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Abstract. We study the existence of solutions for quasilinear parabolic
systems of the form

∂tu− divσ(x, t,Du) = f in Q = Ω× (0, T ),

whose the right hand-side belongs to W−1,xLM (Q;Rm), supplemented with
the conditions u = 0 on ∂Ω× (0, T ) and u(x, 0) = u0(x) in Ω. By using a mild
monotonicity condition for σ, namely, strict quasimonotone, and the theory of
Young measures, we deduce the needed result.

1. Introduction

Let Ω be a bounded open subset of Rn, n ≥ 2, and let an N -function M and
its conjugate M , both satisfy the ∆2-condition (see Section 2 for the details).
In this paper, we establish the existence of weak solutions in the framework of
Orlicz–Sobolev spaces for the following quasilinear parabolic system:

∂u

∂t
− divσ(x, t,Du) = f in Q, (1.1)

u(x, t) = 0 on ∂Q, (1.2)
u(x, 0) = u0(x) in Ω, (1.3)

where Q = Ω × (0, T ), ∂Q = ∂Ω × (0, T ), and its boundary and the function
σ : Q×Mm×n → Mm×n will be assumed to satisfy some conditions. The notation
Mm×n stands for the real vector space of m × n matrices equipped with the
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inner product A : B =
∑m

i=1

∑n
j=1 AijBij. We will prove the existence of a

vector-valued function u : Q → Rm, m ∈ N, solution to the problem (1.1)–(1.3)
for every f belonging to W−1,xLM(Q;Rm).

Problem (1.1)–(1.3) was considered in [4, 8]. In [8], for f ∈ W−1,xLM(Q;Rm),
we proved the existence and uniqueness results by using the theory of Young
measures under the following assumptions:
(H0) (Continuity) σ : Q × Mm×n → Mm×n is a Carathéodory function, that
is, (x, t) 7→ σ(x, t, A) is measurable for every A ∈ Mm×n and A 7→ σ(x, t, A) is
continuous for almost every (x, t) ∈ Q.
(H1) (Growth and coercivity) There exist 0 ≤ d1(x, t) ∈ EM(Q), d2(x, t) ∈ L1(Q),
and α, β, η > 0 such that

|σ(x, t, A)| ≤ d1(x, t) +M
−1
M(γ|A|)

σ(x, t, A) : A ≥ αM
( |A|
β

)
− d2(x, t).

(H2) (Monotonicity) σ satisfies one of the conditions:
(a) For all (x, t) ∈ Q, A 7→ σ(x, t, A) is a C1-function and is monotone, that

is, for all (x, t) ∈ Q, we have(
σ(x, t, A)− σ(x, t, B)

)
: (A− B) ≥ 0.

(b) There exists a function W : Q × Mm×n → R such that σ(x, t, A) =
∂W
∂A

(x, t, A) and A → W (x, t, A) is convex and C1 for all (x, t) ∈ Q.
(c) σ is strictly monotone, that is, σ is monotone and(

σ(x, t, A)− σ(x, t, B)
)
: (A− B) = 0 ⇒ A = B.

(d) σ is strictly M -quasimonotone, that is,∫
Q

∫
Mm×n

(
σ(x, t, λ)− σ(x, t, λ)

)
: (λ− λ)dν(x,t)(λ)dxdt > 0,

where λ = 〈ν(x,t), id〉, ν = {ν(x,t)}(x,t)∈Q is any family of Young measures
generated by a sequence in LM(Q) and not a Dirac measure for a.e. (x, t) ∈
Q.

In [4], we considered (1.1)–(1.3) for f belongs to some X ′(Q), with
X(Q) =

{
u ∈ L2(Q;Rm)/Du ∈ LM(Q;Mm×n);

u(t) := u(·, t) ∈ W 1
0LM(Ω;Rm) a.e. t ∈ [0, 1]

}
,

and proved the existence of weak solutions under conditions (H0)–(H2).
Our aim in this paper, is to establish an existence result for the problem

(1.1)–(1.3) in Orlicz–Sobolev spaces, where σ satisfies conditions (H0) and (H1),
but without assuming non of the conditions listed in (H2). To this purpose, we
will assume another mild monotonicity condition, namely, strictly quasimonotone
and we proceed the proof differently than [4, 8].

For related topics and similar problems to (1.1)–(1.3), we refer the reader to
[6, 10, 11, 13, 17] and other references therein. See also [2, 3, 5, 7] for the steady
case, where the theory of Young measures is applied.
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Now, instead of condition (H2), we assume the following:
(H2′) σ is strictly quasimonotone, that is, there exist a constant α0 > 0 and γ > 0
such that∫

Q

(
σ(x, t,Du)− σ(x, t,Dv)

)
: (Du−Dv)dxdt ≥ α0

∫
Q

M(γ|Du−Dv|)dxdt

for all u, v ∈ W 1,x
0 LM(Q;Rm).

Let us make some light on this condition and its relation to the previous
condition (H2)(d). Indeed, let η : Mm×n → Mm×n be a function satisfying the
growth condition

|η(A)| ≤ M
−1
M(γ|A|) (1.4)

and the structure condition∫
Q

(
η(A+Dφ)− η(A)

)
: Dφdxdt ≥ α1

∫
Q

M(γ|Dφ|)dxdt

for a constant α1 > 0 and for all φ ∈ C∞
0 (Q) and all A ∈ Mm×n. Note that the

above structure condition was investigated by Zhang [18]. We know that for every
W 1,xLM gradient Young measure ν, there exists a sequence (Dφk) generating ν
for which {M(γ|Dφk|)} is equi-integrable (see [8, Lemma 4]). Hence, there holds∫

Q

(
η(A+Dφk)− η(A)

)
: Dφkdxdt ≥ α1

∫
Q

M(γ|Dφk|)dxdt.

By the Hölder inequality and (1.4), it follows that
{(

η(A+Dφk)− η(A)
)
: Dφk

}
is equi-integrable. According to the fundamental theorem on Young measures
(see [9]), we get∫

Q

∫
Mm×n

(
η(A+ λ)− η(λ)

)
: λdν(λ)dxdt ≥ α1

∫
Q

∫
Mm×n

M(γ|λ|)dν(λ)dxdt.

We choose first A+ λ = λ and then A = λ. We conclude since LM ⊂ L1 that∫
Q

∫
Mm×n

(
η(λ)− η(λ)

)
: (λ− λ)dν(λ) ≥ α1

∫
Q

∫
Mm×n

M(γ|λ− λ|)dν(λ) > 0,

which is exactly condition (H2)(d). Thus (H2′) implies (H2)(d). Consequently,
the above arguments indicate that our problem (1.1)–(1.3) may admits a solution.

Our main result reads as follows.

Theorem 1.1. If σ satisfies conditions (H0), (H1), and (H2′), then (1.1)–(1.3)
has a weak solution u ∈ W 1,x

0 LM(Q;Rm) ∩ C(0, T ;L2(Ω;Rm)) for every f in
W−1,xLM(Q;Rm) and every u0 in L2(Ω;Rm).

Remark 1.2. The above result holds also when f belongs to the dual of X(Q)
stated in [4].

To prove Theorem 1.1, we will use the Galerkin method, which will serve us
to obtain the approximating solutions. Let us recall first basic properties of
Orlicz–Sobolev spaces and Young measures.
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2. Preliminaries

In this section, we recall the necessary and sufficient overview on Orlicz–Sobolev
spaces and Young measures. For more details, one could see [1,15,16] and [9,12,14]
and references therein.

2.1. A function M : R+ → R+ is said to be an N -function if it is a continuous,
nonnegative, and convex function, which has superlinear growth near zero and
infinity, that is, limτ→0 M(τ)/τ = 0, limτ→∞ M(τ)/τ = ∞, and M(τ) = 0 if and
only if τ = 0. Its complementary M is also an N -function and defined by

M(s) = sup
τ∈R+

(
τs−M(τ)

)
for s ∈ R+.

The N -function M is said to satisfy the ∆2-condition (M ∈ ∆2) if for some ϵ > 0,
M(2τ) ≤ ϵM(τ) for all τ ≥ 0. (2.1)

When the above inequality holds for τ ≥ some τ0 > 0, then M ∈ ∆2 near infinity.
Clearly, M = M .

2.2. Let Ω be a bounded domain in Rn, n ≥ 2. The class W 1LM(Ω;Rm) or
W 1EM(Ω;Rm) consists of all functions u in the Orlicz spaces

LM(Ω;Rm) =
{
u : Ω → Rm measurable /

∫
Ω

M
(u(x)

β

)
dx < ∞, for some β > 0

}
or EM(Ω;Rm), such that Du ∈ LM(Ω;Mm×n) or Du ∈ EM(Ω;Mm×n),
respectively, where EM(Ω;Rm) denotes the closure of all measurable, simple
functions in LM(Ω;Rm). Note that EM = LM if and only if (2.1) satisfies. The
classes W 1LM(Ω;Rm) and W 1EM(Ω;Rm) are Banach spaces under the norm

‖u‖1,M = ‖u‖M + ‖Du‖M ,

where ‖u‖M is the norm of LM(Ω;Rm) and defined by

‖u‖M = inf
{
β > 0/

∫
Ω

M
(u(x)

β

)
≤ 1

}
.

If M satisfies (2.1), then W 1LM(Ω;Rm) is separable, and it is reflexive if further
M ∈ ∆2. Let uk, u ∈ LM(Ω;Rm). Then we say that uk → u modularly in
LM(Ω;Rm) if for some β > 0,

∫
Ω
M

(
uk−u
β

)
dx → 0 as k → ∞. This convergence

is equivalent to the one in norm if M ∈ ∆2. The following Hölder’s inequality
holds for u ∈ LM(Ω;Rm) and v ∈ LM(Ω;Rm):∫

Ω

u(x)v(x)dx ≤ 2‖u‖M‖v‖M ,

where ‖.‖M is defined as ‖.‖M and LM(Ω;Rm) is the dual space of EM(Ω;Rm).
2.3. The symbol C∞

0 (Ω;Rm) = D(Ω;Rm) means the space of all C∞-functions
u : Ω → Rm with compact support in Ω. If |Ω| < ∞ (finite measure) and
M satisfies (2.1) near infinity, then W 1

0LM(Ω;Rm) is the (norm) closure of
D(Ω;Rm) in W 1LM(Ω;Rm) and W−1LM(Ω;Rm) =

(
W 1

0LM(Ω;Rm)
)∗. Moreover,

W 1LM(Ω;Rm) and W−1LM(Ω;Rm) are reflexive and separable if M and M satisfy
the ∆2-condition near infinity. Remark that W 1

0LM(Ω;Rm) = W 1,p
0 (Ω;Rm)
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(Sobolev space), for some p ∈ (1,∞), when the N -function M is given as
M(τ) = |τ |p.

2.4. Let Ω be a bounded open subset of Rn and let T > 0, and set Q =
Ω× (0, T ). Let M be an N -function. The inhomogeneous Orlicz–Sobolev spaces
are defined for each α ∈ Nn as

W 1,xLM(Q;Rm) =
{
u ∈ LM(Q;Rm) : Dα

xu ∈ LM(Q;Mm×n), ∀|α| ≤ 1
}
,

W 1,xEM(Q;Rm) =
{
u ∈ EM(Q;Rm) : Dα

xu ∈ EM(Q;Mm×n), ∀|α| ≤ 1
}
,

where Dα
x is the distributional derivative on Q of order α with respect to the

variable x ∈ Rn. The above spaces are Banach spaces under the norm

‖u‖1,M =
∑
|α|≤1

‖Dα
xu‖M .

The space W 1,x
0 EM(Q;Rm) is defined as the (norm) closure in W 1,xEM(Q;Rm)

of D(Q;Rm). Its dual space is defined as

W−1,xLM(Q;Rm) =
{
f =

∑
|α|≤1

Dα
xfα; fα ∈ LM(Q;Rm)

}
.

If u ∈ W 1,xLM(Q;Rm), then the function t 7→ u(t) = u(·, t) is defined on (0, T )
with values in W 1LM(Ω;Rm). If further u ∈ W 1,xEM(Q;Rm), then the concerned
function is W 1EM(Ω;Rm)-valued and is strongly measurable. Moreover, the
following embedding holds:

W 1,xEM(Q;Rm) ⊂ L1(0, T ;W 1EM(Ω;Rm)).

2.5. By C0(Rm), we denote the closure of the space of continuous functions on
Rm with compact support with respect to the ‖.‖∞-norm. Its dual is the space
of signed Radon measures with finite mass and denoted by M(Rm). The duality
pairing is defined for ν : Ω → M(Rm) by

〈ν, φ〉 =
∫
Rm

φ(λ)dν(λ).

When φ ≡ id, 〈ν, id〉 =
∫
Rm λdν(λ).

Lemma 2.1. Let {zj}j≥1 be a measurable sequence in L∞(Ω;Rm). Then there
exist a subsequence {zk}k ⊂ {zj}j and a Borel probability measure νx on Rm for
a.e. x ∈ Ω, such that for almost each φ ∈ C0(Rm) we have

φ(zk) ⇀
∗ φ weakly in L∞(Ω;Rm),

where φ(x) = 〈νx, φ〉 =
∫
Rm φ(λ)dνx(λ) for a.e. x ∈ Ω.

Definition 2.2. We call ν = {νx}x∈Ω the family of Young measures associated
with the subsequence {zk}k.

Remark 2.3. (1) In [9], it was shown that for any Carathéodory function φ :
Ω× Rm → R and {zk}k generating a Young measure νx, we have

φ(x, zk) ⇀ 〈νx, φ(x, ·)〉 =
∫
Rm

φ(x, λ)dνx(λ)
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weakly in L1(Ω′) for all measurable Ω′ ⊂ Ω, provided that the negative part
φ−(x, zk) is equi-integrable.
(2) The above properties remain true if zk = Duk for uk : Ω → Rm.

Lemma 2.4 (see [8]). If {Duk}k is bounded in LM(Q;Rm), then the Young
measure ν(x,t) generated by Duk has the following properties:

(i) ν(x,t) is a probability measure, that is, ‖ν(x,t)‖M(Mm×n) = 1 for a.e. (x, t) ∈
Q.

(ii) The weak L1-limit of Duk is given by 〈ν(x,t), id〉 =
∫
Mm×n λdν(x,t)(λ).

(iii) ν(x,t) satisfies Du(x, t) = 〈ν(x,t), id〉 for a.e. (x, t) ∈ Q.

3. Proof of the main result

We intend to build solutions of problem (1.1)–(1.3) as the limit of
finite-dimensional approximations by the well-known Galerkin method. To this
purpose, we choose an L2(Ω;Rm)-orthonormal base {wi}i≥1, such that

{wi}i≥1 ⊂ C∞
0 (Ω;Rm) ⊂ ∪

k≥1
Wk

C1(Ω;Rm)
,

where Wk = span{w1, . . . , wk}. We make the following sequence for
approximating solutions of (1.1)–(1.3):

uk(x, t) =
k∑

i=1

cki(t)wi(x) (3.1)

where cki : [0, T ) → R are supposed to be measurable-bounded functions. Clearly,
each uk satisfies the boundary condition (1.2), by the construction of uk in the
sense that uk ∈ W 1,x

0 LM(Q;Rm). For the initial condition (1.3), we choose the
coefficient

cki(0) := (u0, wi)L2 =

∫
Ω

u0(x)wi(x)dx

such that

u0(·, 0) =
k∑

i=1

cki(0)wi(·) −→ u0 in L2(Ω;Rm) as k → ∞.

We recover the results of [8, Assertion 4] as follows:
(i) uk defined in (3.1) is the desired solution.
(ii) The local solution constructed in (i) can be extended to the whole interval

[0, T ).
(iii) The sequence (uk) is bounded in W 1,x

0 LM(Q;Rm) ∩ L∞(0, T ;L2(Ω;Rm)).
Furthermore, u(·, 0) = u0 and uk(·, T ) ⇀ u(·, T ) in L2(Ω).

Now, the following lemma can be seen as the second main result, and it is the
key ingredient to pass to the limit in the approximating equations.

Lemma 3.1. If σ satisfies (H0), (H1), and (H2′), then the following inequality
holds:

lim inf
k→∞

∫
Q

(
σ(x, t,Duk)− σ(x, t,Du)

)
: (Duk −Du)dxdt ≤ 0.
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Proof. Let us consider the sequence
Ik :=

(
σ(x, t,Duk)− σ(x, t,Du)

)
: (Duk −Du)

= σ(x, t,Duk) : (Duk −Du)− σ(x, t,Du) : (Duk −Du)

=: Ik,1 + Ik,2,

for arbitrary u ∈ W 1,x
0 LM(Q;Rm).

According to the growth condition in (H1),∫
Q

M(|σ(x, t,Du)|)dxdt ≤ c

∫
Q

(
M(d1(x, t)) +M(γ|Du|)

)
dxdt < ∞

since d1 ∈ EM(Q). Hence σ(·) ∈ LM(Q;Mm×n). Note that, since (uk) is bounded
in W 1,x

0 LM(Q;Rm)∩L∞(0, T ;L2(Ω;Rm)), by Lemma 2.1, it follows the existence
of a Young measure ν(x,t) generated by Duk in LM(Q;Mm×n), which satisfies the
properties of Lemma 2.4. By virtue of the weak limit in Lemma 2.4, it follows
that

lim inf
k→∞

∫
Q

Ik,2dxdt =

∫
Q

∫
Mm×n

σ(x, t,Du) : (λ−Du)dν(x,t)(λ)dxdt

=

∫
Q

σ(x, t,Du) :
(∫

Mm×n

λdν(x,t)(λ)︸ ︷︷ ︸
=:Du(x,t)

−Du
)
dxdt = 0.

Thanks to [8, Assertion 3], the sequence {−divσ(x, t,Duk)} is bounded in
W−1,xLM(Q;Rm). Hence

−divσ(x, t,Duk) ⇀ χ in W−1,xLM(Q;Rm)

for χ ∈ W−1,xLM(Q;Rm). Hence the first property of χ is the following energy
equality:

1

2
‖u(·, T )‖2L2 +

∫
Q

χ.udxdt =
1

2
‖u(·, 0)‖2L2 + 〈f, u〉. (3.2)

It follows that

lim inf
k→∞

−
∫
Q

σ(x, t,Duk) : Dudxdt = −
∫
Q

χ.udxdt

(3.2)
=

1

2
‖u(·, T )‖2L2 −

1

2
‖u(·, 0)‖2L2 − 〈f, u〉.

(3.3)
By virtue of the Galerkin equations, we can write∫

Q

σ(x, t,Duk) : Dukdxdt = 〈f, uk〉 −
∫
Q

uk
∂uk

∂t
dxdt

= 〈f, uk〉 −
1

2
‖uk(·, T )‖2L2 +

1

2
‖uk(·, 0)‖2L2 .

Applying the weak limit defined in the property (iii) above, it follows that

lim inf
k→∞

∫
Q

σ(x, t,Duk) : Dukdxdt ≤ 〈f, u〉 − 1

2
‖u(·, T )‖2L2 +

1

2
‖u(·, 0)‖2L2 . (3.4)
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By the combination of (3.3) and (3.4), we deduce that

lim inf
k→∞

∫
Q

σ(x, t,Duk) : (Duk −Du)dxdt ≤ 0.

Since
lim inf
k→∞

∫
Q

σ(x, t,Du) : (Duk −Du)dxdt = 0,

and the desired inequality of Lemma 3.1 follows. □

Remark 3.2. In this paper, we do not need to prove the div-curl inequality, which
was necessary in the proof of the main result of [8] and [4].

We are now in a position to show the existence of solutions for (1.1)–(1.3).

Proof of Theorem 1.1. Remark that for a positive constant c,∫
Q

M(γ|Duk −Du|)dxdt ≤ c

∫
Q

(
σ(x, t,Duk)− σ(x, t,Du)

)
: (Duk −Du)dxdt

by condition (H2′). By virtue of Lemma 3.1 and the embedding LM ⊂ L1, it
follows that the limit inf of the above inequality gives

lim
k→∞

∫
Q

M(γ|Duk −Du|)dxdt = 0.

Let Ek,ϵ = {(x, t) ∈ Q : |Duk −Du| ≥ ϵ}. Thus∫
Q

M(γ|Duk −Du|)dxdt ≥
∫
Ek,ϵ

M(γ|Duk −Du|)dxdt

≥ c

∫
Ek,ϵ

|Duk −Du|dxdt

≥ cϵ|Ek,ϵ|,

where c is the constant of the embedding LM ⊂ L1. Therefore

|Ek,ϵ| ≤
1

cϵ

∫
Q

M(γ|Duk −Du|)dxdt → 0 as k → ∞.

Hence Duk → Du in measure and almost everywhere (up to a subsequence). The
continuity property of σ implies that

σ(x, t,Duk) → σ(x, t,Du) almost everywhere.
On the other hand, since ‖Duk‖M is bounded by a constant c, for a measurable
Q′ ⊂ Q, we have∫

Q′
|σ(x, t,Duk) : Dφ|dxdt ≤ c

(
‖d1‖M + ‖Duk‖M︸ ︷︷ ︸

≤c

)( ∫
Q′
M(|Dφ|)dxdt,

for all φ ∈ W 1,x
0 LM(Q;Rm). Since

∫
Q′ M(|Dφ|)dxdt is arbitrary small if the

measure of Q′ is chosen small enough, then
(
σ(x, t,Duk) : Dφ

)
is equi-integrable.
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The Vitali theorem implies∫
Q

(
σ(x, t,Duk)− σ(x, t,Du)

)
: Dφdxdt −→ 0 as k → ∞.

Now, we take a test function w ∈ ∪k∈NWk and φ ∈ C∞
0 ([0, T ]) in(

∂tuk, wj

)
L2 +

∫
Ω

σ(x, t,Duk) : Dwjdx = 〈f(t), wj〉

(with j = 1, . . . , k) and integrate over interval (0, T ) and pass to the limit k → ∞.
The resulting equation is∫

Q

∂tu(x)φ(t)w(x)dxdt+

∫
Q

σ(x, t,Du) : Dw(x)φ(t)dxdt = 〈f, φw〉〉,

for arbitrary w ∈ ∪k∈NWk and φ ∈ C∞([0, T ]). By the density of the linear
span of these functions in W 1,x

0 LM(Q;Rm), this proves, that u is in fact a weak
solution. □
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