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Abstract. In the last decade, the notions of function-f -ϵ-chainability, uni-
formly function-f -ϵ-chainability, function-f -ϵ-chainable sets, and locally function-
f -chainable sets were studied in some papers. We show that the notions of
function-f -ϵ-chainability and uniformly function-f -ϵ-chainability are equiva-
lent to the notion of nonultrapseudocompactness in topological spaces. Also,
all of these are equivalent to the condition that each pair of nonempty sub-
sets (resp., subsets with nonempty interiors) is function-f -ϵ-chainable (resp.,
locally function-f -chainable). Further, we provide a criterion for connected-
ness with covers. In the paper [Indian J. Pure Appl. Math. 33 (2002), no.
6, 933–940], the chainability of a pair of subsets in a metric space has been
defined wrongly, and consequently Theorems 1 and 5 are not valid. We rectify
their definition appropriately and consequently, we give appropriate results
and counterexamples.

1. Introduction and preliminaries

Throughout this paper, a map means a continuous function and the word space
means topological space. Cantor [3, p. 575] introduced the notion of connected-
ness of some subsets of Euclidean spaces Rn in 1883 in the following way: A set
is connected, if for any elements x and y of the set and any ϵ > 0, a finite set of
points x = x0, x1, . . . , xn = y can be found with the property that d(xi, xi+1) < ϵ
for every 0 ≤ i ≤ n− 1. A metric space (X, d) with the above property is called
chainable and the collection {x0, x1, . . . , xn} is an ϵ-chain of length n from x to
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y, whereas (X, d) is said to be ϵ-chainable if any pair of elements of X can be
connected by a finite-length ϵ-chain.

From the beginning of 21st-century, three topics of chainability: finitely chain-
able metric spaces, chainable subsets of metric spaces, and chainability through
functions, have been studied seriously. The notion of finitely chainable metric
space was introduced by Atsuji [2] as follows.

Definition 1.1. Let (X, d) be a metric space. If for any ϵ > 0, there exist a
finite collection of points C ⊂ X and n ∈ N such that each element of X can be
connected with some element of C by an n-length ϵ-chain, then (X, d) is called
finitely chainable.

Following [2, Theorem 2], one can see that there exists an unbounded real-
valued uniformly continuous function on a metric space X if and only if X is not
finitely chainable. Garrido and Meroño [6] defined cofinally Bourbaki–Cauchy and
Bourbaki–Cauchy sequences in metric spaces and characterized finitely chainable
metric spaces (under the name of Bourbaki-bounded metric spaces) in terms of
these sequences. Recently, Kundu, Aggarwal, and Hazra [9] collected equivalent
conditions for finite chainability in metric spaces.

The concept of ϵ-chain between two points of a metric space (X, d) extended
to ϵ-chain between two subset of X as follows.

Definition 1.2 (see [12]). Let (X, d) be a metric space, let ϵ be a positive number,
and let A,B ⊂ X be given. An ϵ-chain of length n from A to B is a finite sequence
A0, A1, . . . , An of subsets of X such that A = A0, An = B and

Ai ⊂ Vϵ(Ai+1), Ai+1 ⊂ Vϵ(Ai), for any 0 ≤ i ≤ n− 1,
where Vϵ(A) =

∪
x∈A B(x, ϵ) and B(x, ϵ) = {y ∈ X : d(x, y) < ϵ}.

Using the above definition, Shrivastava and Agrawal [12] tried to define chain-
ability of a pair ⟨A,B⟩ of subsets of a metric space X, as this new concept charac-
terizes the chainable metric spaces. In Section 2, a counterexample is presented,
which shows that their attempt has failed. In fact, this example illustrates that
some of the main results of [12] including Theorems 1 and 5 are not valid. They
considered the following definition.

(∗) The pair ⟨A,B⟩ is ϵ-chainable if there is an ϵ-chain between A and B,
whereas ⟨A,B⟩ is chainable if it is ϵ-chainable for each ϵ > 0.

Moreover, in Section 2, we present an equivalent condition for connectedness
with covers. For every open cover V of space (X, T ) and H ⊂ X, the star of H
with respect to V , denoted by Star(H,V), is defined as follows:

Star(H,V) =
∪
{V ∈ V : V ∩H ̸= ∅}.

We will also denote
H0 = H,

Hn =
∪

{V ∈ V : V ∩Hn−1 ̸= ∅} = Star(Hn−1,V), for n ≥ 1,

H∞ =
∪
n∈ω

Hn.

(1.1)
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Recall that a topological space X is said to be ultrapseudocompact (UPC for
short) if every real-valued map on X is constant. The class of UPC spaces was
studied in [10]. More generally, spaces on which every map into a given space
R is constant, were examined in [7]. Every UPC space X is connected. In fact,
every real-valued map on X has the intermediate value property. Note that a
real-valued function f on a space X has the intermediate value property if the
following condition holds:

(♢) If y1, y2 ∈ f(X) and y1 < y2, then the entire interval y1 ≤ y ≤ y2 is
contained in the set f(X).

In the third section, it is shown that the notions of function-f -ϵ-chainability
and uniformly function-f -ϵ-chainability introduced in [8] are equivalent to non-
UPCness in topological spaces. We recall the following definition.

Definition 1.3 (see [8]). A space X is called
• function-f -ϵ-chainable if for ϵ > 0, there exists a nonconstant map f :
X → [0,∞) such that for every pair of elements x and y of X, a finite set
of points x = x0, x1, . . . , xn = y can be found such that

|f(xi+1)− f(xi)| < ϵ, for any 0 ≤ i ≤ n− 1;
• uniformly function-f -ϵ-chainable if for ϵ > 0, there exist lϵ ∈ N and a

nonconstant map f : X → [0,∞) with the property that for each two
elements x and y in X, there exists a finite set {x = x0, x1, . . . , xn = y}
of points of X such that n ≤ lϵ and |f(xi+1) − f(xi)| < ϵ for every
0 ≤ i ≤ n− 1.

The last result of Section 3, illustrates the equality of the concepts of function-
f -ϵ-chainable sets and locally function-f -chainable sets with non-UPCness.

Definition 1.4. Let X be a topological space and let A,B ⊂ X. The pair ⟨A,B⟩
is called

• (see [13]) function-f -ϵ-chainable if for ϵ > 0, there exists a nonconstant
map f : X → [0,∞) such that there is a finite sequence A = A0, A1, . . . , An =
B of subsets of X with

Ai ⊂ Vfϵ(Ai+1), Ai+1 ⊂ Vfϵ(Ai), for any 0 ≤ i ≤ n− 1,
where Vfϵ(A) = f−1

(
Vϵ

(
f(A)

))
;

• (see [4]) locally function-f -chainable at point (a, b) ∈ A × B if for every
ϵ > 0, there exists δ > 0 such that the pair

⟨Vfδ({a}) ∩ int(A), Vfδ({b}) ∩ int(B)⟩
is function-f -ϵ-chainable and

Vfδ({a}) ∩ int(A) ⊂ Vfϵ({a}), Vfδ({b}) ∩ int(B) ⊂ Vfϵ({b}),
where the sets Vfδ({a}) ∩ int(A) and Vfδ({b}) ∩ int(B) are nonempty.
The pair ⟨A,B⟩ is locally function-f -chainable if it is locally function-f -
chainable at each point of A× B.
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2. Chainable sets in metric spaces
We start with a lemma, which is an immediate consequence of (1.1).

Lemma 2.1. Let (X, T ) be a space and let A,B ⊂ X. Then the following
statements hold:

(1) For any n ∈ ω, we have
(i) An ⊂ An+1;
(ii) (A ∪ B)n = An ∪ Bn;
(iii) (A ∩ B)n ⊂ An ∩ Bn;

(2) If A ⊂ B, then An ⊂ Bn for any n ∈ ω;
(3) If W ∈ T , then W n∞

= W∞ for any n ∈ ω;
(4) If U,W ∈ T and U ∩W ̸= ∅, then U∞ = W∞;
(5) If U ∈ T , then for any W ∈ T satisfying W ∩ Un ̸= ∅ for some n ∈ ω,

we have U∞ = W∞.

Proof. Only (5) is nontrivial. For the case n = 0, the result is clear by 4. For
m = n + 1, let W ∈ T satisfying W ∩ Um ̸= ∅. There exists V ∈ T such that
W ∩ V ̸= ∅ and V ∩ Un ̸= ∅. Hence W∞ = V ∞ and V ∞ = U∞. □

For a metric space (X, d), [12, Theorem 1] says that the pair ⟨A,B⟩ of subsets
of X is ϵ-chainable if and only if there exists an ϵ-chain from every point of A to
some point of B and vice versa. The following example shows the sufficient part
does not hold in general.

Example 2.2. Consider subsets A = (−∞, 0] ∩ Q and B = [1,∞) ∩ Q of the
space Q with the topology induced from R. For any positive number ϵ, there
exists an ϵ-chain from every member of A to some member of B and vice versa.
Now fix ϵ > 0. There is no finite-length ϵ-chain from A to B. Therefore ⟨A,B⟩
is not ϵ-chainable.

In this perspective, we suggest to redefine (∗) independent from Definition 1.2.
Before proceeding, we set a notation. For a subset A of a metric space (X, d),
the set

∪
n∈ω A

n
ϵ will be designated by A∞

ϵ , where A0
ϵ = A and for every n ≥ 1,

we have
An

ϵ =
∪
{B(x, ϵ) : x ∈ X,B(x, ϵ) ∩ An−1

ϵ ̸= ∅}.

Definition 2.3. Let (X, d) be a metric space, let A,B ⊂ X, and let ϵ be a
positive number. The pair ⟨A,B⟩ is said to be ϵ-chainable if A∞

ϵ = B∞
ϵ . Further,

if for each ϵ > 0, ⟨A,B⟩ is ϵ-chainable, then ⟨A,B⟩ is called chainable.

The following proposition is required to prove the next theorem.

Proposition 2.4. The pair ⟨A,B⟩ of subsets of a metric space (X, d) is ϵ-
chainable if and only if there exists an ϵ-chain from every point of A to some
point of B and vice versa.

Proof. Suppose A∞
ϵ = B∞

ϵ for ϵ > 0. Then for every x ∈ A, there is n ∈ ω
such that x ∈ Bn

ϵ . Hence there is a finite set {x = x0, x1, . . . , x2n} of elements
of metric space X such that x2n ∈ B and the inequality d(xi, xi+1) < ϵ holds for
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any 0 ≤ i ≤ 2n − 1. Similarly, there exists an ϵ-chain from every point of B to
some point of A.

Vice versa, for every x ∈ A, there is nx ∈ ω such that x ∈ Bnx
ϵ ⊂ B∞

ϵ .
Therefore A0

ϵ ⊂ B∞
ϵ and A∞

ϵ ⊂ (B∞
ϵ )∞ = B∞

ϵ . Likewise, B∞
ϵ ⊂ A∞

ϵ , and the
proof is complete. □

Now [12, Theorem 5] is immediately obtained from Definition 2.3 and Propo-
sition 2.4.

Theorem 2.5 (see [12]). A metric space (X, d) is ϵ-chainable if and only if ⟨A,B⟩
is ϵ-chainable for every nonempty subsets A and B of X.

Further, we have the following proposition.

Proposition 2.6. A metric space (X, d) is chainable if and only if for every
positive number ϵ, there exists an element x of X with B(x, ϵ)∞ = X.

Proof. Consider a chainable metric space (X, d), and fix x ∈ X. Now let ϵ > 0 be
given. For every y ∈ X, there is a finite set {x = y0, y1, . . . , yn = y} of elements of
X in such a way that d(yi, yi+1) < ϵ for 0 ≤ i ≤ n−1. Hence B(x, ϵ)∩B(y1, ϵ) ̸= ∅
implies that B(y1, ϵ) ⊂ B(x, ϵ)1. Similarly, B(y2, ϵ) ⊂ B(x, ϵ)2. Therefore

y ∈ B(yn, ϵ) ⊂ B(x, ϵ)n ⊂ B(x, ϵ)∞,
proving that X = B(x, ϵ)∞.

Conversely, take y, z ∈ X and ϵ > 0. Then there exist a point x of the space X
and ny, nz ∈ ω such that y ∈ B(x, ϵ)ny and z ∈ B(x, ϵ)nz . Therefore the collection
{y = y0, y1, . . . , y2ny+1 = x = z0, z1, . . . , z2nz+1 = z} is an ϵ-chain from y to z,
which implies that (X, d) is chainable. □

A metric space (X, d) is called uniformly connected, if X cannot be partitioned
into two subsets A and B of X with inf{d(x, y) : x ∈ A, y ∈ B} > 0. Note that
(X, d) is uniformly connected if and only if it is chainable; see [5].

The next statement obviously follows from the results we have already obtained
above.

Corollary 2.7. In a metric space X, the following conditions are equivalent:
(1) X is chainable;
(2) X is uniformly connected;
(3) For every ϵ > 0, there is a point x ∈ X such that B(x, ϵ)∞ = X;
(4) For every ϵ > 0, the equality A∞

ϵ = B∞
ϵ holds for every nonempty subsets

A and B of X.

Now we define a relation ∼ on a space (X, T ) by x ∼ y if and only if x, y ∈ U∞

for some U ∈ T . We have to make sure that ∼ is an equivalence relation.

Proposition 2.8. The relation ∼ is an equivalence relation on X.

Proof. Let U, V ∈ T and let x ∈ U∞ ∩ V ∞. There exist n,m ∈ ω such that
x ∈ V n ∩ Um. Therefore there exist O,W ∈ T such that

x ∈ O ∩W , O ∩ V n−1 ̸= ∅, W ∩ Um−1 ̸= ∅.
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Consequently, part 5 of Lemma 2.1 implies that U∞ = V ∞. □
The quotient set of X under the relation ∼ will be denoted by CT (X).

Recall that a chain in a space (X, T ) is a finite family of sets {C1, C2, . . . , Cn} in
T such that Ci ∩ Cj ̸= ∅ if and only if |i− j| ≤ 1 for all 1 ≤ i, j ≤ n, and is also
called a chain from x to y in T for x ∈ C1 and y ∈ Cn. The following theorem
can be used as an equivalent characterization of connected topological spaces.
Theorem 2.9 (Connectivity covering criterion). Let (X, T ) be a topological space.
The following statements are equivalent:

(1) (X, T ) is connected;
(2) For every subcover V of T , there exists V ∈ V such that V ∞ = X;
(3) |CV(X)| = 1 for every subcover V of T ;
(4) There exists a chain in V between any pair of points of X for every subcover

V of T .
Proof. (1) ⇒ (2). Choose a subcover V of T such that V ∞ ̸= X for all V ∈ V .
For a fixed x ∈ X, there exists Vx ∈ V such that x ∈ Vx and V ∞

x ̸= X. For
any y ∈ X \ V ∞

x , the set V ∞
y satisfies y ∈ Vy ∈ V and V ∞

y ∩ V ∞
x = ∅. Also X

cannot be written as the union of two disjoint nonempty elements of T ; therefore
V ∞
x ∪V ∞

y ̸= X. Continue this process until X \ (
∪

j∈J⊆X V ∞
j ) = ∅. The sets U =

V ∞
j and V =

∪
j ̸=i∈J V

∞
i are disjoint nonempty elements of T with X = U ∪ V ,

a contradiction.
The implications (2) ⇒ (3) and (4) ⇒ (1) are trivial. Let a subcover V of T

be given. For every x, y ∈ X, there exists V ∈ V such that x, y ∈ V ∞. Hence
y ∈ V n and x ∈ V m for some n,m ∈ ω. Fix any point z in V , there exists a
finite sequence U1, U2, . . . , Un of elements of V such that y ∈ Un, V ∩U1 ̸= ∅, and
Ui ∩ Ui+1 ̸= ∅ for all 1 ≤ i ≤ n− 1. That is, {V = U0, U1, U2, . . . , Un} is a chain
from z to y in V . Similarly for x, there exists a chain {W0,W1, . . . ,Wm = V }
from x to z in V , and (3) ⇒ (4) is proved. □

3. Chainability of spaces through maps
At the outset, we note that the use of f in Definitions 1.3 and 1.4 is not

required. Although, we use these definitions to avoid ambiguity. The following
theorem is the key to our results in this section.
Theorem 3.1. Every non-UPC space is function-f -ϵ-chainable for all ϵ > 0.
Proof. Let X be any non-UPC space, and fix ϵ > 0. There exists a nonconstant
real-valued map on X, say ρ. Now define a map φϵ : X → (0, ϵ) as follows:

φϵ(x) = ϵeρ(x)

1+eρ(x)
.

For every pair of elements x and y in X, the inequality |φϵ(x)−φϵ(y)| < ϵ implies
that X is function-f -ϵ-chainable. □

Since for ϵ > 0, every non-UPC space X is uniformly function-f -ϵ-chainable,
where lϵ = 1, the above statement implies the next one.
Corollary 3.2. Let X be a space. The following statements are equivalent:
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(1) X is non-UPC;
(2) X is uniformly function-f -ϵ-chainable for every ϵ > 0.

A space X is function-f -chainable if there exists a nonconstant map f : X →
[0,∞) such that for any two points x and y of X and any ϵ > 0, there exists a finite
sequence x = x0, x1, . . . , xn = y of elements of X such that |f(xi+1)− f(xi)| < ϵ
for i = 0, 1, . . . , n − 1 (see [8]). Every function-f -chainable space is non-UPC,
but the converse need not hold, as the following example illustrates.

Example 3.3. The two-point discrete space {0, 1}, say D, is non-UPC, which
is not function-f -chainable. In fact, let f : D → [0,∞) be a nonconstant map.
Now fix ϵ > 0 with ϵ < |f(0) − f(1)|. For x0 = 0 and xn = 1, there is no finite
sequence {x0, x1, . . . , xn} of elements of D such that |f(xi+1) − f(xi)| < ϵ for
i = 0, 1, . . . , n− 1.

Proposition 3.4. A space X is function-f -chainable if and only if X can be
continuously mapped onto a chainable subset of [0,∞) with more than one point.

Proof. Let ϵ > 0. For any pair of distinct points y0, yn ∈ f(X), there exist x0, xn ∈
X such that f(x0) = y0 and f(xn) = yn. Then a finite set of points x0, x1, . . . , xn

of X can be found such that |f(xi+1)− f(xi)| < ϵ for i = 0, 1, . . . , n− 1. That is,
the collection {y0, y1 = f(x1), . . . , yn} is an ϵ-chain from y0 to yn, and so f(X) is
a chainable subset of [0,∞). Moreover, since f is nonconstant, |f(X)| > 1.

Conversely, suppose that f : X → [0,∞) is a map and that f(X) is a chainable
subset of the real line with more than one point. Fix ϵ > 0. For every two
elements x and y of X, there exists an ϵ-chain from f(x) to f(y), say {f(x) =
y0, y1, . . . , yn = f(y)}. Now consider the finite sequence {x = x0, x1, . . . , xn = y}
such that f(xi) = yi for 1 ≤ i ≤ n− 1. To finish, it suffices to remark that

|f(xi+1)− f(xi)| = d(yi+1, yi) < ϵ, for any 0 ≤ i ≤ n− 1.
□

Corollary 3.5. Every denumerable discrete space is function-f -chainable.

It is clear that any UPC space X is connected but not function-f -chainable.
Also, the space Q with the topology induced from R is function-f -chainable,
but not connected. In fact, every chainable metric space is function-f -chainable
and the discrete metric on [0,∞) is function-f -chainable, but not chainable. For
non-UPC connected space, we have the following result.

Theorem 3.6. Every non-UPC, connected space is function-f -chainable.
Proof. Suppose that the space X is non-UPC. This implies the existence of a
nonconstant real-valued map on X, say ρ. Then the function f : X → R>0

defined by f(x) = eρ(x) is continuous and has the intermediate value property
(see [11, Corollary 3.6]). We claim that X is function-f -chainable. Let ϵ > 0 and
let a, b ∈ X. Without loss of generality, we can assume that r = f(b)− f(a) > 0.
Choose n ∈ N such that r

n
< ϵ. Now define yi = y0 +

ir
n

for all i = 1, 2, . . . , n
and y0 = f(a). Consider the finite sequence {x0, x1, . . . , xn} in X such that
x0 = a, xn = b, and f(xi) = yi for all i = 1, 2, . . . , n− 1. Then
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|f(xi+1)− f(xi)| = |yi+1 − yi| = r
n
< ϵ for all i = 0, 1, . . . , n− 1.

□

Since every topological group is a Tychonoff space [1, Theorem 3.3.11], we have
the following.

Corollary 3.7. Every nontrivial connected group is function-f -chainable.

We also obtain from Theorem 3.1 the following.

Theorem 3.8. For a topological space X, the following conditions are equivalent:
(1) X is non-UPC;
(2) For any nonempty A,B ⊂ X, the pair ⟨A,B⟩ is function-f -ϵ-chainable

for every positive number ϵ;
(3) The pair ⟨A,B⟩ is locally function-f -chainable, for every nonempty subsets

A and B of X with nonempty interiors.

Proof. To prove (1) ⇒ (2), it is enough to notice that for each ϵ > 0, the relations
A ⊂ Vφϵϵ(B) and B ⊂ Vφϵϵ(A) are true for any nonempty A,B ⊂ X.

(1) ⇒ (3). Suppose A and B are nonempty subsets of X with nonempty
interiors. Let ϵ > 0 and put δ = ϵ. The pair ⟨Vφϵϵ({a})∩int(A), Vφϵϵ({b})∩int(B)⟩
is function-f -ϵ-chainable for every (a, b) ∈ A× B. □
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