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SOME NUMERICAL RADIUS INEQUALITIES FOR THE
ČEBYŠEV FUNCTIONAL AND NONCOMMUTATIVE HILBERT
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Abstract. We prove a Grüss inequality for positive Hilbert space operators.
Hence, some numerical radius inequalities are proved. On the other hand,
based on a noncommutative binomial formula, a noncommutative upper bound
for the numerical radius of the summand of two bounded linear Hilbert space
operators is proved. A commutative version is also obtained as well.

1. Introduction

Let B (H ) be the Banach algebra of all bounded linear operators defined on
the complex Hilbert space (H ; ⟨·, ·⟩) with the identity operator 1H in B (H ). A
bounded linear operator A defined on H is self-adjoint if and only if ⟨Ax, x⟩ ∈ R
for all x ∈ H . The spectrum of an operator A is the set of all λ ∈ C for which the
operator λI −A does not have a bounded linear operator inverse and is denoted
by sp (A). Consider the real vector space B (H )sa of self-adjoint operators on
H and its positive cone B (H )+ of positive operators on H . Also, B (H )Isa
denotes the convex set of bounded self-adjoint operators on the Hilbert space
H with spectra in a real interval I. A partial order is naturally equipped on
B (H )sa by defining A ≤ B if and only if B − A ∈ B (H )+. We write A > 0
to mean that A is a strictly positive operator, or equivalently, A ≥ 0 and A is
invertible. When H = Cn, we identify B (H ) with the algebra Mn×n of n-by-n
complex matrices. Then M+

n×n is just the cone of n-by-n positive semidefinite
matrices.
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For a bounded linear operator T on a Hilbert space H , the numerical range
W (T ) is the image of the unit sphere of H under the quadratic form x → ⟨Tx, x⟩
associated with the operator. More precisely,

W (T ) = {⟨Tx, x⟩ : x ∈ H , ∥x∥ = 1} .

Also, the (maximum) numerical radius is defined by
wmax (T ) = sup {|λ| : λ ∈ W (T )} = sup

∥x∥=1

|⟨Tx, x⟩| := w (T ) ,

and the (minimum) numerical radius is defined to be
wmin (T ) = inf {|λ| : λ ∈ W (T )} = inf

∥x∥=1
|⟨Tx, x⟩| .

The spectral radius of an operator T is defined to be
r (T ) = sup {|λ| : λ ∈ sp (T )} .

We recall that, the usual operator norm of an operator T is defined to be
∥T∥ = sup {∥Tx∥ : x ∈ H, ∥x∥ = 1} ,

and
ℓ (T ) : = inf {∥Tx∥ : x ∈ H , ∥x∥ = 1}

= inf {|⟨Tx, y⟩| : x, y ∈ H , ∥x∥ = ∥y∥ = 1} .

It is well known that w (·) defines an operator norm on B (H ), which is equiv-
alent to the operator norm ∥ · ∥. Moreover, we have

1

2
∥T∥ ≤ w (T ) ≤ ∥T∥ (1.1)

for any T ∈ B (H ). The inequality is sharp.
In 2003, Kittaneh [14] refined the right-hand side of (1.1), where he proved

that
w (T ) ≤ 1

2

(
∥T∥+ ∥T 2∥1/2

)
for any T ∈ B (H ).

In 2005, the same author in [15] proved that
1

4
∥A∗A+ AA∗∥ ≤ w2 (A) ≤ 1

2
∥A∗A+ AA∗∥.

The inequality is sharp. This inequality was also reformulated and generalized
in [9], but in terms of Cartesian decomposition.

In 2007, Yamazaki [22] improved (1.1) by proving that

w (T ) ≤ 1

2

(
∥T∥+ w

(
T̃
))

≤ 1

2

(
∥T∥+

∥∥T 2
∥∥1/2) ,

where T̃ = |T |1/2U |T |1/2 with unitary U .
Dragomir [5] (see also [8]) used the Buzano inequality to improve (1.1), where

he proved that
w2 (T ) ≤ 1

2

(
∥T∥+ w

(
T 2
))

.
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This result was also recently generalized by Sattari, Moslehian, and Yamazaki [20]
and the author of this paper [3].

Dragomir [6] studied the Čebyšev functional
C (f, g;A; x) = ⟨f (A) g (A) x, x⟩ − ⟨f (A) x, x⟩ ⟨g (A) x, x⟩

for any self-adjoint operator A ∈ B(H) and x ∈ H with ∥x∥ = 1. In particular,
we have

C (f, f ;A; x) =
〈
f 2 (A) x, x

〉
− ⟨f (A) x, x⟩2 .

In a sequence of papers, Dragomir proved various bounds for the Čebyšev
functional. The most popular result concerning continuous synchronous (asyn-
chronous) functions of self-adjoint linear operators in Hilbert spaces reads as
follows.

Theorem 1.1. Let A ∈ B (H )sa with sp (A) ⊂ [γ,Γ] for some real numbers γ,Γ
with γ < Γ. If f, g : [γ,Γ] → R are continuous and synchronous (asynchronous)
on [γ,Γ], then

⟨f (A) g (A) x, x⟩ ≥ (≤) ⟨g (A) x, x⟩ ⟨f (A) x, x⟩

for any x ∈ H with ∥x∥ = 1.

This result was generalized recently in [1,2]. For more related results concerning
Čebyšev–Grüss type inequalities, we refer the reader to [7, 16, 17, 19].

2. Results

The following Grüss inequality for linear bounded operators in inner product
Hilbert spaces is valid.

Theorem 2.1. Let A ∈ B (H )+. If f and g are both measurable functions on
[0,∞), then

|C (f, g;A; x)| ≤ C1/2 (f, f ;A; x) C1/2 (g, g;A; x) (2.1)
for any x ∈ H. In other words,

|⟨f (A) g (A) x, x⟩ − ⟨f (A) x, x⟩ ⟨g (A) x, x⟩|

≤
(〈
f 2 (A) x, x

〉
− ⟨f (A) x, x⟩2

)1/2 (〈
g2 (A) x, x

〉
− ⟨g (A) x, x⟩2

)1/2
.

Proof. It is not hard to show that

C (f, g;A; x)

=
1

2

∫ ∞

0

∫ ∞

0

(f (t)− f (s)) (g (t)− g (s)) d ⟨Etx, x⟩ d ⟨Esx, x⟩. (2.2)

Utilizing the triangle inequality in (2.2) and then the Cauchy–Schwarz inequality,
we get

|C (f, g;A; x)| = 1

2

∣∣∣∣∫ ∞

0

∫ ∞

0

(f (t)− f (s)) (g (t)− g (s)) d ⟨Etx, x⟩ d ⟨Esx, x⟩
∣∣∣∣
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≤ 1

2

∫ ∞

0

∫ ∞

0

|f (t)− f (s)| |g (t)− g (s)| d ⟨Etx, x⟩ d ⟨Esx, x⟩

≤ 1

2

(∫ ∞

0

∫ ∞

0

|f (t)− f (s)|2 d ⟨Etx, x⟩ d ⟨Esx, x⟩
)1/2

×
(∫ ∞

0

∫ ∞

0

|g (t)− g (s)|2 d ⟨Etx, x⟩ d ⟨Esx, x⟩
)1/2

=
1

2

(∫ ∞

0

d ⟨Esx, x⟩
∫ ∞

0

f 2 (t) d ⟨Etx, x⟩

− 2

∫ ∞

0

f (t) d ⟨Etx, x⟩
∫ ∞

0

f (s) d ⟨Esx, x⟩

+

∫ ∞

0

d ⟨Etx, x⟩
∫ ∞

0

f 2 (s) d ⟨Esx, x⟩
)1/2

×
(∫ ∞

0

d ⟨Esx, x⟩
∫ ∞

0

g2 (t) d ⟨Etx, x⟩

− 2

∫ ∞

0

g (t) d ⟨Etx, x⟩
∫ ∞

0

g (x) d ⟨Esx, x⟩

+

∫ ∞

0

d ⟨Etx, x⟩
∫ ∞

0

g2 (s) d ⟨Esx, x⟩
)1/2

=

(
1H ·

∫ ∞

0

f 2 (t) d ⟨Etx, x⟩ −
(∫ ∞

0

f (t) d ⟨Etx, x⟩
)2
)1/2

×

(
1H ·

∫ ∞

0

g2 (t) d ⟨Etx, x⟩ −
(∫ ∞

0

g (t) d ⟨Etx, x⟩
)2
)1/2

=
(〈
f 2 (A) x, x

〉
− ⟨f (A) x, x⟩2

)1/2 (〈
g2 (A) x, x

〉
− ⟨g (A) x, x⟩2

)1/2
for any x ∈ H , which gives the desired result (2.1). □

Corollary 2.2. Let A ∈ B (H )+. Then∣∣⟨Ax, x⟩ − ⟨Aαx, x⟩
〈
A1−αx, x

〉∣∣
≤
(〈
A2αx, x

〉
− ⟨Aαx, x⟩2

)1/2 (〈
A2(1−α)x, x

〉
−
〈
A1−αx, x

〉2)1/2
for any x ∈ H and all α ∈

[
0, 1

2

]
.

Proof. Setting f (t) = tα and g (t) = t1−α in (2.1), we get the desired result. □

Theorem 2.3. Let A ∈ B (H )+. If f and g are both measurable functions on
[0,∞), then

wmax (f (A) g (A))− wmin (f (A)) · wmin (g (A))

≤
[
∥f (A)∥2 − ℓ2

(
f 1/2 (A)

)]1/2 · [∥g (A)∥2 − ℓ2
(
g1/2 (A)

)]1/2
. (2.3)
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Proof. Using the basic triangle inequality ||a| − |b|| ≤ |a− b|, we have from (2.1)
that

|(|⟨f (A) g (A) x, x⟩|)− (|⟨f (A) x, x⟩ ⟨g (A) x, x⟩|)|
≤ |⟨f (A) g (A) x, x⟩ − ⟨f (A) x, x⟩ ⟨g (A) x, x⟩|

≤
(〈
f 2 (A) x, x

〉
− ⟨f (A) x, x⟩2

)1/2 (〈
g2 (A) x, x

〉
− ⟨g (A) x, x⟩2

)1/2
.

Taking the supremum over x ∈ H , we obtain

sup
∥x∥=1

||⟨f (A) g (A) x, x⟩| − |⟨f (A) x, x⟩| |⟨g (A) x, x⟩||

≤ sup
∥x∥=1

|⟨f (A) g (A) x, x⟩ − ⟨f (A) x, x⟩ ⟨g (A) x, x⟩|

≤ sup
∥x∥=1

|⟨f (A) g (A) x, x⟩| − inf
∥x∥=1

{|⟨f (A) x, x⟩| |⟨g (A) x, x⟩|}

≤ sup
∥x∥=1

|⟨f (A) g (A) x, x⟩| − inf
∥x∥=1

|⟨f (A) x, x⟩| · inf
∥x∥=1

|⟨g (A) x, x⟩|

≤ sup
∥x∥=1

[
∥f (A) x∥2 − ⟨f (A) x, x⟩2

]1/2
× sup

∥x∥=1

[
∥g (A) x∥2 − ⟨g (A) x, x⟩2

]1/2
≤

[
sup
∥x∥=1

∥f (A) x∥2 − inf
∥x∥=1

⟨f (A) x, x⟩2
]1/2

×

[
sup
∥x∥=1

∥g (A) x∥2 − inf
∥x∥=1

⟨g (A) x, x⟩2
]1/2

=
[
∥f (A)∥2 − ℓ2

(
f 1/2 (A)

)]1/2 · [∥g (A)∥2 − ℓ2
(
g1/2 (A)

)]1/2
.

It follows that

wmax (f (A) g (A))− wmin (f (A))wmin (g (A))

≤
[
∥f (A)∥2 − ℓ2

(
f 1/2 (A)

)]1/2 · [∥g (A)∥2 − ℓ2
(
g1/2 (A)

)]1/2
,

or equivalently, we have

wmax (f (A) g (A))− wmin (f (A)) · wmin (g (A))

≤
[
∥f (A)∥2 − ℓ2

(
f 1/2 (A)

)]1/2 · [∥g (A)∥2 − ℓ2
(
g1/2 (A)

)]1/2
,

which proves the desired result. □

Corollary 2.4. Let A ∈ B (H )+. Then

wmax (A)− wmin (A
α) · wmin

(
A1−α

)
≤
[
∥Aα∥2 − ℓ2

(
A

α
2

)]1/2 · [∥∥A1−α
∥∥2 − ℓ2

(
A

1−α
2

)]1/2
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for each x ∈ H . In particular,

wmax (A)− w2
min

(
A1/2

)
≤
∥∥A1/2

∥∥2 − ℓ2
(
A1/4

)
(2.4)

for each x ∈ H .

Proof. Setting f (t) = tα and g (t) = t1−α in (2.3), we get the desired result. □

Corollary 2.5. Let A ∈ B (H )+. If f is a measurable function on [0,∞), then
wmax

(
f 2 (A)

)
− w2

min (f (A)) ≤ ∥f (A)∥2 − ℓ2
(
f 1/2 (A)

)
(2.5)

for each x ∈ H .

Proof. Setting f = g in (2.1), we get the desired result. □
A generalization of (2.4) can be deduced from (2.5) as follows.

Corollary 2.6. Let A ∈ B (H )+. Then, for any p > 0, the inequality
wmax

(
A2p
)
− w2

min (A
p) ≤ ∥Ap∥2 − ℓ2

(
Ap/2

)
holds for each x ∈ H .

The Schwarz inequality for positive operators reads that if A is a positive
operator in B (H ), then

|⟨Ax, y⟩|2 ≤ ⟨Ax, x⟩ ⟨Ay, y⟩ , (2.6)
for any vectors x, y ∈ H .

In 1951, Reid [18] proved an inequality that in some senses considered a variant
of Schwarz inequality. In fact, he proved that for all operators A ∈ B (H ) such
that A is positive and AB is self-adjoint, we have

|⟨ABx, y⟩| ≤ ∥B∥ ⟨Ax, x⟩ , (2.7)
for all x ∈ H . Halmos [10] presented his stronger version of the Reid inequality
(2.7) by replacing r (B) instead of ∥B∥.

In 1952, Kato [11] introduced a companion inequality of (2.6), called the mixed
Schwarz inequality, which asserts

|⟨Ax, y⟩|2 ≤
〈
|A|2α x, x

〉 〈
|A∗|2(1−α) y, y

〉
, 0 ≤ α ≤ 1 (2.8)

for all positive operators A ∈ B (H ) and any vectors x, y ∈ H , where |A| =
(A∗A)1/2.

In 1988, Kittaneh [12] proved a very interesting extension combining both the
Halmos–Reid inequality (2.7) and the mixed Schwarz inequality (2.8). His result
reads that

|⟨ABx, y⟩| ≤ r (B) ∥f (|A|) x∥ ∥g (|A∗|) y∥ (2.9)
for any vectors x, y ∈ H , where A,B ∈ B (H ) satisfy |A|B = B∗|A| and f and
g are nonnegative continuous functions defined on [0,∞) satisfying f(t)g(t) = t
(t ≥ 0). Clearly, choose f(t) = tα and g(t) = t1−α with B = 1H , so we refer
to (2.8). Moreover, by choosing α = 1

2
, some manipulations refer to the Halmos

version of the Reid inequality.
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Theorem 2.7. Let A ∈ B (H ). If f and g are both positive continuous and
f(t)g(t) = t for all t ∈ [0,∞), then
wmax (A)− wmin (f (A)) · wmin (g (A))

≤ 1

2

∥∥f 2 (|A|) + g2 (|A∗|)
∥∥− ℓ2

(
f 1/2 (A)

)
· ℓ2
(
g1/2 (A)

)
.

Proof. Since f(t)g(t) = t for all t ∈ [0,∞), then from the proof of Theorem 2.3,
we have

sup
∥x∥=1

||⟨f (A) g (A) x, x⟩| − |⟨f (A) x, x⟩| |⟨g (A) x, x⟩||

≤ sup
∥x∥=1

|⟨f (A) g (A) x, x⟩| − inf
∥x∥=1

{|⟨f (A) x, x⟩| |⟨g (A) x, x⟩|}

= sup
∥x∥=1

|⟨Ax, x⟩| − inf
∥x∥=1

|⟨f (A) x, x⟩| · inf
∥x∥=1

|⟨g (A) x, x⟩| (by (2.9) )

≤ sup
∥x∥=1

〈
f 2 (|A|) x, x

〉1/2 〈
g2 (|A∗|) x, x

〉1/2
− inf

∥x∥=1
|⟨f (A) x, x⟩| · inf

∥x∥=1
|⟨g (A) x, x⟩|

≤ sup
∥x∥=1

〈
f 2 (|A| x, x)

〉1/2 〈
g2 (|A∗| x, x)

〉1/2
− inf

∥x∥=1
|⟨f (A) x, x⟩| · inf

∥x∥=1
|⟨g (A) x, x⟩|

≤ 1

2
sup
∥x∥=1

〈[
f 2 (|A|) + g2 (|A∗|)

]
x, x
〉

− inf
∥x∥=1

|⟨f (A) x, x⟩| · inf
∥x∥=1

|⟨g (A) x, x⟩| ,

which proves the required result. □
Corollary 2.8. Let A ∈ B (H )+. If f and g are both positive continuous and
f(t)g(t) = t for all t ∈ [0,∞). Then

wmax (A)− wmin (A
α) · wmin

(
A1−α

)
≤ 1

2

∥∥∥|A|2α + |A∗|2(1−α)
∥∥∥− ℓ2

(
A

α
2

)
· ℓ2
(
A

1−α
2

)
.

In particular,

wmax (A)− w2
min

(
A1/2

)
≤ 1

2
∥|A|+ |A∗|∥ − ℓ4

(
A1/4

)
.

Theorem 2.9. Let A,B ∈ B (H ). Then
w
(
(A+B)2

)
≤w

(
A2
)
+ w

(
B2
)

+
1

2
min

{
w
(
BA2B

)
+ ∥AB∥2 , w

(
AB2A

)
+ ∥BA∥2

}
. (2.10)

Proof. Let us first note that the Dragomir refinement of Cauchy–Schwarz inequal-
ity reads that (see [4])

|⟨x, y⟩| ≤ |⟨x, e⟩ ⟨e, y⟩|+ |⟨x, y⟩ − ⟨x, e⟩ ⟨e, y⟩| ≤ ∥x∥ ∥y∥
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for all x, y, e ∈ H with ∥e∥ = 1.
It is easy to deduce the inequality

|⟨x, e⟩ ⟨e, y⟩| ≤ 1

2
(|⟨x, y⟩|+ ∥x∥ ∥y∥) . (2.11)

Utilizing the triangle inequality, we have∣∣〈(A+B)2 x, x
〉∣∣ ≤ ∣∣〈A2x, x

〉∣∣+ |⟨ABx, x⟩| |⟨x,A∗B∗x⟩|+
∣∣〈B2x, x

〉∣∣ , (2.12)

so that by setting e = u, x = ABu, y = A∗B∗u in (2.11), we get

|⟨ABu, u⟩ ⟨u,A∗B∗u⟩| ≤ 1

2
(|⟨ABu,A∗B∗y⟩|+ ∥ABu∥ ∥A∗B∗u∥) .

Substituting in (2.12) and taking the supremum over all unit vector x ∈ H , we
get

w
(
(A+B)2

)
≤ w

(
A2
)
+ w

(
B2
)
+

1

2

(
w
(
BA2B

)
+ ∥AB∥2

)
.

Replacing B by A and A by B in the previous inequality, we get that

w
(
(B + A)2

)
≤ w

(
B2
)
+ w

(
A2
)
+

1

2

(
w
(
AB2A

)
+ ∥BA∥2

)
.

The desired result holds using the previous two inequalities. □

Corollary 2.10. Let A ∈ B (H ). Then

w
(
A2
)
≤ 1

4

(
w
(
A4
)
+
∥∥A2

∥∥2) .
Proof. Setting A = B in (2.10), we get the desired result. □

Let U be an associative algebra, not necessarily commutative, with identity
1U . For two elements A and B in U , that commute; that is, AB = BA. It is
well known, the binomial theorem reads that

(A+B)n =
n∑

k=0

(
n
k

)
AkBn−k. (2.13)

Wyss [21] derived an interesting noncommutative binomial formula for com-
mutative algebra U with identity 1U . Moreover, L (U ) denotes the algebra of
linear transformations from U to U . Let A,X ∈ U ; then the element (commu-
tator) dA in L (U ) is defined by

dA (X) = [A,X] = AX −XA.

It follows that, A and dA are elements of L (U ). Moreover, A can be looked
upon as an element in L (U ) by A (X) = AX, which is the left multiplication.

The following properties are hold (see [21]):
(1) A and dA commute; that is, AdA (X) = dAA (X).
(2) dA is a derivation on U ; that is, dA (XY ) = (dAX)Y +X (dAY ).
(3) (A− dA)X = XA.
(4) The Jacobi identity dAdB (C) + dBdC (A) + dCdA (B) = 0 holds.
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Using these properties, Wyss [21] proved the following noncommutative version
of binomial theorem:

(A+B)n =
n∑

k=0

(
n
k

){
(A+ dB)

k 1U

}
Bn−k (2.14)

for all elements A and B in the associative algebra U with identity 1U .
We write

(A+ dB)
n 1U = An +Dn (B,A) . (2.15)

For a commutative algebra, Dn(B,A) is identically zero. We thus call Dn(B,A)
the essential noncommutative part. Moreover, Dn(B,A) satisfies the following
recurrence relation:

Dn+1 (B,A) = dBA
n + (A+ dB)Dn (B,A) , n ≥ 0

with D0 (B,A) = 0.
A noncommutative upper bound for the summand of two bounded linear Hilbert

space operators is proved in the following result.

Theorem 2.11. Let A,B ∈ B (H ). If f and g are both positive continuous and
f(t)g(t) = t for all t ∈ [0,∞), then

w ((A+B)n) ≤ 1

2

n∑
k=0

{(
n
k

)∥∥∥f (∣∣∣{(A+ dB)
k 1H

}
Bn−k

∣∣∣)
+g
(∣∣∣(Bn−k

)∗ {
(A+ dB)

k 1H

}∗∣∣∣)∥∥∥} , (2.16)

where dB (A) = [B,A] = BA− AB and d∗B (A) = [B,A]∗ = A∗B∗ − B∗A∗.

Proof. By utilizing the triangle inequality in (2.14) and by employing (2.9), we
have

|⟨(A+B)n x, y⟩|

=

∣∣∣∣∣
〈(

n∑
k=0

(
n
k

){
(A+ dB)

k 1H

}
Bn−k

)
x, y

〉∣∣∣∣∣
≤

n∑
k=0

(
n
k

) ∣∣∣〈({(A+ dB)
k 1H

}
Bn−k

)
x, y
〉∣∣∣

≤
n∑

k=0

(
n
k

)∥∥∥f (∣∣∣{(A+ dB)
k 1H

}
Bn−k

∣∣∣) x∥∥∥
×
∥∥∥g (∣∣∣(Bn−k

)∗ {
(A+ dB)

k 1H

}∗∣∣∣) y∥∥∥
≤

n∑
k=0

(
n
k

)〈
f
(∣∣∣{(A+ dB)

k 1H

}
Bn−k

∣∣∣) x, x〉1/2
×
〈
g
(∣∣∣(Bn−k

)∗ {
(A+ dB)

k 1H

}∗∣∣∣) y, y〉1/2
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≤ 1

2

n∑
k=0

(
n
k

)[〈
f
(∣∣∣{(A+ dB)

k 1H

}
Bn−k

∣∣∣) x, x〉
+
〈
g
(∣∣∣(Bn−k

)∗ {
(A+ dB)

k 1H

}∗∣∣∣) y, y〉] ,
where the last inequality follows by applying the AM-GM inequality. Hence, by
letting y = x, we get

|⟨(A+B)n x, x⟩|

≤ 1

2

n∑
k=0

(
n
k

)[〈
f
(∣∣∣{(A+ dB)

k 1H

}
Bn−k

∣∣∣) x, x〉
+
〈
g
(∣∣∣(Bn−k

)∗ {
(A+ dB)

k 1H

}∗∣∣∣) x, x〉]
≤ 1

2

n∑
k=0

(
n
k

)〈{
f
(∣∣∣{(A+ dB)

k 1H

}
Bn−k

∣∣∣)
+g
(∣∣∣(Bn−k

)∗ {
(A+ dB)

k 1H

}∗∣∣∣)} x, x
〉
.

Taking the supremum over all unit vector x ∈ H , we get the required result. □
Remark 2.12. Taking the supremum over all unit vectors x, y ∈ H in the proof
of Theorem 2.11, we get the following power norm inequality:

∥(A+B)n∥ ≤ 1

2

n∑
k=0

{(
n
k

)∥∥∥f (∣∣∣{(A+ dB)
k 1H

}
Bn−k

∣∣∣)
+g
(∣∣∣(Bn−k

)∗ {
(A+ dB)

k 1H

}∗∣∣∣)∥∥∥}
for all A,B ∈ B (H ).

Corollary 2.13. Let A,B ∈ B (H ). If f and g are both positive continuous and
f(t)g(t) = t for all t ∈ [0,∞), then

w (A+B)

≤ 1

2
∥f (|B|) + g (|B∗|) + f (|A+ dBA|) + g (|(A∗ + A∗d∗B)|)∥ , (2.17)

where dB (A) = [B,A] = BA− AB and d∗B (A) = [B,A]∗ = A∗B∗ − B∗A∗.

Proof. Setting n = 1 in (2.16), we get that

w (A+B) ≤ 1

2
∥f (|B|) + g (|B∗|) + f (|(A+ dB) 1H |) + f (|(A+ dB)

∗ 1H |)∥ .

Making use of (2.15), we have
(A+ dB) 1H = A+D1 (B,A) = A+ dBA

and
(A+ dB)

∗ 1H = (A∗ + d∗B) 1H = A∗ +D1 (B
∗, A∗) = A∗ + A∗dB∗ .
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Hence,

w (A+B) ≤ 1

2
∥f (|B|) + g (|B∗|) + f (|A+ dBA|) + g (|(A∗ + A∗d∗B)|)∥ ,

which gives the required result. □

Remark 2.14. As noted in Remark 2.12 and deduced in Corollary 2.13, we may
observe that

∥A+B∥ ≤ 1

2
∥f (|B|) + g (|B∗|) + f (|A+ dBA|) + g (|(A∗ + A∗d∗B)|)∥

for all A,B ∈ B (H ).

Corollary 2.15. For A,B ∈ B (H ) that commute, if f and g are both positive
continuous and f(t)g(t) = t for all t ∈ [0,∞), then

w ((A+B)n) ≤ 1

2

n∑
k=0

(
n
k

)∥∥∥f (∣∣AkBn−k
∣∣)+ g

(∣∣∣(Bn−k
)∗ (

Ak
)∗∣∣∣)∥∥∥.

In particular,

w (A+B) ≤ 1

2
∥f (|B|) + g (|B∗|) + f (|A|) + g (|A∗|)∥ .

Proof. Since AB = BA, then dB = 0 in (2.17). Alternatively, we may use (2.13)
and proceed as in the proof of Theorem 2.11. □

Remark 2.16. As in the same way we previously remarked, for A,B ∈ B (H )
that commute, we have

∥(A+B)n∥ ≤ 1

2

n∑
k=0

(
n
k

)∥∥∥f (∣∣AkBn−k
∣∣)+ g

(∣∣∣(Bn−k
)∗ (

Ak
)∗∣∣∣)∥∥∥.

In particular,

∥A+B∥ ≤ 1

2
∥f (|B|) + g (|B∗|) + f (|A|) + g (|A∗|)∥ .

Setting f (t) = tα and g (t) = t1−α for all α ∈ [0, 1], in the last inequality above,
we get

∥A+B∥ ≤ 1

2

∥∥|B|α + |B∗|1−α + |A|α + |A∗|1−α
∥∥ .

In special case, for α = 1
2
, we have

∥A+B∥ ≤ 1

2

∥∥∥|B|1/2 + |B∗|1/2 + |A|1/2 + |A∗|1/2
∥∥∥ .

Corollary 2.17. For A ∈ B (H ), if f and g are both positive continuous and
f(t)g(t) = t for all t ∈ [0,∞), then

w (An) ≤ 1

2
(∥f (|An|) + g (|(An)∗|)∥) . (2.18)
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Proof. Setting B = 0 in (2.16), we get the desired result. In another way, one
may set B = A in Corollary 2.15, so that we get

w (An) ≤ 1

2n+1
∥f (|An|) + g (|(An)∗|)∥ ·

n∑
k=0

(
n
k

)
,

but since
n∑

k=0

(
n
k

)
= 2n, then we get the required result. □

Corollary 2.18. Let A ∈ B (H ). Then

w (An) ≤ 1

2

(∥∥∥|An|α + |(An)∗|1−α
∥∥∥) .

In particular,

w (A) ≤ 1

2

(∥∥|A|α + |A∗|1−α
∥∥) . (2.19)

Proof. Setting f (t) = tα and g (t) = t1−α in (2.18), we get the desired result. □
Corollary 2.19. Let A ∈ B (H ). Then

w (A) ≤ 1

2
(∥|A|+ 1H ∥) ≤ 1

4

(
1 + ∥A∥+

√
(∥A∥ − 1)2 + 4 ∥A∥

)
.

Proof. Letting α = 1 in (2.19), we get the first inequality. The second inequality
follows by employing the norm estimates (see [13])

∥A+B∥ ≤ 1

2

(
∥A∥+ ∥B∥+

√
(∥A∥ − ∥B∥)2 + 4 ∥A1/2B1/2∥2

)
,

and then ∥∥A1/2B1/2
∥∥ ≤ ∥AB∥1/2 ,

in the first inequality and use the fact that |∥A|∥ = ∥A∥. In other words, we have

∥|A|+ 1H ∥ ≤ 1

2

(
∥|A|∥+ ∥|1H |∥+

√
(∥|A1/2|∥ − 1)

2
+ 4

∥∥∥|A|1/2 1H

∥∥∥2)

=
1

2

(
1 + ∥A∥+

√
(∥A∥ − 1)2 + 4 ∥A∥

)
,

which proves the required result. □
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