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ABSTRACT. In the approximation theory, polynomials are particularly posi-
tive linear operators. Nonlinear positive operators by means of maximum and
product were introduced by B. Bede. In this paper, the max-product of Bern-
stein operators for symmetric ranges are introduced and some upper estimates
of approximation error for some subclasses of functions are obtained. Also, we
investigate the shape-preserving properties.

1. INTRODUCTION AND PRELIMINARIES

In the theory of approximation, researchers investigated many operators within
approximation of a continuous function by a sequence of linear positive operators.
These operators are defined by the means of the addition and multiplication of
the reals and all of them are linear operators. Up to now, in [I, 4, 11, 12, 13,
14], researchers studied approximation theory for linear operators, which has an
admitted interest in the past decades. Bede, Coroianu, and Gal Sb introduced the
nonlinear positive operators by means of discrete linear approximating operators.
In [2, 3, 6, 9, 16, 17], “max-product kind operators” were presented by using
maximum in the name of sum in usual linear operators and gave a Jackson-type
error estimate in terms of modulus of continuity.

The Bernstein polynomials B, (x) were introduced by Bernstein (see [7]) as

follows: B.(@) = Bu(f:) = kizo F (%) (Z) aF(1— )", (1.1)
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which is called a Bernstein polynomial of order n of the function f(z), where f(z)
is defined on the closed interval [0, 1]. The general case of the Bernstein operator
of max-product kind has given so much interest. In this paper, we study Bernstein
operator of max-product kind in symmetric range. The Bernstein polynomials in
symmetric range are defined by

Colf:z) = kz; (Z) (% + g)k (% - g) "~ f (2% - 1) , (1.2)

where z € [—1,1], f € C[-1,1], and n € N by Cilo [8] under the supervision
of Izgi. They investigated that these operators given in (1.2) are linear positive
in symmetric range and provide the Korovkin theorem conditions. Also they
indicated that (1.2) are smooth convergence on the range of [—1, 1].

In this section, we indicate some general notations and definitions, which will be
used in this study. Operations “V” (maximum) and “” (product) are considered
over the set of positive reals, and (R, V, ) is called as a max-product algebra.

Let I C R be a finite or infinite interval, and set

CB.(I)={f:I—Ry;f continous and bounded on I}.

The general form of discrete max-product-type approximation operators

LMﬂ@)IV”Q@Mwﬂ%%

La(f)(z) = \/ K (z,2;) f(25),

where n € N, f € CBy(I), K,(.,z;) € CBL(I), and z; € I, for all i. These
operators are nonlinear positive operators satisfying the pseudo-linearity property

Ln(a.f V B.9)(x) = a.Ln(f)(x) V B.Ln(g)(2),

for all a, 6 € R, and f,g: I — R,. Additionally, the max-product operators are
positive homogeneous, in other words, L,(Af) = AL, (f) for all A > 0.
Now, we present the following general results to be useful later in the study.

Lemma 1.1 (see [5]). Let I C R be a bounded or unbounded interval, let f €
CBy(I), and let L, : CB(I) — CBy(I), n € N, be a sequence of operators
satisfying the following properties:

(1) If f,g € CBy(I) satisfy f < g, then L,(f) < L,(g) for alln € N;

(2) Ln(f +9) < Lu(f) + Lu(g) for all f,g € CB(I).

Then for all f,g € CB,(I), n € N and x € I, we get

| Ln(f)(2) = Lu(g)(@)| < La(|f = g])(2).

Remark 1.2. One can see that max-product type operators satisfy the conditions
(1), (2) in Lemma 1.1. In fact, for « = 1, 8 = 1, they satisfy a pseudo-linearity,
which is stronger than the above condition (2).
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2. MAIN RESULTS

In this section, we define the nonlinear Bernstein operators for symmetric
ranges of max-product type as below:

Viopa(@)f(2E — 1)
V iz Pk () 7

m= () 3) G3)

Also f : [-1,1] — R is a continuous function and the operators Cy(LM)( f)(x)
are positive and continuous on [—1,1]. Note that, C’T(LM)( f)(z) operators satisfy
the pseudo-linearity property and these operators also are positive homogeneous.
Since CSM (F)(=1) = f(=1) = CM(f)(1) = f(1) = 0 for all n, throughout the
paper, we can suppose that —1 <z < 1.

Now, we need the following notations and lemmas for the proofs of the main
results. For each k,j € {0,1,2,...,n} and x € [nz—jl -1, ij—ﬁ — 1}, we obtain the
following structure:

cM(f;x)

n

n € N,

where

Pok(T) |2E —-1- a:’
My j(z) = — > s Mipnj(T)
’ Pnj(T) ’

_ Poi(T)
pn,j(x)'

If k> 7+ 1, then

Png(T) (2% —-1- ac)

Mk,n,j(x) = D (l’)
n,J

, (2.1)

and if £ < 7 — 1, then
Png(x) (:1: — 2% + 1)
Pn,j(T) '

Furthermore, for each k, 5 € {0,1,2,...,n}, k> j+2, and z € [f—jl -1, 275112 — 1},
we get the following

My j(x) =

(2.2)

_ Pug(z) (2:25 — 1 —2)
My j(z) = +(1
Pn,j(@)

and for each k,j € {0,1,2,...,n}, k<j—2 and z € [f—jl— 1,%— 1], we get
the following

, (2.3)

 Pag(a) (z— 2%1 +1)

AMkn (r) = . 2.4
Lemma 2.1. Let x € [—anl -1, 273 12 — 1}. Then

(1) for allk,5 € {0,1,2,...,n}, k> j+2, we have

M (%) < My j(x) < 3Myp (2);
(2) for allk,5 €{0,1,2,...,n}, k <j—2, we have

Micn () < My j(7) < 6Mpp ().
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Proof. (1) By (2.1) and (2.3), it is clear that My, j(z) < My, ;(x). On the other
hand,

Ming(x) _ 2y —1-x _ ok _1_ 2 4

n+1
My () 2#—1—m_2#—1—%+1

i o o
:n+k. nj _ k‘.j n k' <3
nk—j—1) k—j—-1 nk—-j5—-1)
which proves (1). By using (2.2) and (2.4), it is obvious that M, ;j(z) <
My, ;(z). Additionally,

My, j(x) w—=2725+1 221241

— n+l <n+l n+1
Mypj(x)  z—2841 ~ 2L —1-2E4]

_nt+1-k) _(n+ 1) +1-k)

“nj—nk—k =  nj-nk-n

Al jlok _ ik
n j—k—-1""j—k—1

2
=214+ — ] <6.
(ﬂ'—k—l)‘

O
Lemma 2.2. For all k,j € {0,1,2,...,n} and x € [f—jl -1, 275;&2 — 1], we get
My () < 1.
Proof. For the proof of the above lemma, we consider two cases:
(a) k> j, and (b) k < j.
Case (a). Let k > j. Because g(z) = ;—i is nonincreasing on [f—jl -1, 275:12 — 1},

it follows that
Mppy(T) k41 1—x>k:+1 1—275—422—1—1
Mit1,n,5 () n—k 14z " n—k 1—1-%—1
:l{:—l-l_r‘z—j>/{3+1'n.—l</‘:/€.+1>17
n—k 7+1 " n—k j4+1 7+1—

which indicates
M (T) 2 M1 (T) > Myjro0i(T) > -0 2 My ().
Case (b). Let us take the case k < j. We have
Menj(xz) n—k+1 14z S n—k+1 1—|-n2—jl—1

Mi—1,n,5(T) k 1—x — k 1_n2_421+1
_n—k+1 g n—k+1 koo
-k n—j+17 k n—k+1

which implies

Mg (T) > M 105(0) 2 My g (x) > > mop;(T).
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O
Lemma 2.3. Let x € [—— ,273:12—1]
(1) If k € {j+2,j+3,....,n—1} is such that k — Vk+1 > j, then My j(z) >
M 41,n,5(2)-

(2) If k € {1,2,...,j — 2} is such that k + Vk < j, then M\kn](x) > ]/\4\;6_17n,j(x).
Proof. (1) Let k€ {j +2,7+3,...,n— 1} with £k — vk + 1 > j. Then we have

My, () _k’+1 1—z 2n—+1—1—33
Miin () n—Fk 1+uz 2k+1—1—x

1-z 2k—(n+1)—(n+1)x
I+z  2(k+D)—(n+1)—(n+)z

2j+2 )_n—j.k—j—l

Since the function p(z) = is nonincreasing, it follows that

”( 1l k-
for all x € [— -1, 25:12 1} Then, since the condition £ — vk + 1 > j implies
(k+1)-(k=j—1)= (G +1)(k—J)and

My () 2/{34-1.7.1—].]{3—]—.121’
Mysini(z) ~n—Fk j+1  k—j

we get M (1) > Myyn,;().
(2) We have

J\//Tk’n,j(x) n—k+1 1+ $—n—_H+1
M1y j(z ko l-a p—2Elq

n+1
Since the function n(z) =

)
1tz (nt+D)z—2k+(n+1)
1—z  (n+1)z—2(k—1)+(n+1)

n(a:)zn(Qj —1): j_ -k

n+1 n+l—j5 j—k+1

is nondecreasing, it follows that

for all x [ Zjl -1, 271]112 } . Then since the condition k + vk < j implies

S
Jj(G—k)>k(j — k+1), we have

Migg(x) n—k+l g _d-k
My j() k n+l—75 j—k+1
0
Lemma 2.4. Let us indicate p, (x) = (}) (5 + %)k (- %)nik, then
" 25 2j +2
k\:/opn’k(x) = pnj(x) forallxz e {n——l—l -1, 1 1, j=01,....,n

In addition,

\/ Prk(T) = pno(x) for all z € [0,1]
k=0
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and
\/ Pue(@) = pun(x)  for all € [-1,0].
k=0

Proof. Firstly, we demonstrate for fixed n € Nand 0 < k < k +1 < n, that

2k + 2 1
n+1 ’

0 < ppi+1(x) <ppi(r) ifand onlyif =z € [0,

Let us take the following inequality:

o< n l+§ k+1 l_f n7k71< n 1+§k 1_{ n—k
T \k+1 2 2 2 2 —\k 2 2 2 2 '

After some simplifications and using this equality (k:ﬁl) + () = (Zj:), we can
reduce the above inequality to

2 2
< k+ -1

0<
=T= n+1

By taking £ =0,1,...,n in the inequality above, we get

2
n < Pn ) if d ly if € 07 - ’
Pn1(z) < pno(x), if and only if =« 1
(x) < ppa(x), if and only if =z € _O : 1_
n2(x) < ppa(x), if and only if =z ,—— — 1},
DPn2 Pn Y | 'n+1
(x) < (x), if and only if E—O 0 1—
n3(2) < ppo(z), if and only if =z , — — 1|,
Dn,3 Dn.2 y U n+1 |
and
2k + 2
; < por(x), ifand only if z € |0, —1],
Prg+1(2) < ppi(z), if and only if = [ ] }
and finally
2n —4
Prn—2(T) < ppn—s(z), ifand only if =z € _0, :+1 - ],
2n — 2
Prn—1(2) < ppm—o(z), if and only if =z € _0, :+1 - ],
(£) < puns(a), if and only if @ € [0, " — 1
() < Ppun_1(x), if and only if =z , —1].
Dn, Pnpn—1 Y | n+1

On the other hand, because

n n\ 1 o
Prsl®) P () = (k + 1) (k) 5o (L2 (1 = 2) =071 > 0
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and from all these inequalities given above, reasoning by recurrence, we obtain

if ze O,niﬂ—l},then Pnk(x) < ppo(x),forall k=0,1,... n;

if x¢€ 2 -1, 1 —1},then Pk() < ppi(x),foral k=0,1,... n;
n+1 n+1 ’ -

if ze 1 -1, 0 —1],then Pok(T) < ppo(z),forall kE=0,1,... n;
i+l ntl ) = P,

and in general

2
if x¢€ [n—:—ll — 1,1] Jthen  pu () < ppn(x),forall k=0,1,...,n.

3. DEGREE OF APPROXIMATION BY C\)(f)(x)

In this section, we give the main results about the nonlinear Bernstein operator
of max-product kind for the symmetric range defined in Section 1.

Theorem 3.1. If f : [—1,1] — R is a continuous function, then the following
inequality holds

CO(f) () — f(x)] < 240 (f; !

——— ), forallneN, =zel-1,1],
\/n+1)

where
wi (f;6) =sup{|f(z) — f(y)];2.y € [-1,1], ]z —y| < 0}.

Proof. Since C,(IM)(eo)(x) = 1, by using the Shisha-Mond theorem given for non-
linear max-product type operators in [2, 5], we get

1
G (D)) = fl)] < (1 + 5—O£LM><%><I)) wi (f30). (3.1)
where ¢, (t) = |t — x|. Therefore it is enough to estimate only the following term:
_ Vo Prs() ‘2% —1- :U‘
Vi—o Pni(x)

Let z € [Tf—jl — ,271]:12 — 1], where j € {0,1,...,n} is fixed and arbitrary. By

Lemma 2.4, we have

Ey(z) = CM (1) (2)

Eu(2) = \/ Min;(2).

Since for j = 0, we get E,(z) < 2/n for all € [-1,=%], we may suppose

that j € {1,...,n}. We will find an upper estimate for each My ;(z), where
j€{0,1,...,n}is fixed, z € [[25 — 1,22 —1], and k € {0,1,...,n}. The

proof will be divided into 3 cases:

(@)ke{j—1,5,7+1}, (b)k>j+2 and (c)k<j—2.
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Case (a). If k = j then M;, ;(z :!
it follows immediately that M;,, ;(z) < 2

2; 1 2j+2 1]’

1—9;’ SIHCG.CEG[_H A

+1).
If k=741, then My, () =mji1, ) (23+1 —1- :U) From Lemma 2.2,
we have m;i1 ., ;(z) < 1, which implies
J+1 j+1 j
MjJ’,l’n’j(a’;) SQ n —1—$§2 n 1
n+j+1
=2——F<6 1).
nn+1) — /(n+1)

If k=j—1, then M, ;, (x) =
we have m;_j , j(x) < 1 which implies

mj_1j(z) - (x =252 —1). From Lemma 2.2,

J—1 J+2 j—1
j—1n(x) <z o S 4T - +
20— (j 1)
=2——= <4 1).
n(n+1) /(n+1)
Case (b). Subcase (b.1). Let k — vk + 1 < j; then
Vi k
<2 : .41
n+1 n+1 n+1
k k—vk+1 vVk+1 2
n+1 n+1 n+1 Vn+1

Subcase (b.2).

{0,1,_2,...7
ki =k+1, we get ky

Let k —VE+1 > 7.

x
vz + 1 is nondecreasing on the interval [—1,1], it follows that there exists k =
n} of the maximum value, such that & — V/k+1 < j. Then for
—\/k1+12jand

MEH,n,j (x) :mEJrl,n,j(x)

Since the function g(z) =

k+1
n-+1

woftl o0 4y
n—+1 n—+1
<2k+1_ —Vk+1
“n+1 n—+1
2 E+1+1)< 4
n+1 “Vn+1

Furthermore, we have k; > j + 2, this is a consequence of the fact that ¢ is
nondecreasing and it is easy to see that g(j+1) < j. By Lemma 2.3(1), it follows

that My, (z )>>A4k+2nj() > ...

have My, ;(z) < \/7112?

4
— Vn+1"

Z Mn,n,j(x)~
We obtain My, ;(z) < \/m for any k € {E—i— Lk+2,...,
cases (b.1) and (b.2), we have My, ;(z)

n} . Thus in Sub-
1(1), we
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Case (c). Subcase (c.1). Let k + vk > j. Then

e k
Mknj(x) =Mk,n,j (:L“) (x - 22—+ 1)

n-+1
0
HE2 gk
n—+1 n+1
2k +VE+1) oy k C2(VEk+1)
- n+1 n+1  n+1
<%¢%+1)< 4 '
n+1 T n+1l

Subcase (c.2). Now let k + vk < j and let & = {0,1,2,...,n} be the

minimum value such that & + \/Z > 4. Then ky = k — 1 satisfies ky + Vky < j
and

—

k-1
Mgfl,n,j(x) :mgfl,n,j(x) (.I' - 271, + 1 + 1)

27 +2 E—1
HE2 Gkl
n-+1 n-+1

_20VE+2) 6
n+1 ~Vn+1

Also, in this case, we have j > 2, which implies ky < j — 2. By Lemma 2.3(2),
we get My, (x) > My_,, (x) > > Moy,;().
Hence, we obtain

— 6 , 27 27 +2
My, () < forany k<j—2 and =z € -1, —
k”x)“JFIT yor=d [n+1 n+1

Therefore in Subcases (c.1) and (c.2), we have J/W\knj(a:) < \/7%. Hence from
Lemma 2.1(2), we have M, j(z) < \/%. Consequently, collecting all the above
estimates, we obtain

12 2 2j + 2
My pi() < for all x € -1, —1|, k={0,1,2,...,n},
knal) S 7T S e }

which implies that

12
E,(z) < for all z € [-1,1],n € N,
n+1
and indicating §,, = \/7112? in (3.1), we get the estimate

1

(M) z) — f(z Wi\ —/——
C02)w) - )] < 2t (i~

) , forallneNzel[-11]
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Now, we want to show a better order of approximation for subclasses of function
f. For demonstrating a better approximation, let us consider the functions

Jomj [f—jl -1, 275112 — 1] = R defined as
k () (1+2\" k
() — , 22 1) =KL 2— —1]). 2
st =i (23 1) =5 (155) 7 (1) 62)
Hence, for any j € {0,1,2,...,n} and z € [f—jl — ,% — 1], we can write
CM()@) =\ frni(2). (3.3)
k=0
Lemma 3.2. Let us take f : [—1,1] — [0, 00) such that
27 27 +2
CT(LM)(f)(.f) = max{fj,n,j(x), fjJan,j(l’)} fOT all x € |:n——il - 1, ]+ 1 —1
Then
1
CE(1) @) ~ )] < e (£,
where wy (f;6) =sup{|f(z) — f(y)|; 2,y € [-1,1], [z —y| < 6}
Proof. For the proof, we need the following two cases:
Case (a). Let z € [f—jl - ,% —1] be fixed such that C’,(LM)(f)(a;) =
fin;(z). By applying simple calculations, we get —niﬂ <z-2L+1< niﬂ

and f;,;(z) = f (22 — 1), it follows that
C000)) - @ = |7 (22 1) -~ f0)| < 2 (i) G

Case (b). Let 2 € [-2L — 1,222 1] be fixed such that CéM)(f)(x) =

fjJrl’n,j(x)_ n+1 ? n+1
Subcase (b.1). If CY(f)(z) < f(z), then f;,;(x) < fir1n;(x) < f(z), and

we have

|CMD(F)(x) = f(@)] = firing(@) — F(@)] = F(2) = fiain(2)
<10~ Fns() = fl) ~ £ (22 1)

1
<2w; <f; n——l—l) :

Subcase (b.2). Let CéM)(f)(x) > f(z); then
|GV (F) () = f(@)| =frerng(@) = f(@)
“myerng@)f (2758 1) - @)

<f (2j+ Lo 1) — f(@).

n
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Because
1 1 .
0<2l Tl 1 p<ol T 9 ) 4y
n n n+1

j 1 4

Y (P AR I

nn+1) n(n+1) n

then

/ (2]%1 - 1) — fx) < 4y (f; %) |

Lemma 3.3. Let f: [—1,1] — [0,00) such that

CRD () (@) = max {f(0), fi1ns(0)} for all x € {—ﬁ b

2j +2

—1].
n+1

Then 1
COD(f)(x) — f(2)] < 4wy (f; ;) |

Proof. For the proof, we need two cases:
Case (a). Let CéM)(f)(a:) = fjnj(x). When as Lemma 3.2, we have

COD(F) () — f(x)] < 20 (f; n%l) |

Case (b). Let 2 € [-2L —1,2222 1] be fixed such that C'T(lM)(f)(m) =

n+1 ? n+1
fi—1nj(x). Here, we have two cases:

Subcase (b.1). Let C’flM)(f)(a:) < f(x). Then following the proof of Lemma
3.2, we get

CONPN) = fa) < 2 (i ).
Subcase (b.2). If C’,(LM)(f)(x) > f(z) and using the following inequality:
Jj- 2(j +2) 2(j—1)

1
+I1I<——-1—-——-+41
n n+1 n

_ —J 1 1y _4
=2 <n(n+1) +n—|—1 +n> s
O (f)(@) = f(@)] =fi-1ny(z) = f(2)
=mj1.,;(2)f <2 -
<f (2‘7 —1 1) — f(x)

n

<4w, (fa %) .

0<z—2

we obtain
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Lemma 3.4. Let f:[-1,1] — [0,00) such that
O (f)(w) = max { fj—105(2), fing (%), fi1n(2)}

for all x € [nz—;:l— ,275:12 —1]. Then

CON(f) (@) — F(x)] < den ( P %) |

Proof. Let © € [2—3 — 1,32 _ 1]. If C’,(lM)(f)(x) = fjnj(x) or C,(ZM)(f)(g;) =

n+1 ’ n+1
Fistng (@), then CSM(f)(2) = max {fjn;(z), fi+1.n;(z)} and from Lemma 3.2,
we have

CON(f) (@) — F(x)] < den ( P %) |

If O (£) (@) = fi-1n(@), then CM(f)(2) = max {f;,;(2), fj-1,0;(z)} and

from Lemma 3.3, we have

COD(f)(x) — F(2)] < 4w ( / %) |
]

Lemma 3.5. Let us take the function f:[—1,1] — [0,00) is concave. Then the
following two properties hold:
(1) The function g : (—1,0) U (0,1] — [0,00), g(z) = f(x)/ |x| is nonincreasing.
(2) The function h : [—1,0)U(0,1) — [0,00), h(z) = f(x)/1—x is nondecreasing.
Proof. (1) Let us take z,y € (—1,0) U (0, 1] such that < y. Then

T y—x T y—x T

r@) =1 (2o 2 0) 2 Zp) 4 100 2 211,
) Y ) Y Y

which implies f(z)/ |z] > £(1)/ |y].
(2) Let z,y € [-1,0) U (0,1) such that > y. Then

f@ = (Fos e T ) 2 2w + T 2 1),
which implies f(z)/(1 —z) > f(y)/(1 —y). O

Corollary 3.6. The function f:[—1,1] — [0,00) is a concave function and for
all z € [—1,1], it follows that

CON(f) (@) — F(@)] < dun ( 2 %) |

Proof. Let ustake x € [—1, 1] and let z € [f—jl — ,275112 — 1} forj €{0,1,2,...,n}.
If k> j, for k€ {0,1,2,...,n}, then

n k+1—j
feoin(a) :(kﬂ) <1+x) f(2k+1 _1>

11—z n

J
_Qn—k 14+ k7j1+:cf 2k—|—1_1
_(?)k‘+1 1—2x 1—=x n ’
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From Lemma 3.5(1), we have

k
f<2k+1_1)/(2k:+1_1> < (k+1)f<2__1)’
n n k n
and since 1+—x < i] we can write that
1
P () = () (),
n n

Therefore, we obtain

n k=3 5
(n—Fk (1+2\"7 j+1k+1, [ k
fk—f—l,n,](x) (?)k_’_l(l—x) n_j k f
n—kj+1
ka,n,j(fl?)n_j E

By using the above inequality for £ > j+1, we have f;,, j(x) > fr+1n(2). Hence

Jrsrng (@) 2 frroms(@) 2 -+ = fon(2)- (3.5)

o)< (22) 1 (5 -)

s () ()
)i

RIS
((4): (22) (52

which comes from Lemma 3.5, we have
n

When k < j, then

Because 1 < %, we get
n k—j .
(k) k 1+ n+l—jin—k+1 k
=) | 2% 1
fi1n3(2) (?)n—k—l—l(l—x) J n—~k /
kn+1—7
=TT

By the above inequality, for £ < j — 1, we get
ficimi(2) 2 fimamj(x) = -+ = fon(@). (3.6)
Now, by using (3.5) and (3.6), we get
CM(f)(x) = max {fj-1.0,(%), fini(®), Fis1ns(2)}

and consequently from Lemma 3.4, the corollary proof is completed
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Remark 3.7. The max-product Bernstein operators in a symmetric range given
in Corollary 3.6, which indicates the approximation order is 4w, ( f; %), have
better approximation properties than its linear form given in [8], which give the

approximation error as a 2w, ( f; \%) .

4. SHAPE PRESERVING PROPERTIES

In this section,we present some shape-preserving properties for max-product
type Bernstein operators in symmetric range. Firstly, for any k, 7 € {0,1,2,...,n},

let us take the functions fj,, ; : [f—jl -1, % — 1} — R defined by

ﬁwkﬂzmmA@f@§—1>
:% (ii)kjf (2%—1).

=\ feni(z)
k=0

Therefore we can write

for any j € {0,1,2,...,n} and x € [n_+1_ ,271]:12 —1].

Lemma 4.1. Let f : [-1,1] — [0,00) be a nondecreasing function; then for
any k,j € {0,1,2,...,n}, k< jand x € [f—jl — ,275:12 — 1] we get frni(r) >
fk—l,n,j(x)-

Proof. By the proof of Lemma 2.2, Case (b), and for £ < j, it follows that
M (T) = My_1,5(x). Because f is nondecreasing, we get f(2£—1) >
f (251 = 1), so we have

mk,n,] f(QE— )>mk 17”( )f(QE_l)
n n

This implies that fy, ;j(x) > fi_1.n,,(2). O
Corollary 4.2. Let f : [-1,1] — [0,00) be a nonincreasing function; then for
any k,j € {0,1,2,...,n}, k > j and x € [-2L -1, 273112 — 1], we get fin;(z) >
fk—l—l,n,](x)-

Proof. By the proof of Lemma 2.2, Case (a), and for £k > j, it follows that
Mo (T) > Mpt1,,5(x). Since f is nonincreasing, we get f (2% — 1) > f (2% — 1).
Hence, we have

k E+1
mans)f (2 ~1) 2 muang(of (2550 1)
n n
This implies that fy () > fit1.n,,(2). O

Theorem 4.3. If f : [—1,1] — [0,00) is a nondecreasing function, then CM f(x)
18 nondecreasing.
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Proof. Because C}' f(x) is continuous on [—1, 1], it is sufficient to prove that on
each subinterval of the form [f—jl -1, 2;:12 — 1], with j € {0, 1, 2,‘. .y}, ‘Cfl”f(x)
is nondecreasing. Let us take j € {0,1,2,...,n} and x € [2_1 N T }

; ) n+1 ’ n+1
Because f is nondecreasing from Lemma 4.1, we have
fini(@) = fiing(x) = - = fon;i(2).

For all x € [f—jl -1, an_ﬁ — }, it follows that

CH (@) =\ funs(a).

Clearly for k > j, the function fi, () is nondecreasing and CM(f)(x) can be
written as the maximum of nondecreasing. 0J

Corollary 4.4. If f : [-1,1] — [0, 00) is a nonincreasing function, then CM f(x)
18 MONINCTEASING.

Proof. By the hypothesis, f is continuous on [—1,1]. Because C f(x) is con-
tinuous on [—1,1], it is sufficient to prove that on each subinterval of the form
|:n2_—i]_ -1, 275:12 — 1], with j € {0, 1,2, o ,n}, CM f(z) is nonincreasing. Let us
take j € {0,1,2,...,n} and z € [f—jl -1, 2;:12 — 1]. Because f is nonincreasing
from Corollary 4.2, we have

fini(®) = fiving(®) = > fun;(z).

For all x € [f—jl -1, 275—112 — }, it follows that

Gl (N)@) =\ frng(@)-

Clearly that for k¥ < j the function fy, ;(z) is nonincreasing and CM(f)(z) can
be written as the maximum of nonincreasing.

O

Definition 4.5 (see [10]). Let us take f : [0,00) — R continuous on [0, c0).
Then f is quasi-convex on [0, 00) if it satisfies the inequality

fOz+ (1 =Ny <max{f(z), f(y)} forall z,y€[0,00) and A€ 0,1].

Remark 4.6. By [15], the continuous function f is quasi-convex on the bounded
interval[—1, 1], which means that there exists a point ¢ € [—1, 1] such that f is
nonincreasing on [—1, ¢] and nondecreasing on [c, 1].

Corollary 4.7. If f[-1,1] — [0,00) is continuous and quasi-conver on [—1,1],
then M) f(x) is quasi-convez on [—1,1] for alln € N.

Proof. We know that a continuous function f is quasi-convex on [—1, 1] if there
exists a point ¢ € [—1, 1] such that f is nonincreasing on [—1, ¢] and nondecreasing
on [, 1].
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If f is a nonincreasing (resp. nondecreasing) function on [—1, 1], then by Corol-
lary 4.4 (resp. Theorem 4.3) for all n € N, oM f(z) is nonincreasing (resp.
nondecreasing) on [—1,1].

Let us suppose that there exists a point ¢ € (—1, 1) such that f is nonincreasing
on [—1,¢| and nondecreasing on [c, 1]. Now we define the functions F' and G as
follows:

F,G:[-1,1] — [0, 00),
F(z)= f(z) forallz € [-1,c, F(x)= f(c) forallx € [c1],
G(z) = f(c) forallxe[-1,c, G(z)= f(x) forall z€lc1].

It is clear that F' is nonicreasing and continuous on [—1, 1], G is nondecreasing
and continuous on [—1,1], and f(x) = max {F(z),G(x)}, for all x € [-1,1].

In addition, because CS"”( f)(x) is pseudo-linear, we can write for all 2 € [—1, 1]

GV ()(@) = max {CPM(F)(x), CP(G) (@)}

Therefore by the Corollary 4.4 and Theorem 4.3, C’,(LM)(F )(x) is nonincreasing

and continuous on [—1,1] and C’,(lM)(G)(x) is nondecreasing and continuous on
[—1,1]. Now, we have two cases:

(a) CM(F)(x) and CM(G
(b) CM(F)(z) and CM(G
Case (a). For all x € [—1, 1], we have

]7
max { M (F)(x), CM(G)(w)} = O (F) ()

)(z) do not intersect each other,
(z

)

) intersect each other.

or

max {C{" (F)(x), CM(G) (@)} = G (G) (),

which precisely proves that CéM)( f)(z) is quasi-convex on [—1, 1].

Case (b). If CESM)(F )(z) and CfLM)(G)(x) intersect each other, then there
exists a point ¢ € [—1,1] such that CnM)(f)(ac) is nonincreasing on [—1,¢| and
nondeccreasing on [c, 1]. This implies that C*(f)(x) is quasi-convex on [—1, 1].

0
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