
Khayyam J. Math. 6 (2020), no. 2, 257–273

DOI: 10.22034/kjm.2020.109823

APPROXIMATION FOR THE BERNSTEIN OPERATOR OF
MAX-PRODUCT KIND IN SYMMETRIC RANGE
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Abstract. In the approximation theory, polynomials are particularly posi-
tive linear operators. Nonlinear positive operators by means of maximum and
product were introduced by B. Bede. In this paper, the max-product of Bern-
stein operators for symmetric ranges are introduced and some upper estimates
of approximation error for some subclasses of functions are obtained. Also, we
investigate the shape-preserving properties.

1. Introduction and preliminaries

In the theory of approximation, researchers investigated many operators within
approximation of a continuous function by a sequence of linear positive operators.
These operators are defined by the means of the addition and multiplication of
the reals and all of them are linear operators. Up to now, in [1, 4, 11, 12, 13,
14], researchers studied approximation theory for linear operators, which has an
admitted interest in the past decades. Bede, Coroianu, and Gal Sb introduced the
nonlinear positive operators by means of discrete linear approximating operators.
In [2, 3, 6, 9, 16, 17], “max-product kind operators” were presented by using
maximum in the name of sum in usual linear operators and gave a Jackson-type
error estimate in terms of modulus of continuity.

The Bernstein polynomials Bn(x) were introduced by Bernstein (see [7]) as
follows:

Bn(x) = Bn(f ;x) =
n∑

k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k, (1.1)
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which is called a Bernstein polynomial of order n of the function f(x), where f(x)
is defined on the closed interval [0, 1]. The general case of the Bernstein operator
of max-product kind has given so much interest. In this paper, we study Bernstein
operator of max-product kind in symmetric range. The Bernstein polynomials in
symmetric range are defined by

Cn(f ;x) =
n∑

k=0

(
n

k

)(
1

2
+
x

2

)k (
1

2
− x

2

)n−k

f

(
2
k

n
− 1

)
, (1.2)

where x ∈ [−1, 1], f ∈ C[−1, 1], and n ∈ N by Çilo [8] under the supervision
of Izgi. They investigated that these operators given in (1.2) are linear positive
in symmetric range and provide the Korovkin theorem conditions. Also they
indicated that (1.2) are smooth convergence on the range of [−1, 1].

In this section, we indicate some general notations and definitions, which will be
used in this study. Operations “∨” (maximum) and “·” (product) are considered
over the set of positive reals, and (R+,∨, ·) is called as a max-product algebra.

Let I ⊂ R be a finite or infinite interval, and set

CB+(I) = {f : I −→ R+; f continous and bounded on I} .

The general form of discrete max-product-type approximation operators

Ln(f)(x) =
n∨

i=0

Kn(x, xi)f(xi),

Ln(f)(x) =
∞∨
i=0

Kn(x, xi)f(xi),

where n ∈ N, f ∈ CB+(I), Kn(., xi) ∈ CB+(I), and xi ∈ I, for all i. These
operators are nonlinear positive operators satisfying the pseudo-linearity property

Ln(α.f ∨ β.g)(x) = α.Ln(f)(x) ∨ β.Ln(g)(x),

for all α, β ∈ R+ and f, g : I → R+. Additionally, the max-product operators are
positive homogeneous, in other words, Ln(λf) = λLn(f) for all λ ≥ 0.

Now, we present the following general results to be useful later in the study.

Lemma 1.1 (see [5]). Let I ⊂ R be a bounded or unbounded interval, let f ∈
CB+(I), and let Ln : CB+(I) → CB+(I), n ∈ N, be a sequence of operators
satisfying the following properties:

(1) If f, g ∈ CB+(I) satisfy f ≤ g, then Ln(f) ≤ Ln(g) for all n ∈ N;
(2) Ln(f + g) ≤ Ln(f) + Ln(g) for all f, g ∈ CB+(I).

Then for all f, g ∈ CB+(I), n ∈ N and x ∈ I, we get

|Ln(f)(x)− Ln(g)(x)| ≤ Ln(|f − g|)(x).

Remark 1.2. One can see that max-product type operators satisfy the conditions
(1), (2) in Lemma 1.1. In fact, for α = 1, β = 1, they satisfy a pseudo-linearity,
which is stronger than the above condition (2).
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2. Main results

In this section, we define the nonlinear Bernstein operators for symmetric
ranges of max-product type as below:

C(M)
n (f ;x) =

∨n
k=0 pn,k(x)f(2 k

n
− 1)∨n

k=0 pn,k(x)
, n ∈ N,

where

pn,k(x) =

(
n

k

)(
1

2
+
x

2

)k (
1

2
− x

2

)n−k

.

Also f : [−1, 1] → R is a continuous function and the operators C
(M)
n (f)(x)

are positive and continuous on [−1, 1]. Note that, C
(M)
n (f)(x) operators satisfy

the pseudo-linearity property and these operators also are positive homogeneous.

Since C
(M)
n (f)(−1) − f(−1) = C

(M)
n (f)(1) − f(1) = 0 for all n, throughout the

paper, we can suppose that −1 < x < 1.
Now, we need the following notations and lemmas for the proofs of the main

results. For each k, j ∈ {0, 1, 2, . . . , n} and x ∈
[

2j
n+1
− 1, 2j+2

n+1
− 1
]
, we obtain the

following structure:

Mk,n,j(x) =
pn,k(x)

∣∣2 k
n
− 1− x

∣∣
pn,j(x)

, mk,n,j(x) =
pn,k(x)

pn,j(x)
.

If k ≥ j + 1, then

Mk,n,j(x) =
pn,k(x)

(
2 k
n
− 1− x

)
pn,j(x)

, (2.1)

and if k ≤ j − 1, then

Mk,n,j(x) =
pn,k(x)

(
x− 2 k

n
+ 1
)

pn,j(x)
. (2.2)

Furthermore, for each k, j ∈ {0, 1, 2, . . . , n}, k ≥ j+2, and x ∈
[

2j
n+1
− 1, 2j+2

n+1
− 1
]
,

we get the following

Mk,n,j(x) =
pn,k(x)

(
2 k
n+1
− 1− x

)
pn,j(x)

, (2.3)

and for each k, j ∈ {0, 1, 2, . . . , n}, k ≤ j− 2, and x ∈
[

2j
n+1
− 1, 2j+2

n+1
− 1
]
, we get

the following

M̂k,n,j(x) =
pn,k(x)

(
x− 2 k

n+1
+ 1
)

pn,j(x)
. (2.4)

Lemma 2.1. Let x ∈
[

2j
n+1
− 1, 2j+2

n+1
− 1
]
. Then

(1) for all k, j ∈ {0, 1, 2, . . . , n}, k ≥ j + 2, we have

Mk,n,j(x) ≤Mk,n,j(x) ≤ 3Mk,n,j(x);

(2) for all k, j ∈ {0, 1, 2, . . . , n}, k ≤ j − 2, we have

Mk,n,j(x) ≤ M̂k,n,j(x) ≤ 6Mk,n,j(x).
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Proof. (1) By (2.1) and (2.3), it is clear that Mk,n,j(x) ≤Mk,n,j(x). On the other
hand,

Mk,n,j(x)

Mk,n,j(x)
=

2 k
n
− 1− x

2 k
n+1
− 1− x

≤
2 k
n
− 1− 2j

n+1
+ 1

2 k
n+1
− 1− 2j+2

n+1
+ 1

=
kn+ k − nj
n(k − j − 1)

=
k − j

k − j − 1
+

k

n(k − j − 1)
≤ 3,

which proves (1). By using (2.2) and (2.4), it is obvious that Mk,n,j(x) ≤
M̂k,n,j(x). Additionally,

M̂k,n,j(x)

Mk,n,j(x)
=
x− 2 k

n+1
+ 1

x− 2 k
n

+ 1
≤

2j+2
n+1
− 1− 2k

n+1
+ 1

2 j
n+1
− 1− 2 k

n
+ 1

=
n(j + 1− k)

nj − nk − k
≤ (n+ 1)(j + 1− k)

nj − nk − n

=
n+ 1

n
· j + 1− k
j − k − 1

≤ 2
j + 1− k
j − k − 1

=2

(
1 +

2

j − k − 1

)
≤ 6.

�

Lemma 2.2. For all k, j ∈ {0, 1, 2, . . . , n} and x ∈
[

2j
n+1
− 1, 2j+2

n+1
− 1
]
, we get

mk,n,j(x) ≤ 1.

Proof. For the proof of the above lemma, we consider two cases:

(a) k ≥ j, and (b) k ≤ j.

Case (a). Let k ≥ j. Because g(x) = 1−x
1+x

is nonincreasing on
[

2j
n+1 − 1, 2j+2

n+1 − 1
]
,

it follows that

mk,n,j(x)

mk+1,n,j(x)
=
k + 1

n− k
· 1− x

1 + x
≥ k + 1

n− k
·

1− 2j+2
n+1

+ 1

1 + 2j+2
n+1
− 1

=
k + 1

n− k
· n− j
j + 1

≥ k + 1

n− k
· n− k
j + 1

=
k + 1

j + 1
≥ 1,

which indicates

mj,n,j(x) ≥ mj+1,n,j(x) ≥ mj+2,n,j(x) ≥ · · · ≥ mn,n,j(x).

Case (b). Let us take the case k ≤ j. We have

mk,n,j(x)

mk−1,n,j(x)
=
n− k + 1

k
· 1 + x

1− x
≥ n− k + 1

k
·

1 + 2j
n+1
− 1

1− 2j
n+1

+ 1

=
n− k + 1

k
· j

n− j + 1
≥ n− k + 1

k
· k

n− k + 1
= 1,

which implies

mj,n,j(x) ≥ mj−1,n,j(x) ≥ mj−2,n,j(x) ≥ · · · ≥ m0,n,j(x).
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�

Lemma 2.3. Let x ∈
[

2j
n+1
− 1, 2j+2

n+1
− 1
]
.

(1) If k ∈ {j + 2, j + 3, . . . , n− 1} is such that k −
√
k + 1 ≥ j, then Mk,n,j(x) ≥

Mk+1,n,j(x).

(2) If k ∈ {1, 2, . . . , j − 2} is such that k +
√
k ≤ j, then M̂k,n,j(x) ≥ M̂k−1,n,j(x).

Proof. (1) Let k ∈ {j + 2, j + 3, . . . , n− 1} with k −
√
k + 1 ≥ j. Then we have

Mk,n,j(x)

Mk+1,n,j(x)
=
k + 1

n− k
· 1− x

1 + x
·

2 k
n+1
− 1− x

2 k+1
n+1
− 1− x

.

Since the function µ(x) = 1−x
1+x
· 2k−(n+1)−(n+1)x
2(k+1)−(n+1)−(n+1)x

is nonincreasing, it follows that

µ(x) ≥ µ

(
2j + 2

n+ 1
− 1

)
=
n− j
j + 1

· k − j − 1

k − j

for all x ∈
[

2j
n+1
− 1, 2j+2

n+1
− 1
]
. Then, since the condition k−

√
k + 1 ≥ j implies

(k + 1) · (k − j − 1) ≥ (j + 1)(k − j) and

Mk,n,j(x)

Mk+1,n,j(x)
≥ k + 1

n− k
· n− j
j + 1

· k − j − 1

k − j
≥ 1,

we get Mk,n,j(x) ≥Mk+1,n,j(x).
(2) We have

M̂k,n,j(x)

M̂k−1,n,j(x)
=
n− k + 1

k
· 1 + x

1− x
·
x− 2k

n+1
+ 1

x− 2 k−1
n+1

+ 1
.

Since the function η(x) = 1+x
1−x ·

(n+1)x−2k+(n+1)
(n+1)x−2(k−1)+(n+1)

is nondecreasing, it follows that

η(x) ≥ η

(
2j

n+ 1
− 1

)
=

j

n+ 1− j
· j − k
j − k + 1

for all x ∈
[

2j
n+1
− 1, 2j+2

n+1
− 1
]
. Then since the condition k +

√
k ≤ j implies

j(j − k) ≥ k(j − k + 1), we have

M̂k,n,j(x)

M̂k−1,n,j(x)
≥ n− k + 1

k
· j

n+ 1− j
· j − k
j − k + 1

≥ 1.

�

Lemma 2.4. Let us indicate pn,k(x) =
(
n
k

) (
1
2

+ x
2

)k (1
2
− x

2

)n−k
, then

n∨
k=0

pn,k(x) = pn,j(x) for all x ∈
[

2j

n+ 1
− 1,

2j + 2

n+ 1
− 1

]
, j = 0, 1, . . . , n.

In addition,
n∨

k=0

pn,k(x) = pn,0(x) for all x ∈ [0, 1]
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and
n∨

k=0

pn,k(x) = pn,n(x) for all x ∈ [−1, 0] .

Proof. Firstly, we demonstrate for fixed n ∈ N and 0 ≤ k ≤ k + 1 ≤ n, that

0 ≤ pn,k+1(x) ≤ pn,k(x) if and only if x ∈
[
0,

2k + 2

n+ 1
− 1

]
.

Let us take the following inequality:

0 ≤
(

n

k + 1

)(
1

2
+
x

2

)k+1(
1

2
− x

2

)n−k−1

≤
(
n

k

)(
1

2
+
x

2

)k (
1

2
− x

2

)n−k

.

After some simplifications and using this equality
(

n
k+1

)
+
(
n
k

)
=
(
n+1
k+1

)
, we can

reduce the above inequality to

0 ≤ x ≤ 2k + 2

n+ 1
− 1.

By taking k = 0, 1, . . . , n in the inequality above, we get

pn,1(x) ≤ pn,0(x), if and only if x ∈
[
0,

2

n+ 1
− 1

]
,

pn,2(x) ≤ pn,1(x), if and only if x ∈
[
0,

4

n+ 1
− 1

]
,

pn,3(x) ≤ pn,2(x), if and only if x ∈
[
0,

6

n+ 1
− 1

]
,

and

pn,k+1(x) ≤ pn,k(x), if and only if x ∈
[
0,

2k + 2

n+ 1
− 1

]
,

and finally

pn,n−2(x) ≤ pn,n−3(x), if and only if x ∈
[
0,

2n− 4

n+ 1
− 1

]
,

pn,n−1(x) ≤ pn,n−2(x), if and only if x ∈
[
0,

2n− 2

n+ 1
− 1

]
,

pn,n(x) ≤ pn,n−1(x), if and only if x ∈
[
0,

2n

n+ 1
− 1

]
.

On the other hand, because

pn,k(x).pn,k+1(x) =

(
n

k + 1

)(
n

k

)
1

22n
(1 + x)2k+1(1− x)2(n−k)−1 > 0
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and from all these inequalities given above, reasoning by recurrence, we obtain

if x ∈
[
0,

2

n+ 1
− 1

]
, then pn,k(x) ≤ pn,0(x), for all k = 0, 1, . . . , n;

if x ∈
[

2

n+ 1
− 1,

4

n+ 1
− 1

]
, then pn,k(x) ≤ pn,1(x), for all k = 0, 1, . . . , n;

if x ∈
[

4

n+ 1
− 1,

6

n+ 1
− 1

]
, then pn,k(x) ≤ pn,2(x), for all k = 0, 1, . . . , n;

and in general

if x ∈
[

2n

n+ 1
− 1, 1

]
, then pn,k(x) ≤ pn,n(x), for all k = 0, 1, . . . , n.

�

3. Degree of approximation by C
(M)
n (f)(x)

In this section, we give the main results about the nonlinear Bernstein operator
of max-product kind for the symmetric range defined in Section 1.

Theorem 3.1. If f : [−1, 1] → R+ is a continuous function, then the following
inequality holds∣∣C(M)

n (f)(x)− f(x)
∣∣ ≤ 24ω1

(
f ;

1√
n+ 1

)
, for all n ∈ N, x ∈ [−1, 1],

where

ω1 (f ; δ) = sup {|f(x)− f(y)| ;x, y ∈ [−1, 1], |x− y| ≤ δ} .

Proof. Since C
(M)
n (e0)(x) = 1, by using the Shisha–Mond theorem given for non-

linear max-product type operators in [2, 5], we get∣∣C(M)
n (f)(x)− f(x)

∣∣ ≤ (1 +
1

δn
C(M)

n (ϕx)(x)

)
ω1 (f ; δn) , (3.1)

where ϕx(t) = |t− x|. Therefore it is enough to estimate only the following term:

En(x) = C(M)
n (ϕx) (x) =

∨n
k=0 pn,k(x)

∣∣2 k
n
− 1− x

∣∣∨n
k=0 pn,k(x)

.

Let x ∈
[

2j
n+1
− 1, 2j+2

n+1
− 1
]
, where j ∈ {0, 1, . . . , n} is fixed and arbitrary. By

Lemma 2.4, we have

En(x) =
n∨

k=0

Mk,n,j(x).

Since for j = 0, we get En(x) ≤ 2/n for all x ∈ [−1, 1−n
n+1

], we may suppose
that j ∈ {1, . . . , n}. We will find an upper estimate for each Mk,n,j(x), where
j ∈ {0, 1, . . . , n} is fixed, x ∈

[
2j
n+1
− 1, 2j+2

n+1
− 1
]
, and k ∈ {0, 1, . . . , n}. The

proof will be divided into 3 cases:

(a) k ∈ {j − 1, j, j + 1} , (b) k ≥ j + 2 and (c) k ≤ j − 2.
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Case (a). If k = j thenMj,n,j(x) =
∣∣2 j

n
− 1− x

∣∣ . Since x ∈
[

2j
n+1
− 1, 2j+2

n+1
− 1
]
,

it follows immediately that Mj,n,j(x) ≤ 2/(n+ 1).
If k = j+ 1, then Mj+1,n,j(x) = mj+1,n,j(x) ·

(
2 j+1

n
− 1− x

)
. From Lemma 2.2,

we have mj+1,n,j(x) ≤ 1, which implies

Mj+1,n,j(x) ≤2
j + 1

n
− 1− x ≤ 2

j + 1

n
− 1− 2

j

n+ 1
+ 1

=2
n+ j + 1

n(n+ 1)
≤ 6/(n+ 1).

If k = j− 1, then Mj−1,n,j(x) = mj−1,n,j(x) ·
(
x− 2 j−1

n
− 1
)
. From Lemma 2.2,

we have mj−1,n,j(x) ≤ 1, which implies

Mj−1,n,j(x) ≤x− 2
j − 1

n
− 1 ≤ 2

j + 2

n+ 1
− 1− 2

j − 1

n
+ 1

=2
2n− (j − 1)

n(n+ 1)
≤ 4/(n+ 1).

Case (b). Subcase (b.1). Let k −
√
k + 1 < j; then

Mk,n,j(x) =mk,n,j(x)

(
2

k

n+ 1
− 1− x

)
≤2

k

n+ 1
− 1− x ≤ 2

k

n+ 1
− 1− 2

j

n+ 1
+ 1

≤2
k

n+ 1
− 2

k −
√
k + 1

n+ 1
= 2

√
k + 1

n+ 1
≤ 2√

n+ 1
.

Subcase (b.2). Let k −
√
k + 1 ≥ j. Since the function g(x) = x −√

x+ 1 is nondecreasing on the interval [−1, 1], it follows that there exists k =

{0, 1, 2, . . . , n} of the maximum value, such that k −
√
k + 1 < j. Then for

k1 = k + 1, we get k1 −
√
k1 + 1 ≥ j and

Mk+1,n,j(x) =mk+1,n,j(x)

(
2
k + 1

n+ 1
− 1− x

)
≤2

k + 1

n+ 1
− 1− 2

j

n+ 1
+ 1

≤2
k + 1

n+ 1
− 2

k −
√
k + 1

n+ 1

=
2(
√
k + 1 + 1)

n+ 1
≤ 4√

n+ 1
.

Furthermore, we have k1 ≥ j + 2, this is a consequence of the fact that g is
nondecreasing and it is easy to see that g(j+1) < j. By Lemma 2.3(1), it follows
that Mk+1,n,j(x) ≥Mk+2,n,j(x) ≥ · · · ≥Mn,n,j(x).

We obtain Mk,n,j(x) ≤ 4√
n+1

for any k ∈
{
k + 1, k + 2, . . . , n

}
. Thus in Sub-

cases (b.1) and (b.2), we have Mk,n,j(x) ≤ 4√
n+1

. Hence, from Lemma 2.1(1), we

have Mk,n,j(x) ≤ 12√
n+1

.
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Case (c). Subcase (c.1). Let k +
√
k ≥ j. Then

M̂k,n,j(x) =mk,n,j(x)

(
x− 2

k

n+ 1
+ 1

)
≤2j + 2

n+ 1
− 1− 2

k

n+ 1
+ 1

≤2(k +
√
k + 1)

n+ 1
− 2

k

n+ 1
=

2(
√
k + 1)

n+ 1

≤2(
√
n+ 1)

n+ 1
≤ 4√

n+ 1
.

Subcase (c.2). Now let k +
√
k < j and let k̃ = {0, 1, 2, . . . , n} be the

minimum value such that k̃ +
√
k̃ ≥ j. Then k2 = k̃ − 1 satisfies k2 +

√
k2 < j

and

M̂k̃−1,n,j(x) =mk̃−1,n,j(x)

(
x− 2

k̃ − 1

n+ 1
+ 1

)

≤2j + 2

n+ 1
− 1− 2

k̃ − 1

n+ 1
+ 1

≤2(
√
k̃ + 2)

n+ 1
≤ 6√

n+ 1
.

Also, in this case, we have j ≥ 2, which implies k2 ≤ j − 2. By Lemma 2.3(2),

we get M̂k̃−1,n,j(x) ≥ M̂k̃−2,n,j(x) ≥ · · · ≥ M̂0,n,j(x).
Hence, we obtain

M̂k,n,j(x) ≤ 6√
n+ 1

for any k ≤ j − 2 and x ∈
[

2j

n+ 1
− 1,

2j + 2

n+ 1
− 1

]
.

Therefore in Subcases (c.1) and (c.2), we have M̂k,n,j(x) ≤ 6√
n+1

. Hence from

Lemma 2.1(2), we have Mk,n,j(x) ≤ 6√
n+1

. Consequently, collecting all the above

estimates, we obtain

Mk,n,j(x) ≤ 12√
n+ 1

for all x ∈
[

2j

n+ 1
− 1,

2j + 2

n+ 1
− 1

]
, k = {0, 1, 2, . . . , n} ,

which implies that

En(x) ≤ 12√
n+ 1

for all x ∈ [−1, 1], n ∈ N,

and indicating δn = 12√
n+1

in (3.1), we get the estimate

∣∣C(M)
n (f)(x)− f(x)

∣∣ ≤ 24ω1

(
f ;

1√
n+ 1

)
, for all n ∈ N, x ∈ [−1, 1].

�
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Now, we want to show a better order of approximation for subclasses of function
f . For demonstrating a better approximation, let us consider the functions
fk,n,j :

[
2j
n+1
− 1, 2j+2

n+1
− 1
]
→ R defined as

fk,n,j(x) = mk,n,j(x)f

(
2
k

n
− 1

)
=

(
n
k

)(
n
j

) (1 + x

1− x

)k−j

f

(
2
k

n
− 1

)
. (3.2)

Hence, for any j ∈ {0, 1, 2, . . . , n} and x ∈
[

2j
n+1
− 1, 2j+2

n+1
− 1
]
, we can write

C(M)
n (f)(x) =

n∨
k=0

fk,n,j(x). (3.3)

Lemma 3.2. Let us take f : [−1, 1]→ [0,∞) such that

C(M)
n (f)(x) = max {fj,n,j(x), fj+1,n,j(x)} for all x ∈

[
2j

n+ 1
− 1,

2j + 2

n+ 1
− 1

]
.

Then ∣∣C(M)
n (f)(x)− f(x)

∣∣ ≤ 4ω1

(
f ;

1

n

)
,

where ω1 (f ; δ) = sup {|f(x)− f(y)| ;x, y ∈ [−1, 1], |x− y| ≤ δ}.

Proof. For the proof, we need the following two cases:

Case (a). Let x ∈
[

2j
n+1
− 1, 2j+2

n+1
− 1
]

be fixed such that C
(M)
n (f)(x) =

fj,n,j(x). By applying simple calculations, we get − 2
n+1
≤ x − 2 j

n
+ 1 ≤ 2

n+1

and fj,n,j(x) = f
(
2 j
n
− 1
)
, it follows that∣∣C(M)

n (f)(x)− f(x)
∣∣ =

∣∣∣∣f (2
j

n
− 1

)
− f(x)

∣∣∣∣ ≤ 2ω1

(
f ;

1

n+ 1

)
. (3.4)

Case (b). Let x ∈
[

2j
n+1
− 1, 2j+2

n+1
− 1
]

be fixed such that C
(M)
n (f)(x) =

fj+1,n,j(x).

Subcase (b.1). If C
(M)
n (f)(x) ≤ f(x), then fj,n,j(x) ≤ fj+1,n,j(x) ≤ f(x), and

we have ∣∣C(M)
n (f)(x)− f(x)

∣∣ = |fj+1,n,j(x)− f(x)| = f(x)− fj+1,n,j(x)

≤f(x)− fj,n,j(x) = f(x)− f
(

2
j

n
− 1

)
≤2ω1

(
f ;

1

n+ 1

)
.

Subcase (b.2). Let C
(M)
n (f)(x) > f(x); then∣∣C(M)

n (f)(x)− f(x)
∣∣ =fj+1,n,j(x)− f(x)

=mj+1,n,j(x)f

(
2
j + 1

n
− 1

)
− f(x)

≤f
(

2
j + 1

n
− 1

)
− f(x).
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Because

0 ≤ 2
j + 1

n
− 1− x ≤2

j + 1

n
− 1− 2

j

n+ 1
+ 1

= 2

(
j

n(n+ 1)
+

n+ 1

n(n+ 1)

)
<

4

n
,

then

f

(
2
j + 1

n
− 1

)
− f(x) ≤ 4ω1

(
f ;

1

n

)
.

�

Lemma 3.3. Let f : [−1, 1]→ [0,∞) such that

C(M)
n (f)(x) = max {fj,n,j(x), fj−1,n,j(x)} for all x ∈

[
2j

n+ 1
− 1,

2j + 2

n+ 1
− 1

]
.

Then ∣∣C(M)
n (f)(x)− f(x)

∣∣ ≤ 4ω1

(
f ;

1

n

)
.

Proof. For the proof, we need two cases:

Case (a). Let C
(M)
n (f)(x) = fj,n,j(x). When as Lemma 3.2, we have∣∣C(M)

n (f)(x)− f(x)
∣∣ ≤ 2ω1

(
f ;

1

n+ 1

)
.

Case (b). Let x ∈
[

2j
n+1
− 1, 2j+2

n+1
− 1
]

be fixed such that C
(M)
n (f)(x) =

fj−1,n,j(x). Here, we have two cases:

Subcase (b.1). Let C
(M)
n (f)(x) ≤ f(x). Then following the proof of Lemma

3.2, we get

C(M)
n (f)(x)− f(x) ≤ 2ω1

(
f ;

1

n+ 1

)
.

Subcase (b.2). If C
(M)
n (f)(x) > f(x) and using the following inequality:

0 ≤ x− 2
j − 1

n
+ 1 ≤2(j + 2)

n+ 1
− 1− 2(j − 1)

n
+ 1

=2

(
−j

n(n+ 1)
+

1

n+ 1
+

1

n

)
<

4

n
,

we obtain ∣∣C(M)
n (f)(x)− f(x)

∣∣ =fj−1,n,j(x)− f(x)

=mj−1,n,j(x)f

(
2
j − 1

n
− 1

)
− f(x)

≤f
(

2
j − 1

n
− 1

)
− f(x)

≤4ω1

(
f ;

1

n

)
.

�
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Lemma 3.4. Let f : [−1, 1]→ [0,∞) such that

C(M)
n (f)(x) = max {fj−1,n,j(x), fj,n,j(x), fj+1,n,j(x)}

for all x ∈
[

2j
n+1
− 1, 2j+2

n+1
− 1
]
. Then∣∣C(M)

n (f)(x)− f(x)
∣∣ ≤ 4ω1

(
f ;

1

n

)
.

Proof. Let x ∈
[

2j
n+1
− 1, 2j+2

n+1
− 1
]
. If C

(M)
n (f)(x) = fj,n,j(x) or C

(M)
n (f)(x) =

fj+1,n,j(x), then C
(M)
n (f)(x) = max {fj,n,j(x), fj+1,n,j(x)} and from Lemma 3.2,

we have ∣∣C(M)
n (f)(x)− f(x)

∣∣ ≤ 4ω1

(
f ;

1

n

)
.

If C
(M)
n (f)(x) = fj−1,n,j(x), then C

(M)
n (f)(x) = max {fj,n,j(x), fj−1,n,j(x)} and

from Lemma 3.3, we have∣∣C(M)
n (f)(x)− f(x)

∣∣ ≤ 4ω1

(
f ;

1

n

)
.

�

Lemma 3.5. Let us take the function f : [−1, 1]→ [0,∞) is concave. Then the
following two properties hold:

(1) The function g : (−1, 0) ∪ (0, 1]→ [0,∞), g(x) = f(x)/ |x| is nonincreasing.
(2) The function h : [−1, 0)∪(0, 1)→ [0,∞), h(x) = f(x)/1−x is nondecreasing.

Proof. (1) Let us take x, y ∈ (−1, 0) ∪ (0, 1] such that x ≤ y. Then

f(x) = f

(
x

y
· y +

y − x
y
· 0
)
≥ x

y
f(y) +

y − x
y

f(0) ≥ x

y
f(y),

which implies f(x)/ |x| ≥ f(y)/ |y| .
(2) Let x, y ∈ [−1, 0) ∪ (0, 1) such that x ≥ y. Then

f(x) = f

(
1− x
1− y

· y +
x− y
1− y

· 1
)
≥ 1− x

1− y
f(y) +

x− y
1− y

f(1) ≥ 1− x
1− y

f(y),

which implies f(x)/(1− x) ≥ f(y)/(1− y). �

Corollary 3.6. The function f : [−1, 1] → [0,∞) is a concave function and for
all x ∈ [−1, 1], it follows that∣∣C(M)

n (f)(x)− f(x)
∣∣ ≤ 4ω1

(
f ;

1

n

)
.

Proof. Let us take x ∈ [−1, 1] and let x ∈
[

2j
n+1
− 1, 2j+2

n+1
− 1
]

for j ∈ {0, 1, 2, . . . , n}.
If k ≥ j, for k ∈ {0, 1, 2, . . . , n}, then

fk+1,n,j(x) =

(
n

k+1

)(
n
j

) (1 + x

1− x

)k+1−j

f

(
2
k + 1

n
− 1

)
=

(
n
k

)(
n
j

) n− k
k + 1

(
1 + x

1− x

)k−j
1 + x

1− x
f

(
2
k + 1

n
− 1

)
.
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From Lemma 3.5(1), we have

f

(
2
k + 1

n
− 1

)
/

(
2
k + 1

n
− 1

)
≤
(
k + 1

k

)
f

(
2
k

n
− 1

)
,

and since 1+x
1−x ≤

j+1
n−j , we can write that

f

(
2
k + 1

n
− 1

)
/

(
2
k + 1

n
− 1

)
≤ f

(
2
k

n
− 1

)
/

(
2
k

n
− 1

)
.

Therefore, we obtain

fk+1,n,j(x) =

(
n
k

)(
n
j

) n− k
k + 1

(
1 + x

1− x

)k−j
j + 1

n− j
k + 1

k
f

(
2
k

n
− 1

)
=fk,n,j(x)

n− k
n− j

j + 1

k
.

By using the above inequality for k ≥ j+1, we have fk,n,j(x) ≥ fk+1,n,j(x). Hence

fk+1,n,j(x) ≥ fk+2,n,j(x) ≥ · · · ≥ fn,n,j(x). (3.5)

When k ≤ j, then

fk−1,n,j(x) =

(
n

k−1

)(
n
j

) (1 + x

1− x

)k−1−j

f

(
2
k − 1

n
− 1

)
=

(
n
k

)(
n
j

) k

n− k + 1

(
1 + x

1− x

)k−j
1− x
1 + x

f

(
2
k − 1

n
− 1

)
.

Since

f

(
2
k

n
− 1

)
/

(
2− 2

k

n

)
≥ f

(
2
k − 1

n
− 1

)
/

(
2− 2

k − 1

n

)
which comes from Lemma 3.5, we have

f

(
2
k

n

)
≥
(

n− k
n− k + 1

)
f

(
2
k − 1

n
− 1

)
.

Because 1+x
1−x ≤

n+1−j
j

, we get

fk−1,n,j(x) =

(
n
k

)(
n
j

) k

n− k + 1

(
1 + x

1− x

)k−j
n+ 1− j

j

n− k + 1

n− k
f

(
2
k

n
− 1

)
=fk,n,j(x)

k

j

n+ 1− j
n− k

.

By the above inequality, for k ≤ j − 1, we get

fj−1,n,j(x) ≥ fj−2,n,j(x) ≥ · · · ≥ f0,n,j(x). (3.6)

Now, by using (3.5) and (3.6), we get

C(M)
n (f)(x) = max {fj−1,n,j(x), fj,n,j(x), fj+1,n,j(x)} ,

and consequently from Lemma 3.4, the corollary proof is completed. �
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Remark 3.7. The max-product Bernstein operators in a symmetric range given
in Corollary 3.6, which indicates the approximation order is 4ω1

(
f ; 1

n

)
, have

better approximation properties than its linear form given in [8], which give the

approximation error as a 2ω1

(
f ; 1√

n

)
.

4. Shape preserving properties

In this section,we present some shape-preserving properties for max-product
type Bernstein operators in symmetric range. Firstly, for any k, j ∈ {0, 1, 2, . . . , n},
let us take the functions fk,n,j :

[
2j
n+1
− 1, 2j+2

n+1
− 1
]
→ R defined by

fk,n,j(x) =mk,n,j(x)f

(
2
k

n
− 1

)
=

(
n
k

)(
n
j

) (1 + x

1− x

)k−j

f

(
2
k

n
− 1

)
.

Therefore we can write

CM
n (f)(x) =

n∨
k=0

fk,n,j(x),

for any j ∈ {0, 1, 2, . . . , n} and x ∈
[

2j
n+1
− 1, 2j+2

n+1
− 1
]
.

Lemma 4.1. Let f : [−1, 1] → [0,∞) be a nondecreasing function; then for
any k, j ∈ {0, 1, 2, . . . , n}, k ≤ j and x ∈

[
2j
n+1
− 1, 2j+2

n+1
− 1
]
, we get fk,n,j(x) ≥

fk−1,n,j(x).

Proof. By the proof of Lemma 2.2, Case (b), and for k ≤ j, it follows that
mk,n,j(x) ≥ mk−1,n,j(x). Because f is nondecreasing, we get f

(
2 k
n
− 1
)
≥

f
(
2k−1

n
− 1
)
, so we have

mk,n,j(x)f

(
2
k

n
− 1

)
≥ mk−1,n,j(x)f

(
2
k − 1

n
− 1

)
.

This implies that fk,n,j(x) ≥ fk−1,n,j(x). �

Corollary 4.2. Let f : [−1, 1] → [0,∞) be a nonincreasing function; then for
any k, j ∈ {0, 1, 2, . . . , n}, k ≥ j and x ∈

[
2j
n+1
− 1, 2j+2

n+1
− 1
]
, we get fk,n,j(x) ≥

fk+1,n,j(x).

Proof. By the proof of Lemma 2.2, Case (a), and for k ≥ j, it follows that
mk,n,j(x) ≥ mk+1,n,j(x). Since f is nonincreasing, we get f

(
2 k
n
− 1
)
≥ f

(
2k+1

n
− 1
)
.

Hence, we have

mk,n,j(x)f

(
2
k

n
− 1

)
≥ mk+1,n,j(x)f

(
2
k + 1

n
− 1

)
.

This implies that fk,n,j(x) ≥ fk+1,n,j(x). �

Theorem 4.3. If f : [−1, 1]→ [0,∞) is a nondecreasing function, then CM
n f(x)

is nondecreasing.
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Proof. Because CM
n f(x) is continuous on [−1, 1], it is sufficient to prove that on

each subinterval of the form
[

2j
n+1
− 1, 2j+2

n+1
− 1
]
, with j ∈ {0, 1, 2, . . . , n}, CM

n f(x)

is nondecreasing. Let us take j ∈ {0, 1, 2, . . . , n} and x ∈
[

2j
n+1
− 1, 2j+2

n+1
− 1
]
.

Because f is nondecreasing from Lemma 4.1, we have

fj,n,j(x) ≥ fj−1,n,j(x) ≥ · · · ≥ f0,n,j(x).

For all x ∈
[

2j
n+1
− 1, 2j+2

n+1
− 1
]
, it follows that

CM
n (f)(x) =

n∨
k=j

fk,n,j(x).

Clearly for k ≥ j, the function fk,n,j(x) is nondecreasing and CM
n (f)(x) can be

written as the maximum of nondecreasing. �

Corollary 4.4. If f : [−1, 1]→ [0,∞) is a nonincreasing function, then CM
n f(x)

is nonincreasing.

Proof. By the hypothesis, f is continuous on [−1, 1]. Because CM
n f(x) is con-

tinuous on [−1, 1], it is sufficient to prove that on each subinterval of the form[
2j
n+1
− 1, 2j+2

n+1
− 1
]
, with j ∈ {0, 1, 2, . . . , n}, CM

n f(x) is nonincreasing. Let us

take j ∈ {0, 1, 2, . . . , n} and x ∈
[

2j
n+1
− 1, 2j+2

n+1
− 1
]
. Because f is nonincreasing

from Corollary 4.2, we have

fj,n,j(x) ≥ fj+1,n,j(x) ≥ · · · ≥ fn,n,j(x).

For all x ∈
[

2j
n+1
− 1, 2j+2

n+1
− 1
]
, it follows that

CM
n (f)(x) =

j∨
k=0

fk,n,j(x).

Clearly that for k ≤ j the function fk,n,j(x) is nonincreasing and CM
n (f)(x) can

be written as the maximum of nonincreasing.
�

Definition 4.5 (see [10]). Let us take f : [0,∞) → R continuous on [0,∞).
Then f is quasi-convex on [0,∞) if it satisfies the inequality

f(λx+ (1− λ)y) ≤ max {f(x), f(y)} for all x, y ∈ [0,∞) and λ ∈ [0, 1].

Remark 4.6. By [15], the continuous function f is quasi-convex on the bounded
interval[−1, 1], which means that there exists a point c ∈ [−1, 1] such that f is
nonincreasing on [−1, c] and nondecreasing on [c, 1].

Corollary 4.7. If f [−1, 1] → [0,∞) is continuous and quasi-convex on [−1, 1],

then C
(M)
n f(x) is quasi-convex on [−1, 1] for all n ∈ N.

Proof. We know that a continuous function f is quasi-convex on [−1, 1] if there
exists a point c ∈ [−1, 1] such that f is nonincreasing on [−1, c] and nondecreasing
on [c, 1].
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If f is a nonincreasing (resp. nondecreasing) function on [−1, 1], then by Corol-

lary 4.4 (resp. Theorem 4.3) for all n ∈ N, C
(M)
n f(x) is nonincreasing (resp.

nondecreasing) on [−1, 1].
Let us suppose that there exists a point c ∈ (−1, 1) such that f is nonincreasing

on [−1, c] and nondecreasing on [c, 1]. Now we define the functions F and G as
follows:

F,G : [−1, 1]→ [0,∞),

F (x) = f(x) for all x ∈ [−1, c], F (x) = f(c) for all x ∈ [c, 1],

G(x) = f(c) for all x ∈ [−1, c], G(x) = f(x) for all x ∈ [c, 1].

It is clear that F is nonicreasing and continuous on [−1, 1], G is nondecreasing
and continuous on [−1, 1], and f(x) = max {F (x), G(x)}, for all x ∈ [−1, 1].

In addition, because C
(M)
n (f)(x) is pseudo-linear, we can write for all x ∈ [−1, 1]

C(M)
n (f)(x) = max

{
C(M)

n (F )(x), C(M)
n (G)(x)

}
.

Therefore by the Corollary 4.4 and Theorem 4.3, C
(M)
n (F )(x) is nonincreasing

and continuous on [−1, 1] and C
(M)
n (G)(x) is nondecreasing and continuous on

[−1, 1]. Now, we have two cases:

(a) C
(M)
n (F )(x) and C

(M)
n (G)(x) do not intersect each other,

(b) C
(M)
n (F )(x) and C

(M)
n (G)(x) intersect each other.

Case (a). For all x ∈ [−1, 1], we have

max
{
C(M)

n (F )(x), C(M)
n (G)(x)

}
= C(M)

n (F )(x)

or
max

{
C(M)

n (F )(x), C(M)
n (G)(x)

}
= C(M)

n (G)(x),

which precisely proves that C
(M)
n (f)(x) is quasi-convex on [−1, 1].

Case (b). If C
(M)
n (F )(x) and C

(M)
n (G)(x) intersect each other, then there

exists a point c ∈ [−1, 1] such that C
(M)
n (f)(x) is nonincreasing on [−1, c] and

nondeccreasing on [c, 1]. This implies that C
(M)
n (f)(x) is quasi-convex on [−1, 1].

�
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