

Khayyam Journal of Mathematics
emis.de/journals/KJM kjm-math.org

SOME NUMERICAL RADIUS INEQUALITIES FOR THE ČEBYŠEV FUNCTIONAL AND NONCOMMUTATIVE HILBERT SPACE OPERATORS

MOHAMMAD W. ALOMARI ${ }^{1}$
Communicated by A. Jiménez-Vargas.

Abstract

We prove a Grüss inequality for positive Hilbert space operators. Hence, some numerical radius inequalities are proved. On the other hand, based on a noncommutative binomial formula, a noncommutative upper bound for the numerical radius of the summand of two bounded linear Hilbert space operators is proved. A commutative version is also obtained as well.

1. Introduction

Let $\mathscr{B}(\mathscr{H})$ be the Banach algebra of all bounded linear operators defined on the complex Hilbert space $(\mathscr{H} ;\langle\cdot, \cdot\rangle)$ with the identity operator $1_{\mathscr{H}}$ in $\mathscr{B}(\mathscr{H})$. A bounded linear operator A defined on \mathscr{H} is self-adjoint if and only if $\langle A x, x\rangle \in \mathbb{R}$ for all $x \in \mathscr{H}$. The spectrum of an operator A is the set of all $\lambda \in \mathbb{C}$ for which the operator $\lambda I-A$ does not have a bounded linear operator inverse and is denoted by $\operatorname{sp}(A)$. Consider the real vector space $\mathscr{B}(\mathscr{H})_{s a}$ of self-adjoint operators on \mathscr{H} and its positive cone $\mathscr{B}(\mathscr{H})^{+}$of positive operators on \mathscr{H}. Also, $\mathscr{B}(\mathscr{H})_{s a}^{I}$ denotes the convex set of bounded self-adjoint operators on the Hilbert space \mathscr{H} with spectra in a real interval I. A partial order is naturally equipped on $\mathscr{B}(\mathscr{H})_{s a}$ by defining $A \leq B$ if and only if $B-A \in \mathscr{B}(\mathscr{H})^{+}$. We write $A>0$ to mean that A is a strictly positive operator, or equivalently, $A \geq 0$ and A is invertible. When $\mathscr{H}=\mathbb{C}^{n}$, we identify $\mathscr{B}(\mathscr{H})$ with the algebra $\mathfrak{M}_{n \times n}$ of n-by- n complex matrices. Then $\mathfrak{M}_{n \times n}^{+}$is just the cone of n-by- n positive semidefinite matrices.

[^0]For a bounded linear operator T on a Hilbert space \mathscr{H}, the numerical range $W(T)$ is the image of the unit sphere of \mathscr{H} under the quadratic form $x \rightarrow\langle T x, x\rangle$ associated with the operator. More precisely,

$$
W(T)=\{\langle T x, x\rangle: x \in \mathscr{H},\|x\|=1\} .
$$

Also, the (maximum) numerical radius is defined by

$$
w_{\max }(T)=\sup \{|\lambda|: \lambda \in W(T)\}=\sup _{\|x\|=1}|\langle T x, x\rangle|:=w(T),
$$

and the (minimum) numerical radius is defined to be

$$
w_{\min }(T)=\inf \{|\lambda|: \lambda \in W(T)\}=\inf _{\|x\|=1}|\langle T x, x\rangle| .
$$

The spectral radius of an operator T is defined to be

$$
r(T)=\sup \{|\lambda|: \lambda \in \operatorname{sp}(T)\} .
$$

We recall that, the usual operator norm of an operator T is defined to be

$$
\|T\|=\sup \{\|T x\|: x \in H,\|x\|=1\}
$$

and

$$
\begin{aligned}
\ell(T): & =\inf \{\|T x\|: x \in \mathscr{H},\|x\|=1\} \\
& =\inf \{|\langle T x, y\rangle|: x, y \in \mathscr{H},\|x\|=\|y\|=1\} .
\end{aligned}
$$

It is well known that $w(\cdot)$ defines an operator norm on $\mathscr{B}(\mathscr{H})$, which is equivalent to the operator norm $\|\cdot\|$. Moreover, we have

$$
\begin{equation*}
\frac{1}{2}\|T\| \leq w(T) \leq\|T\| \tag{1.1}
\end{equation*}
$$

for any $T \in \mathscr{B}(\mathscr{H})$. The inequality is sharp.
In 2003, Kittaneh [14] refined the right-hand side of (1.1), where he proved that

$$
w(T) \leq \frac{1}{2}\left(\|T\|+\left\|T^{2}\right\|^{1 / 2}\right)
$$

for any $T \in \mathscr{B}(\mathscr{H})$.
In 2005, the same author in [15] proved that

$$
\frac{1}{4}\left\|A^{*} A+A A^{*}\right\| \leq w^{2}(A) \leq \frac{1}{2}\left\|A^{*} A+A A^{*}\right\|
$$

The inequality is sharp. This inequality was also reformulated and generalized in [9], but in terms of Cartesian decomposition.

In 2007, Yamazaki [22] improved (1.1) by proving that

$$
w(T) \leq \frac{1}{2}(\|T\|+w(\widetilde{T})) \leq \frac{1}{2}\left(\|T\|+\left\|T^{2}\right\|^{1 / 2}\right)
$$

where $\widetilde{T}=|T|^{1 / 2} U|T|^{1 / 2}$ with unitary U.
Dragomir [5] (see also [8]) used the Buzano inequality to improve (1.1), where he proved that

$$
w^{2}(T) \leq \frac{1}{2}\left(\|T\|+w\left(T^{2}\right)\right)
$$

This result was also recently generalized by Sattari, Moslehian, and Yamazaki [20] and the author of this paper [3].

Dragomir [6] studied the Čebyšev functional

$$
\mathcal{C}(f, g ; A ; x)=\langle f(A) g(A) x, x\rangle-\langle f(A) x, x\rangle\langle g(A) x, x\rangle
$$

for any self-adjoint operator $A \in \mathcal{B}(H)$ and $x \in H$ with $\|x\|=1$. In particular, we have

$$
\mathcal{C}(f, f ; A ; x)=\left\langle f^{2}(A) x, x\right\rangle-\langle f(A) x, x\rangle^{2} .
$$

In a sequence of papers, Dragomir proved various bounds for the Čebyšev functional. The most popular result concerning continuous synchronous (asynchronous) functions of self-adjoint linear operators in Hilbert spaces reads as follows.

Theorem 1.1. Let $A \in \mathscr{B}(\mathscr{H})_{\text {sa }}$ with $\operatorname{sp}(A) \subset[\gamma, \Gamma]$ for some real numbers γ, Γ with $\gamma<\Gamma$. If $f, g:[\gamma, \Gamma] \rightarrow \mathbb{R}$ are continuous and synchronous (asynchronous) on $[\gamma, \Gamma]$, then

$$
\langle f(A) g(A) x, x\rangle \geq(\leq)\langle g(A) x, x\rangle\langle f(A) x, x\rangle
$$

for any $x \in H$ with $\|x\|=1$.
This result was generalized recently in [1,2]. For more related results concerning Čebyšev-Grüss type inequalities, we refer the reader to [7, 16, 17, 19].

2. Results

The following Grüss inequality for linear bounded operators in inner product Hilbert spaces is valid.

Theorem 2.1. Let $A \in \mathscr{B}(\mathscr{H})^{+}$. If f and g are both measurable functions on $[0, \infty)$, then

$$
\begin{equation*}
|\mathcal{C}(f, g ; A ; x)| \leq \mathcal{C}^{1 / 2}(f, f ; A ; x) \mathcal{C}^{1 / 2}(g, g ; A ; x) \tag{2.1}
\end{equation*}
$$

for any $x \in H$. In other words,

$$
\begin{aligned}
& |\langle f(A) g(A) x, x\rangle-\langle f(A) x, x\rangle\langle g(A) x, x\rangle| \\
& \quad \leq\left(\left\langle f^{2}(A) x, x\right\rangle-\langle f(A) x, x\rangle^{2}\right)^{1 / 2}\left(\left\langle g^{2}(A) x, x\right\rangle-\langle g(A) x, x\rangle^{2}\right)^{1 / 2} .
\end{aligned}
$$

Proof. It is not hard to show that

$$
\begin{align*}
& C(f, g ; A ; x) \\
& \quad=\frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty}(f(t)-f(s))(g(t)-g(s)) d\left\langle E_{t} x, x\right\rangle d\left\langle E_{s} x, x\right\rangle . \tag{2.2}
\end{align*}
$$

Utilizing the triangle inequality in (2.2) and then the Cauchy-Schwarz inequality, we get

$$
|C(f, g ; A ; x)|=\frac{1}{2}\left|\int_{0}^{\infty} \int_{0}^{\infty}(f(t)-f(s))(g(t)-g(s)) d\left\langle E_{t} x, x\right\rangle d\left\langle E_{s} x, x\right\rangle\right|
$$

$$
\begin{aligned}
& \leq \frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty}|f(t)-f(s)||g(t)-g(s)| d\left\langle E_{t} x, x\right\rangle d\left\langle E_{s} x, x\right\rangle \\
& \leq \frac{1}{2}\left(\int_{0}^{\infty} \int_{0}^{\infty}|f(t)-f(s)|^{2} d\left\langle E_{t} x, x\right\rangle d\left\langle E_{s} x, x\right\rangle\right)^{1 / 2} \\
& \times\left(\int_{0}^{\infty} \int_{0}^{\infty}|g(t)-g(s)|^{2} d\left\langle E_{t} x, x\right\rangle d\left\langle E_{s} x, x\right\rangle\right)^{1 / 2} \\
&= \frac{1}{2}\left(\int_{0}^{\infty} d\left\langle E_{s} x, x\right\rangle \int_{0}^{\infty} f^{2}(t) d\left\langle E_{t} x, x\right\rangle\right. \\
& \quad-2 \int_{0}^{\infty} f(t) d\left\langle E_{t} x, x\right\rangle \int_{0}^{\infty} f(s) d\left\langle E_{s} x, x\right\rangle \\
& \quad \times\left(\int_{0}^{\infty} d\left\langle E_{t} x, x\right\rangle \int_{0}^{\infty} f^{2}(s) d\left\langle E_{s} x, x\right\rangle\right)^{1 / 2} \\
& \quad \times\left(E_{s} x, x\right\rangle \int_{0}^{\infty} g^{2}(t) d\left\langle E_{t} x, x\right\rangle
\end{aligned}
$$

$$
-2 \int_{0}^{\infty} g(t) d\left\langle E_{t} x, x\right\rangle \int_{0}^{\infty} g(x) d\left\langle E_{s} x, x\right\rangle
$$

$$
\left.+\int_{0}^{\infty} d\left\langle E_{t} x, x\right\rangle \int_{0}^{\infty} g^{2}(s) d\left\langle E_{s} x, x\right\rangle\right)^{1 / 2}
$$

$$
=\left(1_{\mathscr{H}} \cdot \int_{0}^{\infty} f^{2}(t) d\left\langle E_{t} x, x\right\rangle-\left(\int_{0}^{\infty} f(t) d\left\langle E_{t} x, x\right\rangle\right)^{2}\right)^{1 / 2}
$$

$$
\times\left(1_{\mathscr{H}} \cdot \int_{0}^{\infty} g^{2}(t) d\left\langle E_{t} x, x\right\rangle-\left(\int_{0}^{\infty} g(t) d\left\langle E_{t} x, x\right\rangle\right)^{2}\right)^{1 / 2}
$$

$$
=\left(\left\langle f^{2}(A) x, x\right\rangle-\langle f(A) x, x\rangle^{2}\right)^{1 / 2}\left(\left\langle g^{2}(A) x, x\right\rangle-\langle g(A) x, x\rangle^{2}\right)^{1 / 2}
$$

for any $x \in \mathscr{H}$, which gives the desired result (2.1).
Corollary 2.2. Let $A \in \mathscr{B}(\mathscr{H})^{+}$. Then

$$
\begin{aligned}
& \left|\langle A x, x\rangle-\left\langle A^{\alpha} x, x\right\rangle\left\langle A^{1-\alpha} x, x\right\rangle\right| \\
& \quad \leq\left(\left\langle A^{2 \alpha} x, x\right\rangle-\left\langle A^{\alpha} x, x\right\rangle^{2}\right)^{1 / 2}\left(\left\langle A^{2(1-\alpha)} x, x\right\rangle-\left\langle A^{1-\alpha} x, x\right\rangle^{2}\right)^{1 / 2}
\end{aligned}
$$

for any $x \in \mathscr{H}$ and all $\alpha \in\left[0, \frac{1}{2}\right]$.
Proof. Setting $f(t)=t^{\alpha}$ and $g(t)=t^{1-\alpha}$ in (2.1), we get the desired result.
Theorem 2.3. Let $A \in \mathscr{B}(\mathscr{H})^{+}$. If f and g are both measurable functions on $[0, \infty)$, then

$$
\begin{align*}
& w_{\max }(f(A) g(A))-w_{\min }(f(A)) \cdot w_{\min }(g(A)) \\
& \quad \leq\left[\|f(A)\|^{2}-\ell^{2}\left(f^{1 / 2}(A)\right)\right]^{1 / 2} \cdot\left[\|g(A)\|^{2}-\ell^{2}\left(g^{1 / 2}(A)\right)\right]^{1 / 2} \tag{2.3}
\end{align*}
$$

Proof. Using the basic triangle inequality $||a|-|b|| \leq|a-b|$, we have from (2.1) that

$$
\begin{aligned}
& |(|\langle f(A) g(A) x, x\rangle|)-(|\langle f(A) x, x\rangle\langle g(A) x, x\rangle|)| \\
& \leq|\langle f(A) g(A) x, x\rangle-\langle f(A) x, x\rangle\langle g(A) x, x\rangle| \\
& \leq\left(\left\langle f^{2}(A) x, x\right\rangle-\langle f(A) x, x\rangle^{2}\right)^{1 / 2}\left(\left\langle g^{2}(A) x, x\right\rangle-\langle g(A) x, x\rangle^{2}\right)^{1 / 2}
\end{aligned}
$$

Taking the supremum over $x \in \mathscr{H}$, we obtain

$$
\begin{aligned}
& \sup _{\|x\|=1}\||\langle f(A) g(A) x, x\rangle|-|\langle f(A) x, x\rangle| \mid\langle g(A) x, x\rangle\| \\
& \leq \sup _{\|x\|=1}|\langle f(A) g(A) x, x\rangle-\langle f(A) x, x\rangle\langle g(A) x, x\rangle| \\
& \leq \sup _{\|x\|=1}|\langle f(A) g(A) x, x\rangle|-\inf _{\|x\|=1}\{|\langle f(A) x, x\rangle||\langle g(A) x, x\rangle|\} \\
& \leq \sup _{\|x\|=1}|\langle f(A) g(A) x, x\rangle|-\inf _{\|x\|=1}|\langle f(A) x, x\rangle| \cdot \inf _{\|x\|=1}|\langle g(A) x, x\rangle| \\
& \leq \sup _{\|x\|=1}\left[\|f(A) x\|^{2}-\langle f(A) x, x\rangle^{2}\right]^{1 / 2} \\
& \quad \times \sup _{\|x\|=1}\left[\|g(A) x\|^{2}-\langle g(A) x, x\rangle^{2}\right]^{1 / 2} \\
& \leq\left[\sup _{\|x\|=1}\|f(A) x\|^{2}-\inf _{\|x\|=1}\langle f(A) x, x\rangle^{2}\right]^{1 / 2} \\
& \quad \times\left[\sup _{\|x\|=1}\|g(A) x\|^{2}-\inf _{\|x\|=1}\langle g(A) x, x\rangle^{2}\right]^{1 / 2} \\
& =\left[\|f(A)\|^{2}-\ell^{2}\left(f^{1 / 2}(A)\right)\right]^{1 / 2} \cdot\left[\|g(A)\|^{2}-\ell^{2}\left(g^{1 / 2}(A)\right)\right]^{1 / 2} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& w_{\max }(f(A) g(A))-w_{\min }(f(A)) w_{\min }(g(A)) \\
& \quad \leq\left[\|f(A)\|^{2}-\ell^{2}\left(f^{1 / 2}(A)\right)\right]^{1 / 2} \cdot\left[\|g(A)\|^{2}-\ell^{2}\left(g^{1 / 2}(A)\right)\right]^{1 / 2}
\end{aligned}
$$

or equivalently, we have

$$
\begin{aligned}
& w_{\max }(f(A) g(A))-w_{\min }(f(A)) \cdot w_{\min }(g(A)) \\
& \quad \leq\left[\|f(A)\|^{2}-\ell^{2}\left(f^{1 / 2}(A)\right)\right]^{1 / 2} \cdot\left[\|g(A)\|^{2}-\ell^{2}\left(g^{1 / 2}(A)\right)\right]^{1 / 2}
\end{aligned}
$$

which proves the desired result.
Corollary 2.4. Let $A \in \mathscr{B}(\mathscr{H})^{+}$. Then

$$
\begin{aligned}
w_{\max }(A)-w_{\min }\left(A^{\alpha}\right) \cdot & w_{\min }\left(A^{1-\alpha}\right) \\
\leq & {\left[\left\|A^{\alpha}\right\|^{2}-\ell^{2}\left(A^{\frac{\alpha}{2}}\right)\right]^{1 / 2} \cdot\left[\left\|A^{1-\alpha}\right\|^{2}-\ell^{2}\left(A^{\frac{1-\alpha}{2}}\right)\right]^{1 / 2} }
\end{aligned}
$$

for each $x \in \mathscr{H}$. In particular,

$$
\begin{equation*}
w_{\max }(A)-w_{\min }^{2}\left(A^{1 / 2}\right) \leq\left\|A^{1 / 2}\right\|^{2}-\ell^{2}\left(A^{1 / 4}\right) \tag{2.4}
\end{equation*}
$$

for each $x \in \mathscr{H}$.
Proof. Setting $f(t)=t^{\alpha}$ and $g(t)=t^{1-\alpha}$ in (2.3), we get the desired result.
Corollary 2.5. Let $A \in \mathscr{B}(\mathscr{H})^{+}$. If f is a measurable function on $[0, \infty)$, then

$$
\begin{equation*}
w_{\max }\left(f^{2}(A)\right)-w_{\min }^{2}(f(A)) \leq\|f(A)\|^{2}-\ell^{2}\left(f^{1 / 2}(A)\right) \tag{2.5}
\end{equation*}
$$

for each $x \in \mathscr{H}$.
Proof. Setting $f=g$ in (2.1), we get the desired result.
A generalization of (2.4) can be deduced from (2.5) as follows.
Corollary 2.6. Let $A \in \mathscr{B}(\mathscr{H})^{+}$. Then, for any $p>0$, the inequality

$$
w_{\max }\left(A^{2 p}\right)-w_{\min }^{2}\left(A^{p}\right) \leq\left\|A^{p}\right\|^{2}-\ell^{2}\left(A^{p / 2}\right)
$$

holds for each $x \in \mathscr{H}$.
The Schwarz inequality for positive operators reads that if A is a positive operator in $\mathscr{B}(\mathscr{H})$, then

$$
\begin{equation*}
|\langle A x, y\rangle|^{2} \leq\langle A x, x\rangle\langle A y, y\rangle, \tag{2.6}
\end{equation*}
$$

for any vectors $x, y \in \mathscr{H}$.
In 1951, Reid [18] proved an inequality that in some senses considered a variant of Schwarz inequality. In fact, he proved that for all operators $A \in \mathscr{B}(\mathscr{H})$ such that A is positive and $A B$ is self-adjoint, we have

$$
\begin{equation*}
|\langle A B x, y\rangle| \leq\|B\|\langle A x, x\rangle, \tag{2.7}
\end{equation*}
$$

for all $x \in \mathscr{H}$. Halmos [10] presented his stronger version of the Reid inequality (2.7) by replacing $r(B)$ instead of $\|B\|$.

In 1952, Kato [11] introduced a companion inequality of (2.6), called the mixed Schwarz inequality, which asserts

$$
\begin{equation*}
\left.\left.|\langle A x, y\rangle|^{2} \leq\left.\langle | A\right|^{2 \alpha} x, x\right\rangle\left.\langle | A^{*}\right|^{2(1-\alpha)} y, y\right\rangle, \quad 0 \leq \alpha \leq 1 \tag{2.8}
\end{equation*}
$$

for all positive operators $A \in \mathscr{B}(\mathscr{H})$ and any vectors $x, y \in \mathscr{H}$, where $|A|=$ $\left(A^{*} A\right)^{1 / 2}$.

In 1988, Kittaneh [12] proved a very interesting extension combining both the Halmos-Reid inequality (2.7) and the mixed Schwarz inequality (2.8). His result reads that

$$
\begin{equation*}
|\langle A B x, y\rangle| \leq r(B)\|f(|A|) x\|\left\|g\left(\left|A^{*}\right|\right) y\right\| \tag{2.9}
\end{equation*}
$$

for any vectors $x, y \in \mathscr{H}$, where $A, B \in \mathscr{B}(\mathscr{H})$ satisfy $|A| B=B^{*}|A|$ and f and g are nonnegative continuous functions defined on $[0, \infty)$ satisfying $f(t) g(t)=t$ $(t \geq 0)$. Clearly, choose $f(t)=t^{\alpha}$ and $g(t)=t^{1-\alpha}$ with $B=1_{\mathscr{H}}$, so we refer to (2.8). Moreover, by choosing $\alpha=\frac{1}{2}$, some manipulations refer to the Halmos version of the Reid inequality.

Theorem 2.7. Let $A \in \mathscr{B}(\mathscr{H})$. If f and g are both positive continuous and $f(t) g(t)=t$ for all $t \in[0, \infty)$, then

$$
\begin{aligned}
w_{\max }(A)-w_{\min }(f(A)) \cdot & w_{\min }(g(A)) \\
& \leq \frac{1}{2}\left\|f^{2}(|A|)+g^{2}\left(\left|A^{*}\right|\right)\right\|-\ell^{2}\left(f^{1 / 2}(A)\right) \cdot \ell^{2}\left(g^{1 / 2}(A)\right)
\end{aligned}
$$

Proof. Since $f(t) g(t)=t$ for all $t \in[0, \infty)$, then from the proof of Theorem 2.3, we have

$$
\begin{aligned}
& \sup _{\|x\|=1}\|\langle f(A) g(A) x, x\rangle|-|\langle f(A) x, x\rangle||\langle g(A) x, x\rangle\| \\
& \leq \sup _{\|x\|=1}|\langle f(A) g(A) x, x\rangle|-\inf _{\|x\|=1}\{|\langle f(A) x, x\rangle||\langle g(A) x, x\rangle|\} \\
&= \sup _{\|x\|=1}|\langle A x, x\rangle|-\inf _{\|x\|=1}|\langle f(A) x, x\rangle| \cdot \inf _{\|x\|=1}|\langle g(A) x, x\rangle| \quad \quad \text { by (2.9)) } \\
& \leq \sup _{\|x\|=1}\left\langle f^{2}(|A|) x, x\right\rangle^{1 / 2}\left\langle g^{2}\left(\left|A^{*}\right|\right) x, x\right\rangle^{1 / 2} \\
& \quad-\inf _{\|x\|=1}|\langle f(A) x, x\rangle| \cdot \inf _{\|x\|=1}|\langle g(A) x, x\rangle| \\
& \leq \sup _{\|x\|=1}\left\langle f^{2}(|A| x, x)\right\rangle^{1 / 2}\left\langle g^{2}\left(\left|A^{*}\right| x, x\right)\right\rangle^{1 / 2} \\
& \quad-\inf _{\|x\|=1}|\langle f(A) x, x\rangle| \cdot \inf _{\|x\|=1}|\langle g(A) x, x\rangle| \\
& \leq \frac{1}{2} \sup _{\|x\|=1}\left\langle\left[f^{2}(|A|)+g^{2}\left(\left|A^{*}\right|\right)\right] x, x\right\rangle \\
& \quad \quad \inf _{\|x\|=1}|\langle f(A) x, x\rangle| \cdot \inf _{\|x\|=1}|\langle g(A) x, x\rangle|,
\end{aligned}
$$

which proves the required result.
Corollary 2.8. Let $A \in \mathscr{B}(\mathscr{H})^{+}$. If f and g are both positive continuous and $f(t) g(t)=t$ for all $t \in[0, \infty)$. Then

$$
\begin{aligned}
w_{\max }(A)-w_{\min }\left(A^{\alpha}\right) \cdot & w_{\min }\left(A^{1-\alpha}\right) \\
& \leq \frac{1}{2}\left\||A|^{2 \alpha}+\left|A^{*}\right|^{2(1-\alpha)}\right\|-\ell^{2}\left(A^{\frac{\alpha}{2}}\right) \cdot \ell^{2}\left(A^{\frac{1-\alpha}{2}}\right) .
\end{aligned}
$$

In particular,

$$
w_{\max }(A)-w_{\min }^{2}\left(A^{1 / 2}\right) \leq \frac{1}{2}\left\||A|+\left|A^{*}\right|\right\|-\ell^{4}\left(A^{1 / 4}\right)
$$

Theorem 2.9. Let $A, B \in \mathscr{B}(\mathscr{H})$. Then

$$
\begin{align*}
w\left((A+B)^{2}\right) \leq & w\left(A^{2}\right)+w\left(B^{2}\right) \\
& +\frac{1}{2} \min \left\{w\left(B A^{2} B\right)+\|A B\|^{2}, w\left(A B^{2} A\right)+\|B A\|^{2}\right\} \tag{2.10}
\end{align*}
$$

Proof. Let us first note that the Dragomir refinement of Cauchy-Schwarz inequality reads that (see [4])

$$
|\langle x, y\rangle| \leq|\langle x, e\rangle\langle e, y\rangle|+|\langle x, y\rangle-\langle x, e\rangle\langle e, y\rangle| \leq\|x\|\|y\|
$$

for all $x, y, e \in \mathscr{H}$ with $\|e\|=1$.
It is easy to deduce the inequality

$$
\begin{equation*}
|\langle x, e\rangle\langle e, y\rangle| \leq \frac{1}{2}(|\langle x, y\rangle|+\|x\|\|y\|) . \tag{2.11}
\end{equation*}
$$

Utilizing the triangle inequality, we have

$$
\begin{equation*}
\left|\left\langle(A+B)^{2} x, x\right\rangle\right| \leq\left|\left\langle A^{2} x, x\right\rangle\right|+|\langle A B x, x\rangle|\left|\left\langle x, A^{*} B^{*} x\right\rangle\right|+\left|\left\langle B^{2} x, x\right\rangle\right|, \tag{2.12}
\end{equation*}
$$

so that by setting $e=u, x=A B u, y=A^{*} B^{*} u$ in (2.11), we get

$$
\left|\langle A B u, u\rangle\left\langle u, A^{*} B^{*} u\right\rangle\right| \leq \frac{1}{2}\left(\left|\left\langle A B u, A^{*} B^{*} y\right\rangle\right|+\|A B u\|\left\|A^{*} B^{*} u\right\|\right) .
$$

Substituting in (2.12) and taking the supremum over all unit vector $x \in \mathscr{H}$, we get

$$
w\left((A+B)^{2}\right) \leq w\left(A^{2}\right)+w\left(B^{2}\right)+\frac{1}{2}\left(w\left(B A^{2} B\right)+\|A B\|^{2}\right) .
$$

Replacing B by A and A by B in the previous inequality, we get that

$$
w\left((B+A)^{2}\right) \leq w\left(B^{2}\right)+w\left(A^{2}\right)+\frac{1}{2}\left(w\left(A B^{2} A\right)+\|B A\|^{2}\right)
$$

The desired result holds using the previous two inequalities.
Corollary 2.10. Let $A \in \mathscr{B}(\mathscr{H})$. Then

$$
w\left(A^{2}\right) \leq \frac{1}{4}\left(w\left(A^{4}\right)+\left\|A^{2}\right\|^{2}\right)
$$

Proof. Setting $A=B$ in (2.10), we get the desired result.
Let \mathscr{U} be an associative algebra, not necessarily commutative, with identity $1_{\mathscr{U}}$. For two elements A and B in \mathscr{U}, that commute; that is, $A B=B A$. It is well known, the binomial theorem reads that

$$
\begin{equation*}
(A+B)^{n}=\sum_{k=0}^{n}\binom{n}{k} A^{k} B^{n-k} . \tag{2.13}
\end{equation*}
$$

Wyss [21] derived an interesting noncommutative binomial formula for commutative algebra \mathscr{U} with identity $1_{\mathscr{U}}$. Moreover, $\mathscr{L}(\mathscr{U})$ denotes the algebra of linear transformations from \mathscr{U} to \mathscr{U}. Let $A, X \in \mathscr{U}$; then the element (commutator) d_{A} in $\mathscr{L}(\mathscr{U})$ is defined by

$$
d_{A}(X)=[A, X]=A X-X A .
$$

It follows that, A and d_{A} are elements of $\mathscr{L}(\mathscr{U})$. Moreover, A can be looked upon as an element in $\mathscr{L}(\mathscr{U})$ by $A(X)=A X$, which is the left multiplication.

The following properties are hold (see [21]):
(1) A and d_{A} commute; that is, $A d_{A}(X)=d_{A} A(X)$.
(2) d_{A} is a derivation on \mathscr{U}; that is, $d_{A}(X Y)=\left(d_{A} X\right) Y+X\left(d_{A} Y\right)$.
(3) $\left(A-d_{A}\right) X=X A$.
(4) The Jacobi identity $d_{A} d_{B}(C)+d_{B} d_{C}(A)+d_{C} d_{A}(B)=0$ holds.

Using these properties, Wyss [21] proved the following noncommutative version of binomial theorem:

$$
\begin{equation*}
(A+B)^{n}=\sum_{k=0}^{n}\binom{n}{k}\left\{\left(A+d_{B}\right)^{k} 1_{\mathscr{U}}\right\} B^{n-k} \tag{2.14}
\end{equation*}
$$

for all elements A and B in the associative algebra \mathscr{U} with identity $1_{\mathscr{U}}$.
We write

$$
\begin{equation*}
\left(A+d_{B}\right)^{n} 1_{\mathscr{U}}=A^{n}+D_{n}(B, A) . \tag{2.15}
\end{equation*}
$$

For a commutative algebra, $D_{n}(B, A)$ is identically zero. We thus call $D_{n}(B, A)$ the essential noncommutative part. Moreover, $D_{n}(B, A)$ satisfies the following recurrence relation:

$$
D_{n+1}(B, A)=d_{B} A^{n}+\left(A+d_{B}\right) D_{n}(B, A), \quad n \geq 0
$$

with $D_{0}(B, A)=0$.
A noncommutative upper bound for the summand of two bounded linear Hilbert space operators is proved in the following result.
Theorem 2.11. Let $A, B \in \mathscr{B}(\mathscr{H})$. If f and g are both positive continuous and $f(t) g(t)=t$ for all $t \in[0, \infty)$, then

$$
\begin{align*}
w\left((A+B)^{n}\right) \leq \frac{1}{2} \sum_{k=0}^{n}\left\{\binom{n}{k} \|\right. & f\left(\left|\left\{\left(A+d_{B}\right)^{k} 1_{\mathscr{H}}\right\} B^{n-k}\right|\right) \\
& \left.+g\left(\left|\left(B^{n-k}\right)^{*}\left\{\left(A+d_{B}\right)^{k} 1_{\mathscr{H}}\right\}^{*}\right|\right) \|\right\} \tag{2.16}
\end{align*}
$$

where $d_{B}(A)=[B, A]=B A-A B$ and $d_{B}^{*}(A)=[B, A]^{*}=A^{*} B^{*}-B^{*} A^{*}$.
Proof. By utilizing the triangle inequality in (2.14) and by employing (2.9), we have

$$
\begin{aligned}
& \left|\left\langle(A+B)^{n} x, y\right\rangle\right| \\
& =\left|\left\langle\left(\begin{array}{c}
n \\
k=0
\end{array}\binom{n}{k}\left\{\left(A+d_{B}\right)^{k} 1_{\mathscr{H}}\right\} B^{n-k}\right) x, y\right\rangle\right| \\
& \leq \sum_{k=0}^{n}\binom{n}{k}\left|\left\langle\left(\left\{\left(A+d_{B}\right)^{k} 1_{\mathscr{H}}\right\} B^{n-k}\right) x, y\right\rangle\right| \\
& \leq \sum_{k=0}^{n}\binom{n}{k} \| f\left(\left|\left\{\left(A+d_{B}\right)^{k} 1_{\mathscr{H}}\right\} B^{n-k}\right|\right) x| | \\
& \quad \times\left\|g\left(\left|\left(B^{n-k}\right)^{*}\left\{\left(A+d_{B}\right)^{k} 1_{\mathscr{H}}\right\}^{*}\right|\right) y\right\| \\
& \leq \sum_{k=0}^{n}\binom{n}{k}\left\langle f\left(\left|\left\{\left(A+d_{B}\right)^{k} 1_{\mathscr{H}}\right\} B^{n-k}\right|\right) x, x\right\rangle^{1 / 2} \\
& \quad \times\left\langle g\left(\left|\left(B^{n-k}\right)^{*}\left\{\left(A+d_{B}\right)^{k} 1_{\mathscr{H}}\right\}^{*}\right|\right) y, y\right\rangle^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{1}{2} \sum_{k=0}^{n}\binom{n}{k}\left[\left\langle f\left(\left|\left\{\left(A+d_{B}\right)^{k} 1_{\mathscr{H}}\right\} B^{n-k}\right|\right) x, x\right\rangle\right. \\
&\left.+\left\langle g\left(\left|\left(B^{n-k}\right)^{*}\left\{\left(A+d_{B}\right)^{k} 1_{\mathscr{H}}\right\}^{*}\right|\right) y, y\right\rangle\right]
\end{aligned}
$$

where the last inequality follows by applying the AM-GM inequality. Hence, by letting $y=x$, we get

$$
\begin{aligned}
& \left|\left\langle(A+B)^{n} x, x\right\rangle\right| \\
& \begin{aligned}
\leq \frac{1}{2} \sum_{k=0}^{n}\binom{n}{k}\left[\left\langle f\left(\left|\left\{\left(A+d_{B}\right)^{k} 1_{\mathscr{H}}\right\} B^{n-k}\right|\right) x, x\right\rangle\right.
\end{aligned} \\
& \left.\quad+\left\langle g\left(\left|\left(B^{n-k}\right)^{*}\left\{\left(A+d_{B}\right)^{k} 1_{\mathscr{H}}\right\}^{*}\right|\right) x, x\right\rangle\right] \\
& \leq \frac{1}{2} \sum_{k=0}^{n}\binom{n}{k}\left\langle\left\{ f\left(\left|\left\{\left(A+d_{B}\right)^{k} 1_{\mathscr{H}}\right\} B^{n-k}\right|\right)\right.\right.
\end{aligned} \quad \begin{aligned}
& \left.\left.\quad+g\left(\left|\left(B^{n-k}\right)^{*}\left\{\left(A+d_{B}\right)^{k} 1_{\mathscr{H}}\right\}^{*}\right|\right)\right\} x, x\right\rangle .
\end{aligned}
$$

Taking the supremum over all unit vector $x \in \mathscr{H}$, we get the required result.
Remark 2.12. Taking the supremum over all unit vectors $x, y \in \mathscr{H}$ in the proof of Theorem 2.11, we get the following power norm inequality:

$$
\begin{aligned}
\left\|(A+B)^{n}\right\| \leq \frac{1}{2} \sum_{k=0}^{n}\{ & \binom{n}{k} \| f\left(\left|\left\{\left(A+d_{B}\right)^{k} 1_{\mathscr{H}}\right\} B^{n-k}\right|\right) \\
& \left.+g\left(\left|\left(B^{n-k}\right)^{*}\left\{\left(A+d_{B}\right)^{k} 1_{\mathscr{H}}\right\}^{*}\right|\right) \|\right\}
\end{aligned}
$$

for all $A, B \in \mathscr{B}(\mathscr{H})$.
Corollary 2.13. Let $A, B \in \mathscr{B}(\mathscr{H})$. If f and g are both positive continuous and $f(t) g(t)=t$ for all $t \in[0, \infty)$, then

$$
\begin{align*}
& w(A+B) \\
& \quad \leq \frac{1}{2}\left\|f(|B|)+g\left(\left|B^{*}\right|\right)+f\left(\left|A+d_{B} A\right|\right)+g\left(\left|\left(A^{*}+A^{*} d_{B}^{*}\right)\right|\right)\right\| \tag{2.17}
\end{align*}
$$

where $d_{B}(A)=[B, A]=B A-A B$ and $d_{B}^{*}(A)=[B, A]^{*}=A^{*} B^{*}-B^{*} A^{*}$.
Proof. Setting $n=1$ in (2.16), we get that

$$
w(A+B) \leq \frac{1}{2}\left\|f(|B|)+g\left(\left|B^{*}\right|\right)+f\left(\left|\left(A+d_{B}\right) 1_{\mathscr{H}}\right|\right)+f\left(\left|\left(A+d_{B}\right)^{*} 1_{\mathscr{H}}\right|\right)\right\|
$$

Making use of (2.15), we have

$$
\left(A+d_{B}\right) 1_{\mathscr{H}}=A+D_{1}(B, A)=A+d_{B} A
$$

and

$$
\left(A+d_{B}\right)^{*} 1_{\mathscr{H}}=\left(A^{*}+d_{B}^{*}\right) 1_{\mathscr{H}}=A^{*}+D_{1}\left(B^{*}, A^{*}\right)=A^{*}+A^{*} d_{B^{*}} .
$$

Hence,

$$
w(A+B) \leq \frac{1}{2}\left\|f(|B|)+g\left(\left|B^{*}\right|\right)+f\left(\left|A+d_{B} A\right|\right)+g\left(\left|\left(A^{*}+A^{*} d_{B}^{*}\right)\right|\right)\right\|
$$

which gives the required result.
Remark 2.14. As noted in Remark 2.12 and deduced in Corollary 2.13, we may observe that

$$
\|A+B\| \leq \frac{1}{2}\left\|f(|B|)+g\left(\left|B^{*}\right|\right)+f\left(\left|A+d_{B} A\right|\right)+g\left(\left|\left(A^{*}+A^{*} d_{B}^{*}\right)\right|\right)\right\|
$$

for all $A, B \in \mathscr{B}(\mathscr{H})$.
Corollary 2.15. For $A, B \in \mathscr{B}(\mathscr{H})$ that commute, if f and g are both positive continuous and $f(t) g(t)=t$ for all $t \in[0, \infty)$, then

$$
w\left((A+B)^{n}\right) \leq \frac{1}{2} \sum_{k=0}^{n}\binom{n}{k}\left\|f\left(\left|A^{k} B^{n-k}\right|\right)+g\left(\left|\left(B^{n-k}\right)^{*}\left(A^{k}\right)^{*}\right|\right)\right\| .
$$

In particular,

$$
w(A+B) \leq \frac{1}{2}\left\|f(|B|)+g\left(\left|B^{*}\right|\right)+f(|A|)+g\left(\left|A^{*}\right|\right)\right\| .
$$

Proof. Since $A B=B A$, then $d_{B}=0$ in (2.17). Alternatively, we may use (2.13) and proceed as in the proof of Theorem 2.11.

Remark 2.16. As in the same way we previously remarked, for $A, B \in \mathscr{B}(\mathscr{H})$ that commute, we have

$$
\left\|(A+B)^{n}\right\| \leq \frac{1}{2} \sum_{k=0}^{n}\binom{n}{k}\left\|f\left(\left|A^{k} B^{n-k}\right|\right)+g\left(\left|\left(B^{n-k}\right)^{*}\left(A^{k}\right)^{*}\right|\right)\right\| .
$$

In particular,

$$
\|A+B\| \leq \frac{1}{2}\left\|f(|B|)+g\left(\left|B^{*}\right|\right)+f(|A|)+g\left(\left|A^{*}\right|\right)\right\| .
$$

Setting $f(t)=t^{\alpha}$ and $g(t)=t^{1-\alpha}$ for all $\alpha \in[0,1]$, in the last inequality above, we get

$$
\|A+B\| \leq \frac{1}{2}\left\||B|^{\alpha}+\left|B^{*}\right|^{1-\alpha}+|A|^{\alpha}+\left|A^{*}\right|^{1-\alpha}\right\|
$$

In special case, for $\alpha=\frac{1}{2}$, we have

$$
\|A+B\| \leq \frac{1}{2}\left\||B|^{1 / 2}+\left|B^{*}\right|^{1 / 2}+|A|^{1 / 2}+\left|A^{*}\right|^{1 / 2}\right\| .
$$

Corollary 2.17. For $A \in \mathscr{B}(\mathscr{H})$, if f and g are both positive continuous and $f(t) g(t)=t$ for all $t \in[0, \infty)$, then

$$
\begin{equation*}
w\left(A^{n}\right) \leq \frac{1}{2}\left(\left\|f\left(\left|A^{n}\right|\right)+g\left(\left|\left(A^{n}\right)^{*}\right|\right)\right\|\right) . \tag{2.18}
\end{equation*}
$$

Proof. Setting $B=0$ in (2.16), we get the desired result. In another way, one may set $B=A$ in Corollary 2.15, so that we get

$$
w\left(A^{n}\right) \leq \frac{1}{2^{n+1}}\left\|f\left(\left|A^{n}\right|\right)+g\left(\left|\left(A^{n}\right)^{*}\right|\right)\right\| \cdot \sum_{k=0}^{n}\binom{n}{k}
$$

but since $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$, then we get the required result.
Corollary 2.18. Let $A \in \mathscr{B}(\mathscr{H})$. Then

$$
w\left(A^{n}\right) \leq \frac{1}{2}\left(\left\|\left|A^{n}\right|^{\alpha}+\left|\left(A^{n}\right)^{*}\right|^{1-\alpha}\right\|\right)
$$

In particular,

$$
\begin{equation*}
w(A) \leq \frac{1}{2}\left(\left\||A|^{\alpha}+\left|A^{*}\right|^{1-\alpha}\right\|\right) \tag{2.19}
\end{equation*}
$$

Proof. Setting $f(t)=t^{\alpha}$ and $g(t)=t^{1-\alpha}$ in (2.18), we get the desired result.
Corollary 2.19. Let $A \in \mathscr{B}(\mathscr{H})$. Then

$$
w(A) \leq \frac{1}{2}\left(\left\||A|+1_{\mathscr{H}}\right\|\right) \leq \frac{1}{4}\left(1+\|A\|+\sqrt{(\|A\|-1)^{2}+4\|A\|}\right)
$$

Proof. Letting $\alpha=1$ in (2.19), we get the first inequality. The second inequality follows by employing the norm estimates (see [13])

$$
\|A+B\| \leq \frac{1}{2}\left(\|A\|+\|B\|+\sqrt{(\|A\|-\|B\|)^{2}+4\left\|A^{1 / 2} B^{1 / 2}\right\|^{2}}\right)
$$

and then

$$
\left\|A^{1 / 2} B^{1 / 2}\right\| \leq\|A B\|^{1 / 2}
$$

in the first inequality and use the fact that $|\|A \mid\|=\|A\|$. In other words, we have

$$
\begin{aligned}
\left\||A|+1_{\mathscr{C}}\right\| & \leq \frac{1}{2}\left(\||A|\|+\left\|\left|1_{\mathscr{H}}\right|\right\|+\sqrt{\left(\left\|\left|A^{1 / 2}\right|\right\|-1\right)^{2}+4\left\||A|^{1 / 2} 1_{\mathscr{H}}\right\|^{2}}\right) \\
& =\frac{1}{2}\left(1+\|A\|+\sqrt{(\|A\|-1)^{2}+4\|A\|}\right)
\end{aligned}
$$

which proves the required result.

References

1. M.W. Alomari, Pompeiu-Čebyšev type inequalities for selfadjoint operators in Hilbert spaces, Adv. Oper. Theory 3 (2018) no. 3, 459-472.
2. M.W. Alomari, On Pompeiu-Čebyšev type inequalities for positive linear maps of selfadjoint operators in inner product spaces, J. Adv. Math. 15 (2018) 8081-8092.
3. M.W. Alomari, Refinements of some numerical radius inequalities for Hilbert space operators, Linear Multilinear Algebra (2019), DOI: 10.1080/03081087.2019.1624682.
4. S.S. Dragomir, Some refinements of Schwarz inequality, in: Proceedings of the Simpozionul de Matematici si Aplicatii, Timisoara, Romania, pp. 13-16, 1985.
5. S.S. Dragomir, Some inequalities for the norm and the numerical radius of linear operators in Hilbert spaces, Tamkang J. Math. 39 (2008), 1-7.
6. S.S. Dragomir, Čebyšev's type inequalities for functions of selfadjoint operators in Hilbert spaces, Linear Multilinear Algebra 58 (2010), no. 7-8, 805-814.
7. S.S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type, Springer, New York, 2012.
8. S.S. Dragomir, Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces, SpringerBriefs in Mathematics, Springer, Cham, 2013.
9. M. El-Haddad and F. Kittaneh, Numerical radius inequalities for Hilbert space operators. II, Studia Math. 182 (2007), no. 2, 133-140.
10. P.R. Halmos, A Hilbert Space Problem Book, Van Nostrand Co. Inc. Princeton-TorontoLondon 19671967.
11. T. Kato, Notes on some inequalities for linear operators, Math. Ann. 125 (1952) 208-212.
12. F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci. 24 (1988), no. 2, 283-293.
13. F. Kittaneh, Norm inequalities for certain operator sums, J. Funct. Anal. 143 (1997), no. 2, 337-348.
14. F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003) 11-17.
15. F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math. 168 (2005) 73-80.
16. J.S. Matharu and M.S. Moslehian, Grüss inequality for some types of positive linear maps, J. Operator Theory 73 (2015), no. 1, 265-278.
17. M.S. Moslehian and M. Bakherad, Chebyshev type inequalities for Hilbert space operators, J. Math. Anal. Appl. 420 (2014), no. 1, 737-749.
18. W. Reid, Symmetrizable completely continuous linear transformations in Hilbert space, Duke Math. J. 18 (1951) 41-56.
19. J. Rooin, S. Karami, and M. Ghaderi Aghideh, A new approach to numerical radius of quadratic operators, Ann. Funct. Anal. 11 (2020), no. 3, 879-896.
20. M. Sattari, M.S. Moslehian and T. Yamazaki, Some generalized numerical radius inequalities for Hilbert space operators, Linear Algebra Appl. 470 (2015) 216-227.
21. W. Wyss, Two noncommutative binomial theorems, arXiv:1707.03861v2 [math.RA].
22. T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, Studia Math. 178 (2007) 83-89.
${ }^{1}$ Department of Mathematics, Faculty of Science and Information Technology, Jadara University, P.O. Box 733, Irbid, P.C. 21110, Jordan.

Email address: mwomath@gmail.com

[^0]: Date: Received: 17 October 2019; Revised: 12 June 2020; Accepted: 21 June 2020.
 2000 Mathematics Subject Classification. Primary: 47A12, 47A30 Secondary: 15A60, 47A63.
 Key words and phrases. Čebyšev functional, Numerical radius, Noncommutative operators.

