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NUMERICAL SIMULATION FOR A CLASS OF SINGULARLY
PERTURBED CONVECTION DELAY PROBLEMS
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Abstract. This article presents a solution for a class of singularly perturbed
convection with delay problems arising in the control theory. The approach of
extending Taylor’s series for the convection term gives to a bad approximation
when the delay is not the smallest order of singular perturbation parameter.
To handle the delay term, we model an interesting mesh form such that the
delay term lies on mesh points. The parametric cubic spline is adapted to the
continuous problem on a specially designed mesh. The truncation error for the
proposed method is derived. Numerical examples are experimented to examine
the effect of the delay parameter on the layer structure.

1. Introduction

Consider the following singularly perturbed convection with delay equation:
Lε,δu ≡ εu′′(x) + α(x)u′(x − δ) + β(x)u(x) = γ(x), on Ω = (0, 1), (1.1)

with
u(x) = ω(x) , −δ ⩽ x ⩽ 0 , u(1) = υ, (1.2)

where (0 < ε ≪ 1) is the singular perturbation parameter and δ = O(ε) is
the delay parameter. The functions α(x), β(x), γ(x), and ω(x) are continuously
differentiable and υ is a constant. Also, it is assumed that β(x) ⩽ −Θ < 0,
where Θ > 0. The solution has steep gradients or oscillatory behavior at the
boundary for smaller value of singular perturbation parameter. To encounter
such situations, it needs to develop suitable numerical methods to have solutions
at boundaries. In general, the applications of these problems are encountered in
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various models, for instance, reaction-diffusion equations [2], diffusion in poly-
mers [15], thermo-elasticity [6], hydrodynamics of liquid helium [8], variational
problems in control theory [7], an optically bistable devices [4], and so on.

Mathematical investigation on singularly perturbed differential-difference equa-
tions (SPDDE) was initiated in [12–14]. Various numerical methods have been
incorporated for solving SPDDE, for instance, the hybrid method [9], B-spline
collocation method [11], finite difference schemes [10,17], fitted tridiagonal finite
difference method [18], finite difference scheme on adapted mesh [3], nonpolyno-
mial spline with uniform mesh [16], exponentially fitted spline method for linear
and nonlinear [19,21,22], tension spline on uniform mesh [20], and spline in tension
with nonuniform mesh [23]. In this article, we model a special mesh discretization
for convection term and the continuous problem with specially designed mesh is
constructed by a parametric cubic spline.

2. Continuous problem

Since δ = O(ε), Equation (1.1) can be written as follows:

Lε,δu ≡

 εu′′(x) + β(x)u(x) = γ(x)− α(x)ω′(x− δ), if 0 < x < δ,
εu′′(x) + α(x)u1 + β(x)u(x) = γ(x) + α(x)ω0, if x = δ,
εu′′(x) + α(x)u′(x − δ) + β(x)u(x) = γ(x), if δ < x < 1.

The differential operator Lε,δ satisfies Lemma 2.1 stated below.
Lemma 2.1. Suppose that κ(x) is continuously differentiable in Ω with κ(0) ⩾ 0,
κ(1) ⩾ 0. Then Lε,δκ(x) ⩽ 0, for all x ∈ (0, 1), implies that κ(x) ⩾ 0 for all
x ∈ [0, 1].
Proof. Suppose that κ(t) < 0 and that κ(t) = minx∈Ω κ(x), where t ∈ Ω. It is
obvious that t /∈ {0, 1}, therefore κ′(t) = 0 and κ′′(t) ⩾ 0. We have the following
cases:
(i) For 0 < t < δ, Lε,δκ(t) = εκ′′(t) + β(t)κ(t) > 0, (since β(t) < 0).
(ii) For t = δ, Lε,δκ(t) = εκ′′(t) + a(t)u1 + β(t)κ(t) > 0.
(iii) For δ < t < 1, Lε,δκ(t) = εκ′′(t) + a(t)κ′(t − δ) + β(t)κ(t) > 0. Since t > δ
and (t− δ) ∈ Ω, then k′(t− δ) = 0.
Combining the above cases (i)–(iii) contradicts the hypothesis that Lε,δκ(x) is
negative. □
Lemma 2.2. Let the analytical solution of (1.1) and (1.2) be u(x); then

∥u∥ ⩽ Θ−1 ∥γ∥+C1 max
(
∥ω∥ , |υ|

)
, (2.1)

where ∥.∥ is the l∞-norm given by ∥x∥∞ = max |xi| and C1(⩾ 1) and Θ are the
positive constants.
Proof. Let κ±(x) be the barrier functions defined by

κ±(x) = ∥γ∥Θ−1 +C1 max (∥ω∥+ |υ|)± u(x).
Then
κ±(0) = ∥γ∥Θ−1 +C1 max (∥ω∥+ |υ|)± ω(0),

= ∥γ∥Θ−1 + (C1 ∥ω∥ ± ω(0)) +C1 max |υ| ,⩾ 0, ( since ∥ω∥ ⩾ ω(0))
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κ±(1) = ∥γ∥Θ−1 +C1 max (∥ω∥+ |υ|)± υ,

= ∥γ∥Θ−1 +C1 ∥ω∥+ (C1 |υ| ± υ) ⩾ 0.

For 0 < x ⩽ δ, it follows that
Lε,δκ± = εκ′′±(x) + β(x)κ±(x),

= β(x)
(
∥γ∥Θ−1 +C1 max (∥ω∥ , |υ|)

)
± Lε,µu,

= β(x)
(
∥γ∥Θ−1 +C1 max (∥ω∥ , |υ|)

)
± (γ(x)− a(x)ω′(x − δ)) ,

= (−∥γ∥ ± γ(x)) + β(x)C1 max (∥ω∥ , |υ|)∓ α(x)ω′(x − δ) < 0.

For δ < x < 1, we have
Lε,δ = εκ′′±(x) + α(x)κ′±(x − δ) + β(x)κ±(x),

= β(x)
(
∥γ∥Θ−1 +C1 max (∥ω∥ , |υ|)

)
± Lε,µu,

= β(x)
(
∥γ∥Θ−1 +C1 max (∥ω∥ , |υ|)

)
± γ(x),

Lε,δ = (−∥γ∥ ± γ(x)) + β(x)C1 max (∥ω∥ , |υ|) < 0 (since β(x)θ−1 ⩽ −1).

From the above inequalities, Lemma 2.2 proves the required estimate (2.1). □

2.1. Description of the scheme. Since δ = O(ε), extending the argument
containing the delay as a Taylor’s expansion can lead to a bad approximation.
To resolve this situation, we model an interesting mesh after discretion such that
the delay term lies on mesh levels. Let [0, 1] be divided to N equal subintervals
by h = δ/l, where l = rs, s is the mantissa of δ, and r ∈ Z+. Then

εu′′(xi) = γ(xi)− α(xi)u
′(xi−l)− β(xi)u(xi), (2.2)

ui = ω(xi) = ωi , u(1) = υ. (2.3)
Let Ω = [0, 1] be xi = ih, i = 0(1)N−1. A function S(x, ϱ) of C2(Ω) interpolates
u(xi), which leads to the cubic spline as ϱ→ 0, called as parametric cubic spline
function. The relation S(x, ϱ) = S(x) satisfying in [xi, xi+1],

S′′(x) + ϱS(x) = (xi+1 − x)
h

[S′′(xi) + ϱS(xi)]

+
(x − xi)

h
[S′′(xi+1) + ϱS(xi+1)] ,

here S(xi) = ui and ϱ > 0 is called the spline in compression. Following [1], we
obtain

ui−1 − 2ui + ui+1

h2
= λ1Mi−1 + 2λ2Mi + λ1Mi+1, i = 1(1)N − 1, (2.4)

where
λ1 =

(
λ−1 cscλ− λ−2

)
, λ2 =

(
λ−2 − λ−1 cotλ

)
, λ = h

√
ϱ, and Mi = u′′(xi).

We have u′i−1 ≈ −ui+1+4ui−3ui−1

2h
, u′i+1 ≈ 3ui+1−4ui+ui−1

2h
, and u′i ≈

ui+1−ui−1

2h
. Sub-

stituting εMj = γ(xj)−α(xj)u
′(xj−l)−β(xj)u(xj), j = i, i± 1, in (2.4) and using

the above first order approximations u′i, u′i±1 with (2.3), we obtain
ψ1
i ui+1 + ψ2

i ui + ψ3
i ui−1 = ςi − ψ4

i ωi−l+1 − ψ5
i ωi−l − ψ6

i ωi−l−1
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for 1 ⩽ i ⩽ l − 1, (2.5)
ψ1
i ui+1 + ψ2

i ui + ψ3
i ui−1 + ψ4

i ui−l+1 = ςi − ψ5
i ωi−l − ψ6

i ωi−l−1

for i = l, (2.6)
ψ1
i ui+1 + ψ2

i ui + ψ3
i ui−1 + ψ4

i ui−l+1 + ψ5
i ui−l = ςi − ψ6

i ωi−l−1

for i = l + 1, (2.7)
ψ1
i ui+1 + ψ2

i ui + ψ3
i ui−1 + ψ4

i ui−l+1 + ψ5
i ui−l + ψ6

i ui−l−1 = ςi

for l + 2 ⩽ i ⩽ N − 1, (2.8)
where

ψ1
i = ε+ λ1h

2βi+1, ψ4
i = 3λ1

2
hαi+1 + λ2hαi − λ1

2
hαi−1,

ψ2
i = −2ε+ 2λ2h

2βi, ψ5
i = −2λ1hαi+1 + 2λ1hαi−1,

ψ3
i = ε+ λ1h

2βi−1, ψ6
i = λ1

2
hαi+1 − λ2hαi − 3λ1

2
hαi−1,

ςi = h2 (λ1γi+1 + 2λ2γi + λ1γi−1) .

The above system (2.5)–(2.8) with (2.3) can be solved by using the Gauss elimi-
nation process.

3. Truncation error

This section presents the truncation error ξi for (2.6)–(2.8) given by
ξi(u) = ξ1,i(u) + ξ2,i(u) + ξ3,i(u) + ξ4,i(u), (3.1)

where
ξ1,i(u) = ψ1

i ui+1 + ψ2
i ui + ψ3

i ui−1 − ςi , for 1 ⩽ i ⩽ l − 1, (3.2)
ξ2,i(u) = ψ1

i ui+1 + ψ2
i ui + ψ3

i ui−1 + ψ4
i ui−l+1 − ςi, for i = l, (3.3)

ξ3,i(u) = ψ1
i ui+1 + ψ2

i ui + ψ3
i ui−1 + ψ4

i ui−l+1 + ψ5
i ui−l − ςi, for i = l + 1,

(3.4)
ξ4,i(u) = ψ1

i ui+1 + ψ2
i ui + ψ3

i ui−1 + ψ4
i ui−l+1 + ψ5

i ui−l + ψ6
i ui−l−1 − ςi,

for l + 2 ⩽ i ⩽ N − 1. (3.5)
Using (2.2) in (3.2), we have

ξ1,i(u) =
(
ψ1
i ui+1 + ψ2

i ui + ψ3
i ui−1

)
− h2λ1

(
εu′′i+1 + αi+1u

′
i−l+1 + βi+1ui+1

)
+2λ2

(
εu′′i + αiu

′
i−l + βiui

)
+ λ1

(
εu′′i−1 + αi−1u

′
i−l−1 + βi−1ui−1

)
. (3.6)

Using the Taylor series expansion in (3.6) and after some simplifications with
λ1 + λ2 =

1
2
, we obtain

ξ1,i(u) ⩽ h2
[
∥α∥ max

xi−m⩽x⩽xi−m+1

∣∣u′(x)∣∣+ h2ε

(
1

12
− λ1

)
max

xi−1⩽x⩽xi+1

∣∣∣u(iv)(x)∣∣∣] . (3.7)

In a similar way, by using (3.3)–(3.5) we get

ξ2,i(u) ⩽ h

[{
∥α∥
2

+ 2h ∥α′∥
}

max
xi−m⩽x⩽xi−m+1

|u(x)| (3.8)
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+h3ε

(
1

12
− λ1

)
max

xi−1⩽x⩽xi+1

∣∣u(iv)(x)∣∣ ],
ξ3,i(u) ⩽ h

[{
∥α∥
2

− 2λ1h ∥α′∥
}

max
xi−m⩽x⩽xi−m+1

|u(x)| (3.9)

+h3ε

(
1

12
− λ1

)
max

xi−1⩽x⩽xi+1

∣∣u(iv)(x)∣∣ ],
and

ξ4,i(u) ⩽ h3
[{

∥α∥
6

− λ1h ∥α∥
}

max
xi−m⩽x⩽xi−m+1

∣∣u(iii)(x)∣∣ (3.10)

+hε

(
1

12
− λ1

)
max

xi−1⩽x⩽xi+1

∣∣u(iv)(x)∣∣ ].
Theorem 3.1. Let U(x) be the numerical solution to u(x) of (1.1) acquired by
the proposed scheme. The error estimate is given by

∥ei∥ = ei = U(xi)− u(xi) ⩽ Θ−1 ∥ξi∥ ,
where

∥ξi∥ ⩽ h

[
(∥αi∥+ 2h ∥α′

i∥ (1− λ1)) max
xi−m⩽x⩽xi−m+1

|u(x)|

+h3ε

(
1

12
− λ1

)
max

xi−1⩽x⩽xi+1

∣∣u(iv)(x)∣∣ ].
Proof. Using equations (3.7)–(3.10) in (3.1), and also Lemma 2.2, one can prove
the above estimate. □

4. Computational experiments

This section presents the findings of the computational experiment to validate
with the theoretical result. We use the double mesh principle [5] to calculate the
maximum absolute error (MAE) and order convergence given by

ErrorN = max
0⩽i⩽N

∣∣uNi − u2N2i
∣∣ , OrderN = log2

∣∣∣∣ ErrorNError2N

∣∣∣∣ .
Example 4.1. Consider

εu′′(x)− (1 + x)u′(x − δ)− e−xu(x) = 1,

with
u(x) = 1 , −δ ⩽ x ⩽ 0 , u(1) = 1.

Table 1 represents the MAE for different values of λ1, λ2, δ, and N . It is
observed that the error decreases as increasing the mesh points. Figures 1–2
reflect the behavior of the boundary layer for various delay parameter values. It
can be observed in Figure 1 that the layer behavior is maintained when δ = o(ε)
and also the thickness of the boundary layer behavior of the solution increases as
delay increases. Furthermore, as we increase the delay parameter, the amplitude
of the oscillations increases at the right end boundary, as shown in Figure 2.
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Example 4.2. Consider
εu′′(x)− exu′(x − δ)− u(x) = 0,

with
u(x) = 1 , −δ ⩽ x ⩽ 0 , u(1) = 1.

Table 2 shows the comparison between the MAE obtained by the method pro-
posed and the method in [11]. The errors of the proposed method can be observed
to be more accurate than the method in [11]. In Figure 3, the layer behavior of
the solution is preserved for δ = ε and δ = 2ε, but oscillations have built up
within the layer when δ = 3ε.
Example 4.3. Consider

εu′′(x)− 0.25u′(x − δ)− u(x) = 0,

with
u(x) = 1 , −δ ⩽ x ⩽ 0 , u(1) = 0.

The calculated MAE for different values ε and N is presented in Table 3. It is
noted in the table that the presented method gives more precise results than the
methods in [10,11]. It is evident from the numerical solution in Figure 4 that the
layer behavior is destroyed and also oscillations across the whole interval.
Example 4.4. Consider

εu′′(x)− u′(x − δ)− u(x) = 0,

with
u(x) = 1 , −δ ⩽ x ⩽ 0 , u(1) = −1.

The estimated MAE and orders are shown in Table 4. In Figure 5, the layer
behavior of the solution is maintained throughout the interval when the delay is
smaller as well as larger than the perturbation parameter.

Acknowledgement. The authors would like to express their sincere thanks
and gratitude to the editors and reviewers for their insightful comments and
suggestions for the improvement of this paper.
`
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Table 1. MAE and computed order with ε = 2−5 for Example 4.1.

(λ1, λ2) = (1/6, 1/3) (λ1, λ2) = (1/12, 5/12)
δ \N 256 512 1024 256 512 1024
0.5ε 3.3411e-04 8.3467e-05 2.0863e-05 3.2362e-04 8.0849e-05 2.0209e-05

2.0010 2.0003 1.9999 2.0010 2.0002 1.9999
0.8ε 1.3144e-02 4.0085e-03 7.1512e-04 1.3135e-02 4.9702e-03 8.1517e-0

1.7133 2.4868 1.6385 1.4020 2.6081 1.3618
3ε 6.5180e-04 1.6446e-04 4.1245e-05 6.4755e-04 1.6375e-04 4.1032e-05

1.9867 1.9954 1.9992 1.9835 1.9967 1.9992
6ε 4.9361e-03 1.2369e-03 3.0930e-04 5.3391e-03 1.3363e-03 3.3416e-04

1.9966 1.9997 1.9999 1.9984 1.9996 1.9999
9ε 3.0907e-03 7.7267e-04 1.9317e-04 3.3057e-03 8.2647e-04 2.0664e-04

2.0000 2.0000 2.0000 1.9999 1.9998 2.0000

Table 2. Comparison of MAE with δ = 0.03 for Example 4.2.

N \ ε 2−1 2−2 2−3 2−4 2−5 2−6

100 MAE1 2.84e-04 7.09e-04 1.43e-03 2.71e-03 7.52e-03 3.89e-02
MAE2 1.84e-05 5.93e-05 1.50e-04 3.16e-04 5.75e-04 9.18e-04
MAE3 1.08e-05 4.32e-05 1.24e-04 2.78e-04 5.22e-04 8.47e-04

200 MAE1 1.53e-04 3.80e-04 7.70e-04 1.47e-03 2.71e-03 8.01e-03
MAE2 4.60e-06 1.48e-05 3.75e-05 7.93e-05 1.44e-04 2.29e-04
MAE3 2.71e-06 1.08e-05 3.09e-05 6.96e-05 1.30e-04 2.12e-04

400 MAE1 7.93e-05 1.97e-04 3.99e-04 7.64e-04 1.41e-03 2.54e-03
MAE2 1.15e-06 3.70e-06 9.38e-06 1.98e-05 3.59e-05 5.75e-05
MAE3 6.77e-07 2.70e-06 7.72e-06 1.74e-05 3.26e-05 5.31e-05

1 Method in [11]
2 Proposed method for λ1 = 1

6 , λ2 =
1
3

3 Proposed method for λ1 = 1
12 , λ2 =

5
12 .
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Table 3. Comparison of MAE with δ = 0.03 for Example 4.3.

N \ ε 2−1 2−2 2−3 2−4 2−5 2−6 2−7

100 MAE1 2.08e-04 6.12e-04 1.63e-03 4.25e-03 1.17e-02 3.37e-02 9.77e-02
MAE2 1.76e-04 4.07e-04 9.49e-04 2.16e-03 4.67e-03 9.30e-03 1.69e-02
MAE3 2.37e-06 7.84e-06 2.39e-05 7.27e-05 2.52e-04 1.09e-03 5.99e-03
MAE4 7.26e-06 2.95e-06 1.14e-05 4.35e-05 1.87e-04 1.01e-03 6.53e-03

200 MAE1 1.04e-04 3.07e-04 8.26e-04 2.18e-03 6.16e-03 1.88e-02 5.98e-02
MAE2 9.30e-05 2.15e-04 5.03e-04 1.14e-03 2.46e-03 4.89e-03 8.75e-03
MAE3 5.93e-07 1.96e-06 5.98e-06 1.82e-05 6.29e-05 2.74e-04 1.52e-03
MAE4 1.82e-07 7.38e-07 2.85e-06 1.09e-05 4.67e-05 2.52e-04 1.65e-03

400 MAE1 5.20e-05 1.54e-04 4.15e-04 1.10e-03 3.12e-03 9.95e-03 3.32e-02
MAE2 4.80e-05 1.11e-04 2.59e-04 5.89e-04 1.26e-03 2.50e-03 4.44e-03
MAE3 1.48e-07 4.90e-07 1.49e-06 4.54e-06 1.57e-05 6.85e-05 3.80e-04
MAE4 4.54e-08 1.85e-07 7.13e-07 2.72e-06 1.17e-05 6.30e-05 4.13e-04

1 Method in [10]
2 Method in [11]
3 Proposed method for λ1 = 1

6 , λ2 =
1
3

4 Proposed method for λ1 = 1
12 , λ2 =

5
12 .

Table 4. MAE and computed order with δ = 1.5ε, ε = 2−7 for
Example 4.4.

(λ1, λ2) N = 256 N = 512 N = 1024
(1/6, 1/3) 1.12e-03 2.76e-04 6.90e-05

2.0208 2.0000 2.0042
(1/10, 2/5) 1.08e-03 2.69e-04 6.73e-05

2.0054 1.9989 2.0021
(1/12, 5/12) 1.07e-03 2.67e-04 6.68e-05

2.0027 1.9989 2.0000
(1/14, 3/7) 1.06e-03 2.66e-04 6.65e-05

1.9946 2.0000 2.0022
(1/18, 4/9) 1.05e-03 2.64e-04 6.61e-05

1.9918 1.9978 2.0022
(1/24, 11/24) 1.05e-03 2.63e-04 6.57e-05

1.9973 2.0011 2.0022
(1/30, 14/30) 1.05e-03 2.62e-04 6.55e-05

2.0028 2.0000 1.9630
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Figure 1. Solution profile for ε = 0.01 of Example 4.1.
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Figure 2. Solution profile for ε = 0.01 of Example 4.1.
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Figure 3. Solution for ε = 0.01 of Example 4.2.
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Figure 4. Solution profile for ε = 0.01 of Example 4.3.
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Figure 5. Solution profile for ε = 0.01 of Example 4.4.
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