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Abstract. Let A be a standard operator algebra on a Banach space X with
dimX ≥ 2. In this paper, we characterize the forms of additive maps on A
that strongly preserve the square zero of λ-Lie product of operators. That is,
if ϕ : A −→ A is an additive map satisfying

[A,B]2λ = 0 ⇒ [ϕ(A), B]2λ = 0,

for every A,B ∈ A and for a scalar number λ with λ ̸= −1, then it is shown
that there exists a function σ : A → C such that ϕ(A) = σ(A)A for every
A ∈ A.

1. Introduction

In the last decade, many mathematicians have stdied preserving problems.
In particular, maps preserving a certain property of products of elements are
considered; see [2–11]. We recall some of them which are related to our purpose.

Let A be a Banach algebra, let A,B ∈ A, and let λ be a scalar. Then AB+λBA
is said to be the λ-Lie product of A and B and is denoted by [A,B]λ. The λ-Lie
product is said to be the Jordan product or the Lie product, whenever λ = 1 or
λ = −1, respectively. The Lie product of A and B is denoted by [A,B]. The
triple Jordan product of A and B is defined by ABA. These products play a
rather important role in mathematical physics.

Taghavi et al. [10] considered the maps strongly preserving the η-Lie product
on an algebra A, that is a map ϕ : A → A satisfying ϕ(A)ϕ(P ) + ηϕ(P )ϕ(A) =
AP + ηPA, for every A ∈ A, some idempotent P ∈ A, and some scalar η.
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Let B(X ) be the Banach algebra of all bounded linear operators on a Banach
space X . In [6], the authors characterized unital surjective maps on B(X ) preserv-
ing the nonzero idempotency of product of operators, in both directions. Wang
et al. [11] characterized linear surjective maps on B(X ) preserving the nonzero
idempotency of either products of operators or triple Jordan product of opera-
tors. Also Fang [5] characterized linear surjective maps on B(X ) preserving the
nonzero idempotency of Jordan product of operators.

We recall that a standard operator algebra A on a Banach space X is a norm
closed subalgebra of B(X ) that contains the identity and all finite rank operators.

We say that a map ϕ : A −→ A strongly preserves the square zero of λ-Lie
product of operators, whenever

[A,B]2λ = 0 ⇒ [ϕ(A), B]2λ = 0

for every A,B ∈ A.
In this paper, we characterize the forms of additive maps that strongly preserve

the square zero of λ-Lie products of operators. Our main result is the following
theorem.

Theorem 1.1. Assume that A is a standard operator algebra on a Banach space
X with dimX ≥ 2. Let ϕ : A −→ A be an additive map that satisfies

[A,B]2λ = 0 ⇒ [ϕ(A), B]2λ = 0,

for every A,B ∈ A and for a scalar λ with λ ̸= −1. Then there exists a function
σ : A → C such that ϕ(A) = σ(A)A for every A ∈ A.

2. Proof of main result

First we recall some notations. We assume that X is a Banach space and A is
a standard operator algebra on X . We denote by X ∗, the dual space of X . For
every nonzero x ∈ X and f ∈ X ∗, the symbol x⊗f stands for the rank one linear
operator on X defined by (x⊗ f)y = f(y)x for any y ∈ X . Note that every rank
one operator in B(X ) can be written in this way. We denote by F1(X ) the set
of all rank one operators in B(X ). The rank one operator x⊗ f is idempotent if
and only if f(x) = 1 and is nilpotent if and only if f(x) = 0.

Proposition 2.1. Let A ∈ A, let x ∈ X , let f ∈ X ∗ such that f(x) ̸= 0, and let
λ ̸= 0,−1. Then [A, x ⊗ f ]2λ = 0 if and only if one of the following statements
occurs:

(i) Axf(Ax) = −λxf(A2x) and Axf(x) = −λxf(Ax).
(ii) fA = 0.

Proof. First assume that Axf(Ax) = −λxf(A2x) and Axf(x) = −λxf(Ax) hold.
Hence
[A, x⊗ f ]2λ = (Ax⊗ f + λx⊗ fA)2

= f(Ax)Ax⊗ f + λf(x)Ax⊗ fA+ λ2f(Ax)x⊗ fA+ λf(A2x)x⊗ f

= −λxf(A2x)⊗ f − λ2xf(Ax)⊗ fA+ λ2f(Ax)x⊗ fA+ λf(A2x)x⊗ f

= 0.
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Now if fA = 0, then

[A, x⊗ f ]2λ = (Ax⊗ f + λx⊗ fA)2

= (Ax⊗ f)2 = f(Ax)Ax⊗ f = 0.

Conversely, assume that [A, x⊗ f ]2λ = 0. For an operator B, it is clear that

B2 = 0 ⇔ (B(Bx) = 0, for all x ∈ X ) ⇔ ImB ⊆ kerB.

This together with the assumptions implies

[A, x⊗ f ]2λ = 0 ⇔ Im[A, x⊗ f]λ ⊆ ker[A, x⊗ f ]λ.

Let fA ̸= 0. If fA and f are linearly independent, then Im[A, x⊗ f]λ = span{Ax, x},
and so

span{Ax, x} ⊆ ker(Ax⊗ f + λx⊗ fA),

which implies

(Ax⊗ f + λx⊗ fA)(Ax) = Axf(Ax) + λxf(A2x) = 0,

(Ax⊗ f + λx⊗ fA)(x) = Axf(x) + λxf(Ax) = 0,

which are the asserted relations. If fA and f are linearly dependent, then there
exists a nonzero scalar a such that fA = af , and so

[A, x⊗ f ]λ = Ax⊗ f + λx⊗ fA = (Ax+ ax)⊗ f.

Thus Im[A, x⊗ f ]λ = span{Ax+ λax}, and so

span{Ax+ λax} ⊆ ker(Ax⊗ f + λx⊗ fA) = ker((Ax+ ax)⊗ f),

which implies
((Ax+ λax)⊗ f)(Ax+ λax) = 0

⇒ (Ax+ λax)[f(Ax) + λaf(x)] = 0

⇒ (Ax+ λax)af(x)(1 + λ) = 0.

Since f(x) ̸= 0 and λ ̸= −1, we obtain Ax+λax = 0. This together with fA = af
implies

Axf(Ax) = −λaxf(Ax) = −λx(fA)(Ax) = −λxf(A2x)

and
Axf(x) = −λaxf(x) = −λxf(Ax),

and these complete the proof.
□

In the following lemmas, assume that ϕ : A −→ A is a map that satisfies

[A,B]2λ = 0 ⇒ [ϕ(A), B]2λ = 0,

for every A,B ∈ A and for a scalar number λ with λ ̸= 0,−1.

Lemma 2.2. For every A ∈ A, kerA ⊆ kerϕ(A).
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Proof. If x ∈ kerA, then
[A, x⊗ f ]2λ = (Ax⊗ f + λx⊗ fA)2

= (λx⊗ fA)2 = λ2f(Ax)x⊗ fA = 0,

for every f ∈ X ∗, and so [ϕ(A), x⊗ f ]2λ = 0. Applying Proposition 2.1, we have
ϕ(A)xf(ϕ(A)x) = −λxf(ϕ(A)2x) (2.1)

and
ϕ(A)xf(x) = −λxf(ϕ(A)x) (2.2)

or fϕ(A) = 0, for every f ∈ X ∗ such that f(x) ̸= 0. We show ϕ(A)x = 0.
First let relations (2.1) and (2.2) hold and let f(x) = 1. From (2.2), we obtain
ϕ(A)x = −λxf(ϕ(A)x) and thus

f(ϕ(A)x) = −λf(x)f(ϕ(A)x) = −λf(ϕ(A)x).

Then f(ϕ(A)x) = 0 since λ ̸= 0,−1. That is, ϕ(A)x = 0.
Now let fϕ(A) = 0 for every f such that f(x) ̸= 0. Since ϕ(A)x ̸= 0, there

exists a linear functional f such that f(x) ̸= 0 and f(ϕ(A)x) = 1, a contradiction,
because f(ϕ(A)x) = (fϕ(A))x = 0. Therefore, ϕ(A)x = 0. □

Next assume that ϕ is additive.

Lemma 2.3. For every rank one operator A, ϕ(A) = 0 or ϕ(A) = κ(A)A, where
κ : A → C is a function.

Proof. Let A = x⊗ f , for some x ∈ X and f ∈ X ∗. From Lemma 2.2, we have
ker x⊗ f ⊆ kerϕ(x⊗ f),

which implies that ker f ⊆ kerϕ(x ⊗ f) and since ker f is a hyperspace of X ,
kerϕ(x⊗ f) = X or kerϕ(x⊗ f) = ker f . Therefore ϕ(x⊗ f) is a zero operator
or there exists a vector y such that ϕ(x⊗ f) = y ⊗ f . We divide the rest of the
proof into two cases:

Case 1. Let f(x) ̸= 0 and let g be a functional such that g(x) = 0. We have
[x⊗ f, x⊗ g]2λ = [f(x)x⊗ g + λg(x)x⊗ f ]2

= [f(x)x⊗ g]2 = 0

and then
[ϕ(x⊗ f), x⊗ g]2λ = [y ⊗ f, x⊗ g]2λ = 0,

which implies
[f(x)y ⊗ g + λg(y)x⊗ f ]2 =f(x)g(y)y ⊗ g + λ2g(y)f(x)x⊗ f

+ λg(y)f(x)f(y)x⊗ g = 0.

Since f(x) ̸= 0, we obtain
y ⊗ g(y)g = x⊗ (−λ2g(y)f − λg(y)f(y)g).

This implies that x and y are linearly dependent or g(y) = 0. If g(y) = 0
and x and y are linearly independent, we get a contradiction, since in this case
by dimX ≥ 2, there exists a functional g such that g(x) = 0 but g(y) = 1.
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Therefore x and y are linearly dependent and then there is a scalar κ(A) such
that ϕ(A) = κ(A)A.

Case 2. Let f(x) = 0. There exists a linear functional h such that h(x) = 1
and then by Case 1, we have

ϕ(x⊗ (f + h)) = kx⊗ (f + h),

where k = κ(x⊗ (f + h)). On the other hand, the additivity of ϕ together with
Case 1 implies

ϕ(x⊗ (f + h)) = ϕ(x⊗ f) + ϕ(x⊗ h) = ϕ(x⊗ f) + tx⊗ h,

where t = κ(x⊗ h). Thus
ϕ(x⊗ f) = kx⊗ (f + h)− tx⊗ h = x⊗ (kf + kh− th).

This together with ϕ(x⊗ f) = y⊗ f implies that x and y are linearly dependent
and this completes the proof. □
Proof of Theorem 1.1. We divide the proof into two cases.

Case 1. Let λ = 0. First we show kerA ⊆ kerϕ(A) for every A ∈ A. Assume
Ax = 0. This together with the assumption yields (ϕ(A)x ⊗ f)2 = 0 for every
f ∈ X ∗. Thus ϕ(A)x = 0 or f(ϕ(A)x) = 0, for every f ∈ X ∗. Since f is arbitrary,
in the second case, we obtain ϕ(A)x = 0, too. Thus by the first paragraph of the
proof of Lemma 2.3, for every x ∈ X and f ∈ X ∗, we have ϕ(x⊗ f) = 0 or there
exists a vector y such that ϕ(x⊗f) = y⊗f . If f(x) ̸= 0, then [(x⊗f)(x⊗g)]2 = 0,
for every functional g such that g(x) = 0. This implies that

[(ϕ(x⊗ f))(x⊗ g)]2 = 0

⇒ [(y ⊗ f)(x⊗ g)]2 = 0

⇒ (f(x)y ⊗ g)2 = 0 ⇒ g(y) = 0.

Hence x and y are linearly dependent. If f(x) = 0, then by Case 2 in the proof
of Lemma 2.3, we obtain that x and y are linearly dependent, too. Therefore,
ϕ(x⊗ f) = 0 or ϕ(x⊗ f) = kx⊗ f for some scalar k.

Let A ∈ A \ F1(X ) and let x ∈ X . We know (Ax ⊗ f)2 = 0, for every
f ∈ X ∗ with f(Ax) = 0. Thus (ϕ(A)x ⊗ f)2 = 0 and then ϕ(A)x = 0 or
f(ϕ(A)x) = 0, which implies that Ax and ϕ(A)x are linearly dependent for every
x ∈ X . Hence by [1, Theorem 2.3], there exists a scalar number k such that
ϕ(A) = kA. This together with the previous discussion implies that there exists
a function σ : A → C such that ϕ(A) = σ(A)A for every A ∈ A.

Case 2. Let λ ̸= 0. Let A ∈ A \ F1(X ) and let x ∈ X . There exists a linear
functional f such that f(x) = 1. Set P = Ax⊗ f . It is clear that (A− P )x = 0,
and so Lemma 2.2 implies

(ϕ(A)− ϕ(P ))x = 0 ⇒ ϕ(A)x = ϕ(P )x.

By Lemma 2.3, we have ϕ(P ) = 0 or ϕ(P ) = κ(P )P . If ϕ(P ) = 0, then ϕ(A)x = 0.
In the second case, if ϕ(P ) = κ(P )P , then ϕ(A)x = κ(P )Px = κ(P )Ax. However,
in both cases, ϕ(A)x and Ax are linearly dependent, for every x ∈ X , and so
by [1, Theorem 2.3], there exists a scalar number k such that ϕ(A) = kA. This
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together with Lemma 2.3 follows that there exists a function σ : A → C such
that ϕ(A) = σ(A)A for every A ∈ A. □
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