

Khayyam Journal of Mathematics
emis.de/journals/KJM kjm-math.org

MAPS STRONGLY PRESERVING THE SQUARE ZERO OF λ-LIE PRODUCT OF OPERATORS

ROJA HOSSEINZADEH ${ }^{1}$
Communicated by A. Jiménez-Vargas

Abstract

Let \mathcal{A} be a standard operator algebra on a Banach space \mathcal{X} with $\operatorname{dim} \mathcal{X} \geq 2$. In this paper, we characterize the forms of additive maps on \mathcal{A} that strongly preserve the square zero of λ-Lie product of operators. That is, if $\phi: \mathcal{A} \longrightarrow \mathcal{A}$ is an additive map satisfying $$
[A, B]_{\lambda}^{2}=0 \Rightarrow[\phi(A), B]_{\lambda}^{2}=0
$$ for every $A, B \in \mathcal{A}$ and for a scalar number λ with $\lambda \neq-1$, then it is shown that there exists a function $\sigma: \mathcal{A} \rightarrow \mathbb{C}$ such that $\phi(A)=\sigma(A) A$ for every $A \in \mathcal{A}$.

1. Introduction

In the last decade, many mathematicians have stdied preserving problems. In particular, maps preserving a certain property of products of elements are considered; see [2-11]. We recall some of them which are related to our purpose.

Let \mathcal{A} be a Banach algebra, let $A, B \in \mathcal{A}$, and let λ be a scalar. Then $A B+\lambda B A$ is said to be the λ-Lie product of A and B and is denoted by $[A, B]_{\lambda}$. The λ-Lie product is said to be the Jordan product or the Lie product, whenever $\lambda=1$ or $\lambda=-1$, respectively. The Lie product of A and B is denoted by $[A, B]$. The triple Jordan product of A and B is defined by $A B A$. These products play a rather important role in mathematical physics.

Taghavi et al. [10] considered the maps strongly preserving the η-Lie product on an algebra \mathcal{A}, that is a map $\phi: \mathcal{A} \rightarrow \mathcal{A}$ satisfying $\phi(A) \phi(P)+\eta \phi(P) \phi(A)=$ $A P+\eta P A$, for every $A \in \mathcal{A}$, some idempotent $P \in \mathcal{A}$, and some scalar η.

[^0]Let $\mathcal{B}(\mathcal{X})$ be the Banach algebra of all bounded linear operators on a Banach space \mathcal{X}. In [6], the authors characterized unital surjective maps on $\mathcal{B}(\mathcal{X})$ preserving the nonzero idempotency of product of operators, in both directions. Wang et al. [11] characterized linear surjective maps on $\mathcal{B}(\mathcal{X})$ preserving the nonzero idempotency of either products of operators or triple Jordan product of operators. Also Fang [5] characterized linear surjective maps on $\mathcal{B}(\mathcal{X})$ preserving the nonzero idempotency of Jordan product of operators.

We recall that a standard operator algebra \mathcal{A} on a Banach space \mathcal{X} is a norm closed subalgebra of $\mathcal{B}(\mathcal{X})$ that contains the identity and all finite rank operators.

We say that a map $\phi: \mathcal{A} \longrightarrow \mathcal{A}$ strongly preserves the square zero of λ-Lie product of operators, whenever

$$
[A, B]_{\lambda}^{2}=0 \Rightarrow[\phi(A), B]_{\lambda}^{2}=0
$$

for every $A, B \in \mathcal{A}$.
In this paper, we characterize the forms of additive maps that strongly preserve the square zero of λ-Lie products of operators. Our main result is the following theorem.

Theorem 1.1. Assume that \mathcal{A} is a standard operator algebra on a Banach space \mathcal{X} with $\operatorname{dim} \mathcal{X} \geq 2$. Let $\phi: \mathcal{A} \longrightarrow \mathcal{A}$ be an additive map that satisfies

$$
[A, B]_{\lambda}^{2}=0 \Rightarrow[\phi(A), B]_{\lambda}^{2}=0
$$

for every $A, B \in \mathcal{A}$ and for a scalar λ with $\lambda \neq-1$. Then there exists a function $\sigma: \mathcal{A} \rightarrow \mathbb{C}$ such that $\phi(A)=\sigma(A) A$ for every $A \in \mathcal{A}$.

2. Proof of main result

First we recall some notations. We assume that \mathcal{X} is a Banach space and \mathcal{A} is a standard operator algebra on \mathcal{X}. We denote by \mathcal{X}^{*}, the dual space of \mathcal{X}. For every nonzero $x \in \mathcal{X}$ and $f \in \mathcal{X}^{*}$, the symbol $x \otimes f$ stands for the rank one linear operator on \mathcal{X} defined by $(x \otimes f) y=f(y) x$ for any $y \in \mathcal{X}$. Note that every rank one operator in $\mathcal{B}(\mathcal{X})$ can be written in this way. We denote by $\mathcal{F}_{1}(\mathcal{X})$ the set of all rank one operators in $\mathcal{B}(\mathcal{X})$. The rank one operator $x \otimes f$ is idempotent if and only if $f(x)=1$ and is nilpotent if and only if $f(x)=0$.

Proposition 2.1. Let $A \in \mathcal{A}$, let $x \in \mathcal{X}$, let $f \in \mathcal{X}^{*}$ such that $f(x) \neq 0$, and let $\lambda \neq 0,-1$. Then $[A, x \otimes f]_{\lambda}^{2}=0$ if and only if one of the following statements occurs:
(i) $A x f(A x)=-\lambda x f\left(A^{2} x\right)$ and $A x f(x)=-\lambda x f(A x)$.
(ii) $f A=0$.

Proof. First assume that $A x f(A x)=-\lambda x f\left(A^{2} x\right)$ and $A x f(x)=-\lambda x f(A x)$ hold. Hence

$$
\begin{aligned}
{[A, x \otimes f]_{\lambda}^{2} } & =(A x \otimes f+\lambda x \otimes f A)^{2} \\
& =f(A x) A x \otimes f+\lambda f(x) A x \otimes f A+\lambda^{2} f(A x) x \otimes f A+\lambda f\left(A^{2} x\right) x \otimes f \\
& =-\lambda x f\left(A^{2} x\right) \otimes f-\lambda^{2} x f(A x) \otimes f A+\lambda^{2} f(A x) x \otimes f A+\lambda f\left(A^{2} x\right) x \otimes f \\
& =0
\end{aligned}
$$

Now if $f A=0$, then

$$
\begin{aligned}
{[A, x \otimes f]_{\lambda}^{2} } & =(A x \otimes f+\lambda x \otimes f A)^{2} \\
& =(A x \otimes f)^{2}=f(A x) A x \otimes f=0
\end{aligned}
$$

Conversely, assume that $[A, x \otimes f]_{\lambda}^{2}=0$. For an operator B, it is clear that

$$
B^{2}=0 \Leftrightarrow(B(B x)=0, \text { for all } x \in \mathcal{X}) \Leftrightarrow \operatorname{ImB} \subseteq \operatorname{ker} B
$$

This together with the assumptions implies

$$
[A, x \otimes f]_{\lambda}^{2}=0 \Leftrightarrow \operatorname{Im}[\mathrm{~A}, \mathrm{x} \otimes \mathrm{f}]_{\lambda} \subseteq \operatorname{ker}[A, x \otimes f]_{\lambda}
$$

Let $f A \neq 0$. If $f A$ and f are linearly independent, then $\operatorname{Im}[\mathrm{A}, \mathrm{x} \otimes \mathrm{f}]_{\lambda}=\operatorname{span}\{A x, x\}$, and so

$$
\operatorname{span}\{A x, x\} \subseteq \operatorname{ker}(A x \otimes f+\lambda x \otimes f A)
$$

which implies

$$
\begin{gathered}
(A x \otimes f+\lambda x \otimes f A)(A x)=A x f(A x)+\lambda x f\left(A^{2} x\right)=0, \\
(A x \otimes f+\lambda x \otimes f A)(x)=A x f(x)+\lambda x f(A x)=0,
\end{gathered}
$$

which are the asserted relations. If $f A$ and f are linearly dependent, then there exists a nonzero scalar a such that $f A=a f$, and so

$$
[A, x \otimes f]_{\lambda}=A x \otimes f+\lambda x \otimes f A=(A x+a x) \otimes f
$$

Thus $\operatorname{Im}[A, x \otimes f]_{\lambda}=\operatorname{span}\{A x+\lambda a x\}$, and so

$$
\operatorname{span}\{A x+\lambda a x\} \subseteq \operatorname{ker}(A x \otimes f+\lambda x \otimes f A)=\operatorname{ker}((A x+a x) \otimes f)
$$

which implies

$$
\begin{gathered}
((A x+\lambda a x) \otimes f)(A x+\lambda a x)=0 \\
\Rightarrow(A x+\lambda a x)[f(A x)+\lambda a f(x)]=0 \\
\Rightarrow(A x+\lambda a x) a f(x)(1+\lambda)=0 .
\end{gathered}
$$

Since $f(x) \neq 0$ and $\lambda \neq-1$, we obtain $A x+\lambda a x=0$. This together with $f A=a f$ implies

$$
A x f(A x)=-\lambda a x f(A x)=-\lambda x(f A)(A x)=-\lambda x f\left(A^{2} x\right)
$$

and

$$
A x f(x)=-\lambda a x f(x)=-\lambda x f(A x),
$$

and these complete the proof.

In the following lemmas, assume that $\phi: \mathcal{A} \longrightarrow \mathcal{A}$ is a map that satisfies

$$
[A, B]_{\lambda}^{2}=0 \Rightarrow[\phi(A), B]_{\lambda}^{2}=0
$$

for every $A, B \in \mathcal{A}$ and for a scalar number λ with $\lambda \neq 0,-1$.
Lemma 2.2. For every $A \in \mathcal{A}$, $\operatorname{ker} A \subseteq \operatorname{ker} \phi(A)$.

Proof. If $x \in \operatorname{ker} A$, then

$$
\begin{aligned}
{[A, x \otimes f]_{\lambda}^{2} } & =(A x \otimes f+\lambda x \otimes f A)^{2} \\
& =(\lambda x \otimes f A)^{2}=\lambda^{2} f(A x) x \otimes f A=0
\end{aligned}
$$

for every $f \in \mathcal{X}^{*}$, and so $[\phi(A), x \otimes f]_{\lambda}^{2}=0$. Applying Proposition 2.1, we have

$$
\begin{equation*}
\phi(A) x f(\phi(A) x)=-\lambda x f\left(\phi(A)^{2} x\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi(A) x f(x)=-\lambda x f(\phi(A) x) \tag{2.2}
\end{equation*}
$$

or $f \phi(A)=0$, for every $f \in \mathcal{X}^{*}$ such that $f(x) \neq 0$. We show $\phi(A) x=0$. First let relations (2.1) and (2.2) hold and let $f(x)=1$. From (2.2), we obtain $\phi(A) x=-\lambda x f(\phi(A) x)$ and thus

$$
f(\phi(A) x)=-\lambda f(x) f(\phi(A) x)=-\lambda f(\phi(A) x)
$$

Then $f(\phi(A) x)=0$ since $\lambda \neq 0,-1$. That is, $\phi(A) x=0$.
Now let $f \phi(A)=0$ for every f such that $f(x) \neq 0$. Since $\phi(A) x \neq 0$, there exists a linear functional f such that $f(x) \neq 0$ and $f(\phi(A) x)=1$, a contradiction, because $f(\phi(A) x)=(f \phi(A)) x=0$. Therefore, $\phi(A) x=0$.

Next assume that ϕ is additive.
Lemma 2.3. For every rank one operator $A, \phi(A)=0$ or $\phi(A)=\kappa(A) A$, where $\kappa: \mathcal{A} \rightarrow \mathbb{C}$ is a function.
Proof. Let $A=x \otimes f$, for some $x \in \mathcal{X}$ and $f \in \mathcal{X}^{*}$. From Lemma 2.2, we have

$$
\operatorname{ker} x \otimes f \subseteq \operatorname{ker} \phi(x \otimes f)
$$

which implies that $\operatorname{ker} f \subseteq \operatorname{ker} \phi(x \otimes f)$ and since $\operatorname{ker} f$ is a hyperspace of \mathcal{X}, $\operatorname{ker} \phi(x \otimes f)=\mathcal{X}$ or $\operatorname{ker} \phi(x \otimes f)=\operatorname{ker} f$. Therefore $\phi(x \otimes f)$ is a zero operator or there exists a vector y such that $\phi(x \otimes f)=y \otimes f$. We divide the rest of the proof into two cases:

Case 1. Let $f(x) \neq 0$ and let g be a functional such that $g(x)=0$. We have

$$
\begin{aligned}
{[x \otimes f, x \otimes g]_{\lambda}^{2} } & =[f(x) x \otimes g+\lambda g(x) x \otimes f]^{2} \\
& =[f(x) x \otimes g]^{2}=0
\end{aligned}
$$

and then

$$
[\phi(x \otimes f), x \otimes g]_{\lambda}^{2}=[y \otimes f, x \otimes g]_{\lambda}^{2}=0
$$

which implies

$$
\begin{aligned}
{[f(x) y \otimes g+\lambda g(y) x \otimes f]^{2}=} & f(x) g(y) y \otimes g+\lambda^{2} g(y) f(x) x \otimes f \\
& +\lambda g(y) f(x) f(y) x \otimes g=0
\end{aligned}
$$

Since $f(x) \neq 0$, we obtain

$$
y \otimes g(y) g=x \otimes\left(-\lambda^{2} g(y) f-\lambda g(y) f(y) g\right)
$$

This implies that x and y are linearly dependent or $g(y)=0$. If $g(y)=0$ and x and y are linearly independent, we get a contradiction, since in this case by $\operatorname{dim} \mathcal{X} \geq 2$, there exists a functional g such that $g(x)=0$ but $g(y)=1$.

Therefore x and y are linearly dependent and then there is a scalar $\kappa(A)$ such that $\phi(A)=\kappa(A) A$.

Case 2. Let $f(x)=0$. There exists a linear functional h such that $h(x)=1$ and then by Case 1, we have

$$
\phi(x \otimes(f+h))=k x \otimes(f+h)
$$

where $k=\kappa(x \otimes(f+h))$. On the other hand, the additivity of ϕ together with Case 1 implies

$$
\phi(x \otimes(f+h))=\phi(x \otimes f)+\phi(x \otimes h)=\phi(x \otimes f)+t x \otimes h
$$

where $t=\kappa(x \otimes h)$. Thus

$$
\phi(x \otimes f)=k x \otimes(f+h)-t x \otimes h=x \otimes(k f+k h-t h) .
$$

This together with $\phi(x \otimes f)=y \otimes f$ implies that x and y are linearly dependent and this completes the proof.

Proof of Theorem 1.1. We divide the proof into two cases.
Case 1. Let $\lambda=0$. First we show $\operatorname{ker} A \subseteq \operatorname{ker} \phi(A)$ for every $A \in \mathcal{A}$. Assume $A x=0$. This together with the assumption yields $(\phi(A) x \otimes f)^{2}=0$ for every $f \in \mathcal{X}^{*}$. Thus $\phi(A) x=0$ or $f(\phi(A) x)=0$, for every $f \in \mathcal{X}^{*}$. Since f is arbitrary, in the second case, we obtain $\phi(A) x=0$, too. Thus by the first paragraph of the proof of Lemma 2.3, for every $x \in \mathcal{X}$ and $f \in \mathcal{X}^{*}$, we have $\phi(x \otimes f)=0$ or there exists a vector y such that $\phi(x \otimes f)=y \otimes f$. If $f(x) \neq 0$, then $[(x \otimes f)(x \otimes g)]^{2}=0$, for every functional g such that $g(x)=0$. This implies that

$$
\begin{gathered}
{[(\phi(x \otimes f))(x \otimes g)]^{2}=0} \\
\Rightarrow[(y \otimes f)(x \otimes g)]^{2}=0 \\
\Rightarrow(f(x) y \otimes g)^{2}=0 \Rightarrow g(y)=0 .
\end{gathered}
$$

Hence x and y are linearly dependent. If $f(x)=0$, then by Case 2 in the proof of Lemma 2.3, we obtain that x and y are linearly dependent, too. Therefore, $\phi(x \otimes f)=0$ or $\phi(x \otimes f)=k x \otimes f$ for some scalar k.
Let $A \in \mathcal{A} \backslash \mathcal{F}_{1}(\mathcal{X})$ and let $x \in \mathcal{X}$. We know $(A x \otimes f)^{2}=0$, for every $f \in \mathcal{X}^{*}$ with $f(A x)=0$. Thus $(\phi(A) x \otimes f)^{2}=0$ and then $\phi(A) x=0$ or $f(\phi(A) x)=0$, which implies that $A x$ and $\phi(A) x$ are linearly dependent for every $x \in \mathcal{X}$. Hence by [1, Theorem 2.3], there exists a scalar number k such that $\phi(A)=k A$. This together with the previous discussion implies that there exists a function $\sigma: \mathcal{A} \rightarrow \mathbb{C}$ such that $\phi(A)=\sigma(A) A$ for every $A \in \mathcal{A}$.

Case 2. Let $\lambda \neq 0$. Let $A \in \mathcal{A} \backslash \mathcal{F}_{1}(\mathcal{X})$ and let $x \in \mathcal{X}$. There exists a linear functional f such that $f(x)=1$. Set $P=A x \otimes f$. It is clear that $(A-P) x=0$, and so Lemma 2.2 implies

$$
(\phi(A)-\phi(P)) x=0 \Rightarrow \phi(A) x=\phi(P) x
$$

By Lemma 2.3, we have $\phi(P)=0$ or $\phi(P)=\kappa(P) P$. If $\phi(P)=0$, then $\phi(A) x=0$. In the second case, if $\phi(P)=\kappa(P) P$, then $\phi(A) x=\kappa(P) P x=\kappa(P) A x$. However, in both cases, $\phi(A) x$ and $A x$ are linearly dependent, for every $x \in \mathcal{X}$, and so by [1, Theorem 2.3], there exists a scalar number k such that $\phi(A)=k A$. This
together with Lemma 2.3 follows that there exists a function $\sigma: \mathcal{A} \rightarrow \mathbb{C}$ such that $\phi(A)=\sigma(A) A$ for every $A \in \mathcal{A}$.

Acknowledgement. The author is thankful to the referee for the careful reading of the paper and for the valuable comments and suggestions.

References

1. M. Brešar and P. Šemrl, On locally linearly dependent operators and derivations, Trans. Amer. Math. Soc. 351 (1999) 1257-1275.
2. G.M.A. Chebotar, W.-F. Ke, P.-H. Lee and N.-C. Wong, Mappings preserving zero products, Studia Math. 155 (2003) 77-94.
3. M. Dobovišek, B. Kuzma, G. Lešnjak, C.K. Li and T. Petek, Mappings that preserve pairs of operators with zero triple Jordan Product, Linear Algebra Appl. 426 (2007) 255-279.
4. G. Dolinar, S. Du, J. Hou and P. Legiša, General preservers of invariant subspace lattices, Linear Algebra Appl. 429 (2008) 100-109.
5. L. Fang, Linear maps preserving the idempotency of Jordan products of operators, Electron. J. Linear Algebra 22 (2011) 767-779.
6. L. Fang, G. Ji and Y. Pang, Maps preserving the idempotency of products of operators, Linear Algebra Appl. 426 (2007) 40-52.
7. L. Molnǎr, Non-linear Jordan triple automorphisms of sets of self-adjoint matrices and operators, Studia Math. 173 (2006) 39-48.
8. A. Taghavi and R. Hosseinzadeh, Maps preserving the dimension of fixed points of products of operators, Linear Multilinear Algebra 62 (2013) 1285-1292.
9. A. Taghavi, R. Hosseinzadeh and H. Rohi, Maps preserving the fixed points of sum of operators, Oper. Matrices 9 (2015), no. 3, 563-569.
10. A. Taghavi, F. Kolivand and H. Rohi, A note on strong η-Lie products preserving Maps on some algebras, Mediterr. J. Math. 14 (2017) 1285-1292.
11. M. Wang, L. Fang, G. Ji and Y. Pang, Linear maps preserving idempotency of products or triple Jordan products of operators, Linear Algebra Appl. 429 (2008) 181-189.
[^1]
[^0]: Date: Received: 1 December 2019; Revised: 19 June 2020; Accepted: 21 June 2020.
 2010 Mathematics Subject Classification. Primary 46J10; Secondary 47B48.
 Key words and phrases. Preserver problem, Standard operator algebra, λ-Lie product, Lie product.

[^1]: ${ }^{1}$ Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, P.O. Box 47416-1468, Babolsar, Iran.

 Email address: ro.hosseinzadeh@umz.ac.ir

