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ABSTRACT. The purpose of this paper is to give a stream-lined proof of the
existence and uniqueness of a right-invariant mean on a CHART group. A
CHART group is a slight generalisation of a compact topological group. The
existence of an invariant mean on a CHART group can be used to prove
Furstenberg’s fixed point theorem.

1. INTRODUCTION AND PRELIMINARIES

Given a nonempty set X and a linear subspace S of R¥ that contains all the
constant functions we say that a linear functional m : S — R is a mean on S if:

(i) m(f) > 0 for all f € S that satisfy f(z) > 0 for all x € X;
(ii) m(1) = 1, where 1 is the function that is identically equal to 1.

If all the functions in S are bounded on X then this definition is equivalent to
the following:

L=m(1) = [[m]]
where, ||m| :=sup{m(f): f €S and |||l < 1}.
If (X, -) is a semigroup then we can define, for each g € X, L, : R* — R* and
R, : RY — R¥ by,
Ly(f)(z) := f(gz) forallz € X and Ry(f)(z) := f(zg) for all z € X.
Note that for all g,h € X, Lyo Ly = Lyy, Rgo Ry, = Ry, and Lyo R, = Ry 0 L.
If S is a subspace of R¥ that contains all the constant functions and L,(S) C S
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[R,(S) € S| for all g € X then we call a mean m on S left-invariant |right-
invariant] if,

m(Ly(f)) =m(f) [m(Ry(f)) =m(f)] forallge X andall f €S.

We now need to consider some notions from topology. Suppose that X and
Y are compact Hausdorff spaces and 7 : X — Y is a continuous surjection.
Then 7# : C(Y) — C(X) defined by, 7n#(f) := f o7 is an isometric algebra
isomorphism into C'(X'). Moreover, we know (from topology /functional analysis)
that f € 7#(C(Y)) if, and only if, f € C(X) and f is constant on the fibers of
(i.e., f is constant on 7~ !(y) for each y € V).

The final notion that we need for this section is that of a right topological
group (left topological group). We shall call a triple (G,-,7) a right topological
group (left topological group) if (G, -) is a group, (G, 7) is a topological space and,
for each g € G, the mapping © — z - g (x +— ¢ - z) is continuous on G. If (G, -, T)
is both a right topological group and a left topological group then we call it a
semitopological group.

If (G,-,7) and (H,-,7") are compact Hausdorff right topological groups and

7 : G — H is a continuous homomorphism then it easy to check that
Ry(n#(f)) = 7" (Rn(g)(f)) forall f € C(H) and g € G.
If 7: X — Y is surjective then (7#)~1: 7% (C(H)) — C(H) exists. Therefore,
()N (Ry(h)) = Ra(e)((#)~'(h)) for all h € 7#(C(H)) and g € G.

From these equations we can easily establish our first result.
Proposition 1.1. Let (G,-,7) and (H,-,7") be compact Hausdorff right topologi-
cal groups and let m : G — H be a continuous epimorphism (i.e., a surjective ho-
momorphism). If m is a right-invariant mean on C(H) then m* : «#(C(H)) — R
defined by, m*(f) := m((7#)~1(f)) for all f € 7#(C(H)) is a right-invariant
mean on 7 (C(H)). If C(H) has a unique right-invariant mean then = (C(H))
has a unique right-invariant mean.

We can now state and prove our main theorem for this section.

Theorem 1.2. Let (G,-,7) and (H,-, ") be compact Hausdorff right topological
groups and let m : G — H be a continuous epimorphism. If the mapping
m: G X ker(m) — G defined by, m(z,y) :=x -y for all (x,y) € G X ker(m)

is continuous and C(H) has a right-invariant mean then C(G) has a right-

invariant mean. Furthermore, if C(H) has a unique right-invariant mean then
so does C(G).

Proof. Let L := ker(mw). Then from the hypotheses and [I, Theorem 2| (L, -, 7p)
(here 77, is the relative T-topology on L) is a compact topological group. Thus
(L,-,71) admits a unique Borel probability measure A (called the Haar measure
on L) such that

/LLg(f)(t) AA(E) = /LRg(f)(t) dAA(t) = /Lf(t) dA(t) for all g € L and f € C(L).
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Let P: C(G) — n#(C(H)) be defined by,
P(f)(g) := / f(g-t) dA(t) ie., P(f)(g) is the “average” of f over the coset gL.

Firstly, since m is continuous on G' x L (and L is compact) P(f) € C(G) for each
f € C(G). Secondly, since \ is invariant on L it is routine to check that P(f)
is constant on the fibers of 7. Hence, P(f) € n#(C(H)). We now show that for
each g € G and f € C(G),

/LL /fgt ) dA(t /ftg ) dA(t /Rg(f)(t) a(D). (%)

To this end, fixed g € G and define G : C(L) — C(L) by, G(f)(t) := f(g~*-t-g).
Since m is continuous, ¢t + (g~ -t) - ¢ is continuous and so G is well-defined, i.e.,
G(f) € C(L) for each f € C(L). We claim that

f»—>/LG

is a right-invariant mean on C'(L). Clearly, this mapping is a mean so it remains
to show that it is right-invariant. To see this, let { € L. Then g-1-¢ ' € L and

Jemrmoaxe = [ Rt ax
- /f<g-1-t-g-Z>dA<t>
= [ Ha e g 1g 0 )
=[Gt ta-1-57) axe)
= [ Ry (GO0 )
:kAGUWMM@ since A is right-invariant.

Now, since there is only one right-invariant mean on C(L) we must have that

AG /f‘*tgdA /f ) dA(t) for all f € C(L).

It now follows that equation (*) holds. Next, we show that R,(P(f)) = P(R,(f))
for all g € G and f € C(G). To this end, let g € G and f € C(G). Then for any
xeQqG,

Ry(P(f)(x) = P(f)(x-g) /fx g-1) dA(t /fw t-g) dME) by (+)
- / Ry(f)(x - 1) dA(t) = P(Ry())(
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Let p be the unique right-invariant mean on 7#(C(H)), given to us by Proposi-
tion 1.1. Let p* : C(G) — R be defined by, p*(f) := u(P(f)). It is now easy to
verify that p* is a right-invariant mean on C'(G).

So it remains to prove uniqueness. Suppose that p* and v* are right-invariant
means on C'(G). Since, by Proposition 1.1, we know that 1*| 4 () = V" |x# (o)
it will be sufficient to show that p*(f) = p*(P(f)) and v*(f) = v*(P(f)) for each
f € C(G). We shall apply Riesz’s representation theorem along with Fubini’s
theorem. Let p be the probability measure on G that represents p* and let
f € C(G). Then

u*(f)=/f dp(s //fstdu ar(t)
=//fstcu dpu(s)

- / (F)(s) du(s) = " (P(f)).

A similar argument show that v*(f) = v*(P(f)). This completes the proof. [

This paper is the culmination of work done many people, starting with the
work of H. Furstenberg in [1] on the existence of invariant measures on distal
flows. This work was later simplified and phrased in terms of CHART groups
by I. Namioka in [8]. The results of Namioka were further generalised by R.
Ellis, [3]. In 1992, P. Milnes and J. Pym, [5| showed that every CHART group
(that satisfies some countability condition) admits a unique right-invariant mean
(unique right-invariant measure) called the Haar mean (Haar measure). Later,
in [6], Milne and Pym managed to remove the countability condition from the
proof contained in [5] by appealing to a result from [3]. Finally, in [7], a direct
proof of the existence and uniqueness of a right-invariant mean on a CHART
group was given, however, this proof still relied upon the results from |[5].

In the present paper we give a stream-lined proof (that does not require knowl-
edge from topological dynamics) of the existence and uniqueness of a right-
invariant mean on a CHART group.

2. GROUPS

Let (G,-,7) be a right topological group and let H be a subgroup of G. We
shall denote by (H,7y) the set H equipped with the relative 7-topology. It is
easy to see that (H, -, 7y) is also a right topological group.

Now let G/H be the set {zH : x € G} of all left cosets of H in G and give
G/H the quotient topology ¢(7) induced from (G, 7) by the map = : G — G/H
defined by 7 (z) := zH.

Note that 7 is an open mapping because, if U is an open subset of G then
! (n(U)=UH =J{Us :x € H}

and this last set is open since right multiplication is a homeomorphism on G.
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If H is a normal subgroup of a right(left)[semi| topological group (G, -, 7) then
one can check that (G/H,-,q(7)) is also a right(left)[semi| topological group.

In order to continue our investigations further we need to introduce a new
topology.

2.1. The o-topology. Let (G, -, 7) be a right topological group and let ¢ : G x
G — G be the map defined by
1

ple,y) =2 -y
Then the quotient topology on G induced from (G x G, 7 x 7) by the map ¢ is
called the o(G, T)-topology or o-topology.

The proof of the next result can be found in [8, Theorem 1.1,Theorem 1.3]
or |9, Lemma 4.3].
Lemma 2.1. Let (G,-,7) be a right topological group. Then,
(i) (G, o) is a semitopological group.
(ii)) o C 7.
(i) (G/H,q(7)) is Hausdorff provided the subgroup H is closed with respect
to the o-topology on G.

2.2. Admissibility and CHART groups. Let (G,-,7) be a right topological
group and let A(G,7) be the set of all x € G such that the map y — z -y is 7
continuous. If A(G,7) is 7-dense in G then (G, 7) is said to be admissible.

The proof for the following proposition may be found in |8, Theorem 1.2, Corol-
lary 1.1] or |9, Proposition 4.4, Proposition 4.5]|.
Proposition 2.2. Let (G,-,7) be an admissible right topological group.
(i) If U is the family of all T-open neighbuorhoods of e in G then
{UU : U e U} is a base of open neighbuorhoods of e in (G, o).
(ii) If N(G,7) :== {U'U : U €U} then N(G,7) = {e} .
A compact Hausdorff admissible right topological group (G,-,7) is called a
CHART group.

The proof for the following result may be found |8, Proposition 2.1| or [9,
Proposition 4.6].
Proposition 2.3. Let (G,-,7) be a CHART group. Then the following hold:
(i) If L is a o-closed normal subgroup of G, then so is N(L,op).
(ii) If m : (G/N(L,01),q(7)) x (L/N(L,01),q(7)) = (G/N(L,01),q(7)) is
defined by
m(zN(L,or),yN(L,o)) :=x-yN(L,op) forall (z,y) € G x L
then m s well-defined and continuous.
Remark 2.4. By considering the mapping 7 : G/N(L,0r) — G/L, Theorem 1.2
and Proposition 2.3 we see that if (G/L,q(7)) admits a unique right-invariant
mean then so does (G/N(L,0yr),q(7)). Hence if N(L,oy) is a proper subset of

L then we have made some progress towards showing that G = G/{e} admits a
unique right-invariant mean.
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3. N(L,op) # L

In this section we will show that if L is a nontrivial o-closed normal subgroup
of a CHART group (G, -, 7) then N(L, o) is a proper subset of L.

Lemma 3.1. Let (H,-) be a group and X be a nonempty set. Then for any
f:H—X,S:={seH: f(hs)= f(h) for all h € H} is a subgroup of H.

Proof. Clearly, e € S. Now suppose that, s;,s5 € S. Let h be any element of H
then

f(h(s182)) = f((hs1)s2) = f(hs1) = f(h)
Therefore, s1s5 € S. Next, let s be any element of .S and A be any element of H
then
f(h) = f(h(s7's)) = f((hs™")s) = f(hs™").
Therefore, s~ € S. O

Lemma 3.2. Let (G,-,7) be a compact right topological group and let o be a
topology on G weaker than T such that (G,-,0) is also a right topological group.
If U is a dense open subset of (G, o) then U is also a dense subset of (G, T).

Proof. Let C' := G\U. Then C is a o-closed (hence 7-closed) nowhere-dense
subset of G. If U is not 7-dense in G then C contains a nonempty 7-open
subset. By the compactness of (G, 7) there exists a finite subset F' of G such
that G = |J{Cyg : g € F}. Now each Cg is nowhere dense in (G, o) since each
right multiplication is a homeomorphism. This forms a contradiction since a
nonempty topological space can never be the union of a finite number of nowhere
dense subsets. 0

Lemma 3.3. Let (G,-,7) be a CHART group and let A = A(G, 7). If A and B
are nonempty open subsets of (G, 1), then A7'B = (AN A)"'B.

Proof. Let x € A~'B. Then for some a € A,ax € B. Since B is open and ANA is
dense in A there is a ¢ € ANA such that cx € B. Hence x € c'B C (ANA)™'B.
Thus, A7'B C (AN A)~!B. The reverse inclusion is obvious. O]

Lemma 3.4. Let (G,-,T) be a compact Hausdorff right topological group. If S is
a nonempty subsemigroup of A(G,7) then S is a subgroup of G.

Proof. In this proof we shall repeatedly use the following fact, |2, Lemma 1] “Every
nonempty compact right topological semigroup admits an idempotent element
(i.e., an element u such that u-u = u). Firstly, it is easy to see that S is
a subsemigroup of G. Hence, (S,-) is a nonempty compact right topological
semigroup and so has an idempotent element u. However, since G is a group it
has only one idempotent element, namely e. Therefore, e = u € S. Next, let s be
any element of S. Then S - s is a nonempty compact right topological semigroup
of S. Therefore, there exists an element s’ € S such that (s'-s)-(s'-s) = (s 5).
Again, since G is a group, s’ - s = e. By multiplying both sides of this equation
by s~! we see that s =5’ € S. O

The following lemma is a simplified form of the structure theorem found in [7].
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Lemma 3.5. Let (G,-,7) be a CHART group and let o denote its o-topology.
Suppose L is a nontrivial o-closed subgroup of G. Then N(L,or) is a proper
subset of L.

Proof. Let U denote the family of all open neighbuorhoods of e in (G, 7). Then it
follows from Proposition 2.2 that V = {U~'U : U € U} is a base for the system
of open neighbourhoods of e in (G,0). Then {V N L :V € V} is a basis for the
system of neighbourhoods of e in (L,oy). From the definition of N(L, o) (see
Proposition 2.2 part (ii)) it follows that

N(L,op) ={(VNL)(VNL):V eV}
The proof is by contradiction. So assume that N(L,or) = L. Then
L=WVnL) ™ (VNL):VeV}

Hence, for each V € V, (VN L)"Y(V N L) = L, or equivalently, for each V € V,
(VN L) is dense in (L,oy). That is, for each U € U, (U"'U N L) is open and
dense in (L, o) and hence, by Lemma 3.2, dense in (L, 7z).

Since L # {e}, there exists a point a € L such that a # e. Note that since
(G, 1) is compact and Hausdorff there is a continuous function f on (G, 7) such
that f(e) =0 and f =1 on a T-neighbuorhood of a.

For the rest of the proof, the topology always refers to 7 and we shall denote
A(G, 1) by A. By induction on n, we construct a sequence {U, : n € N} in U, a
sequence {V,, : n € N} of nonempty open subsets of GG, each of which intersects
L and sequences {u, : n € N} and {v, : n € N} in G which satisfy the following
conditions:

(i) v, € U, L Up 1N (VioiNA) = (U1 NA) U, 1N (V,_1NA); by Lemma 3.3,
(11) Uy € Un—l N A,
(iii) V, €V, CVy € f71(1) and V, N L # 0;
(iv) u,V,, C Up_q;
(v) if H, denotes the semigroup generated by {u, vy, us, va, . .., Uy, v, }; which
we enumerate as: H, := {h} : j € N} and

Uy, :={teG:|f(hit)— f(h})| <1/n for 1<i,j<n}

then H, C Aand e € U, C U, C U,_;.
Construction. We let Uy := G and let V; be the interior of f~*(1) and ug, vg
are not defined. Assume that n € N and that U, V}, are defined for 0 < k < n
and vy, u are defined for 0 < k£ < n. By our assumption there exists an = €
(U1 NA) U, 1N (V-1 N L). So there is a u,, € U,_1 NA such that u,x € U,_;.
Since u,, € A, x € V,,_; and U,,_; is open, there is an open neighbourhood V;,
of  such that x € V,, ¢ V,, ¢ V,,_1 and u,V,, C U,_1. Then V,, N L # () since
x € V,N L. Thus (ii)-(iv) are satisfied. Let v, be any element of V,, N A, then
by (iv) and (ii), (i) is satisfied and H,, C A is defined. Finally, since the map
t— |f(gt) — f(g)] is continuous for g € A, the set U, is an open neighbourhood
of e and so condition (v) is satisfied. This completes the construction.
We let
U =(WU,:n €N} and H=U{H,:neN}
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and let us, v be cluster points of the sequences {u, : n € N}, {v, : n € N}
respectively. Clearly too € Uso, Voo € Vp and H is a subgroup of G, by Lemma,
3.4. Moreover, by the construction, f(ht) = f(h) for each h € H and each
t € M{U, : n € N}. Therefore, if we let

S = {s€ H: f(hs)= f(h) for each h € H}
= {se€ H: f(hs) = f(h) for each h € H}

then N{U, : n € N}N H C S and S is a subgroup of G' by Lemma 3.1. Further-
more, by (i), Uy € Uss N H C S and by (iv) t,ve € U,_1 N H for each n € N.
Hence
UooVoo € ﬂmﬂﬁ C S.
neN
Therefore, vy = U (Usso) € STLS C S. Now, f(s) =0 for all s € S since

fles) = f(e) =0 forall seS.

Therefore, f(vs) = 0. On the other hand, since vy, € Vo C f71(1), f(veo) = 1
This contradiction completes the proof. O

4. INVARIANT MEANS ON CHART GROUPS

In this section we will show that every CHART group admits a unique right-
invariant mean.

Theorem 4.1. Fvery CHART group (G, -, T) possesses a unique right-invariant
mean m on C(G).

Proof. Let L be the family of all o-closed normal subgroups L of G for which
C(G/L) has a unique right-invariant mean. Clearly, £ # () as G € L. Now, (£, Q)
is a partially ordered set. We claim that (£, C) possesses a minimal element. To
prove this, it is sufficient to show that every totally ordered subfamily M of L
has a lower bound (in £). To this end, let M := {M,, : & € A} be a nonempty
totally ordered subfamily of £. Let

My := (M, : € A}

Then M is a o-closed normal subgroup of G and My C M, for every o € A.
Thus, to complete the proof of the claim we must show that My € L, i.e., show
that C(G/M,) admits a unique right-invariant mean. For each o € A, let 7, :
G/My — G/M, be defined by, m,(gMy) := gM,. Then 7, is a continuous, open
and onto map and its dual map 77 : C(G/M,) — C(G/My) is an isometric
algebra isomorphism of C(G/M,) into C(G/M,). By Proposition 1.1, for each
a € A, there exists a unique right-invariant mean m,, on 7 (C(G/M,)). From the
Hahn-Banach extension theorem it follows that each mean m,, has an extension to
amean m’, on C(G/My). Let o = | J{r#(C(G/M,)) : « € A}. Then & is a sub-
algebra of C(G/M,), that contains all the constant functions and separates the
point of G/M, since My := ({M, : a € A}. Therefore, by the Stone-Weierstrass
theorem, &7 is dense in C(G/M,). Let m be a weak® cluster-point of the net
(m}, : a € A) in Begmy)+- Clearly, m is a mean on C(G/M,). Furthermore, it is
routine to show that (i) m/|. is a right-invariant mean on < and (ii) m|, is the
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only (unique) right-invariant mean on 7. It now follows from continuity that m
is the one and only right-invariant mean on C(G/M,), i.e., My € L.

Let Ly be a minimal element of £. Then by Remark 2.4, N(Lg,0r,) € L.
However, since N(L,o,) C Ly and Ly is a minimal element of £ we must have
that N(L,or) = Lo. Thus, by Lemma 3.5, it must be the case that Ly = {e}.
This completes the proof. O

Let us now note that the unique right-invariant mean given above is also par-
tially left invariant in the sense that for each g € A(G, 1), m(Ly(f)) = m(f) for
all f € C(G). To see why this is true, consider the mean m* on C'(G) defined
by, m*(f) :== m(Ly(f)) for each f € C(G) and some g € A(G, 7). Then for any
hea,

m*(Ru(f)) = m(Lg(Rn(f))) = m(Ru(Lg(f))) = m(Le(f)) = m*(f).
Therefore, m* is a right-invariant mean on C'(G). Thus, m* = m and so
m(Ly(f)) =m*(f) =m(f) for all f € C(G) and all g € A(G, 7).
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