P{ω ∈ Ω : ‖p(ω)‖ < t}, (2.1)

where P is a probability measure in Ω. Therefore, one has P (A) = νp(u), P (B) =
νq(v) and P (C) = νp+q(t), so that νp+q(t) ≥ W (νp(u), νq(u)) , and hence

νp+q(t) = sup{W (νp(u), νq(v)) ;u+ v = t} = τW (νp, νq) (t).

For every p ∈ V and for every t > 0, one has from equation (2.1) and with
α ∈ [0, 1] that

τM
(
ναp, ν(1−α)p

)
= sup{ναp(u) ∧ ν(1−α)p(t− u) : u ∈ [0, 1]}
= sup

u∈[0,t]

{P{|α|‖p(ω)‖ < u} ∧ P{|1− α|‖p(ω)‖ < t− u}}

= P

(
‖p‖ < sup

u∈[0,t]

{ u
|α|
∧ t− u
|1− α|

}

)
.

Taking into account,
u

α
≤ t− u

1− α
if and only if u ≤ αt, one obtain, for every t > 0,

τM
(
ναp, ν(1−α)p

)
(t) = νp(t),

so that (V, ν, τW , τM) is a PPN space. Therefore, by virtue of Theorem 1.9, when
the PN space (V, ν) is canonical, it is a Šerstnev space under τW . It remains to
establish (P8).

(P8) Let C〈p,r〉,〈q,r〉 be the copula of these random variables, so that
C〈p,r〉,〈q,r〉 (Gp,r,Gq,r) is their joint d.f. Then (see [4, 10,11]), we have

Gp+q,r = σC〈p,r〉,〈q,r〉(Gp,r,Gq,r),

where, for any pair of d.f.’s, F and G and any copula C,

σC(F,G) =

∫∫
u+v<x

dC (F (u), G(v)) .

Next (see [9–11]), for any copula C and for any pair of d.f.’s, F and G,

τW (F,G) ≤ σC(F,G) ≤ τW ∗(F,G).

This yields (P8), with τ = τW and τ ∗ = τW ∗ , and completes the proof.
�

Now we prove the analogous of the Cauchy–Schwarz inequality in PIP spaces.

Theorem 2.12. Let (S,G, τ, τ ∗) be a PIP space. For every p, q ∈ S, then

Gp,q ≥ τ (νp, νq) .
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Proof. For p, q ∈ S and t, s ∈ R+, we have

Gtp+sq,p+q ≥ τ (Gtp+sq,p,Gtp+sq,q)
≥ τ (τ (Gtp,p,Gp,sq) , τ (Gtp,q,Gsq,q))

≥ τ

(
τ

(
Gp,p ◦

j

t
,Gp,q ◦

j

s

)
, τ

(
Gp,q ◦

j

t
,Gq,q ◦

j

s

))
≥ τ

(
τ

(
Gp,p ◦

j

t
,Gq,q ◦

j

s

)
, τ

(
Gp,q ◦

j

t
,Gp,q ◦

j

s

))
.

Since the left side d.f. is in ∆, by letting α = max{t, s}, we have

τ

(
τ

(
νp ◦

j1/2

α
, νq ◦

j1/2

α

)
,Gp,q ◦

j

α

)
∈ ∆,

by the associative property of τ functions. Since

τ

(
νp ◦

j1/2

α
, νq ◦

j1/2

α

)
∈ ∆+,

we conclude that

τ

(
νp ◦

j1/2

α
, νq ◦

j1/2

α

)
≤ Gp,q ◦

j

α
,

that is,
τ (νp, νq) ≤ Gp,q.

�

Corollary 2.13. The Cauchy–Schwarz inequality leads to an expression in which
only the probabilistic norms in p and q, νp and νq intervene.
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