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ALGORITHM FOR COMPUTING A COMMON SOLUTION OF
EQUILIBRIUM AND FIXED POINT PROBLEMS WITH

SET-VALUED DEMICONTRACTIVE OPERATORS

THIERNO M.M. SOW1

Communicated by M. Ito

Abstract. We introduce an iterative algorithm based on the well-known
Krasnoselskii–Mann’s method for finding a common element of the set of fixed
points of multivalued demicontractive mapping and the set of solutions of an
equilibrium problem in a real Hilbert space. Then, the strong convergence of
the scheme to a common element of the two sets is proved without imposing
any compactness condition on the mapping or the space. We further apply our
results to solve some optimization problems. Our results improve many recent
results using Krasnoselskii–Mann’s algorithm for solving nonlinear problems.

1. Introduction

Let C be a nonempty set and let f be a bifunction of C × C into R, where R
is the real numbers. The equilibrium problem for f is to find x ∈ C such that

f(x, y) ≥ 0, for all y ∈ C.

The set of solutions is denoted by EP (f). Equilibrium problems introduced by
Fan [8] and Blum and Oettli [1], have had a great impact and influence on the de-
velopment of several branches of pure and applied sciences. However, there were
few iterative algorithms developed for the approximation of solutions of equilib-
rium problems; see [1, 5, 16, 24–26] and the references therein.

Let K be a nonempty subset of a real Hilbert space H and let T : K → 2K be a
multivalued mapping. An element x ∈ K is called a fixed point of T if x ∈ Tx.
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The fixed point set of T is denoted by Fix(T ) := {x ∈ K : x ∈ Tx}. It is easy to
see that the single-valued mapping is a particular case of multivalued mappings.
For several years, the study of fixed point theory for single-valued and multival-
ued nonlinear mappings has attracted, and continues to attract, the interest of
several well-known mathematicians (see, for example, Brouwer [2], Kakutani [14],
Nash [21, 22], Geanakoplos [10], Nadla [20], Downing and Kirk [7], Sow, Djitté,
and Chidume [28], Markin [18], Lim [15], and Gorniewicz [6, 11, 12]).

Interest in the study of fixed point theory for multivalued nonlinear mappings
stems, perhaps, is mainly from its usefulness in real-world applications such as
game theory and market economy and in other areas of mathematics, such as in
nonsmooth differential equations and differential inclusions, optimization theory.

Let CB(K) and P (K) denote the family of nonempty closed bounded subsets
and nonempty proximinal bounded subsets of K, respectively. The Pompeiu
Hausdorff metric on CB(K) is defined by

D(A,B) = max
{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}

for all A,B ∈ CB(K). A multivalued mapping T : K → CB(K) is called
L-Lipschitzian if there exists L > 0 such that

D(Tx, Ty) ≤ L∥x− y∥ for all x, y ∈ K,

and if L = 1 T is called a nonexpansive mapping.

A multivalued map T is called quasi-nonexpansive if

D(Tx, Tp) ≤ ∥x− p∥

holds for all x ∈ K and p ∈ Fix(T ). It is easy to see that the class of multivalued
quasi-nonexpansive mappings properly includes that of multivalued nonexpansive
maps with fixed points.

A multivalued mapping T : K → CB(K) is said to be k-strictly pseudo-
contractive, if there exists k ∈ (0, 1) such for all x, y ∈ K, we have(

D(Tx, Ty)
)2

≤ ∥x−y∥2+k∥(x−u)− (y− v)∥2 for all u ∈ Tx, v ∈ Ty. (1.1)

If k = 1 in (1.1), the map T is said to be pseudo-contractive.
A map T : K → 2K is said to be demicontractive if Fix(T ) ̸= ∅ and for all

p ∈ Fix(T ), x ∈ K there exists k ∈ [0, 1) such that(
D(Tx, Tp)

)2

≤ ∥x− p∥2 + kd(x, Tx)2. (1.2)

If k = 1 in (1.2), the map T is said to be hemicontractive.

Remark 1.1. It is easily seen that any multivalued nonexpansive, quasi-nonexpansive,
and k-strictly pseudo-contractive mappings are k-demicontractive for any k ∈
[0, 1). Moreover the inverse is not true (see, for example, Isiogugu and Osilike [13]).
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Over the last years, one may see an increasing interest in the study of equilibrium
and fixed point problems; see, for instance, [1, 4, 12, 24, 29].

For nonlinear mappings with fixed points, the Mann iterative method [17] is a
valuable tool to study them. However, only the weak convergence is guaranteed
in infinite-dimensional spaces. A lot of works have been done for the modifica-
tion of the normal Manns iteration so that the strong convergence is guaran-
teed (see, e.g., [26, 28, 31]). In 2017, Fan and Yao [9], motivated by the fact that
the Krasnoselskii–Mann algorithm method is remarkably useful for finding fixed
points of nonexpansive mapping, extended and improved many existing results
in current literature.

However, we observe that in [4], the recursion formula studied is not simpler.

In this paper, motivated by the works of [4,9] and ongoing results, we prove the
strong convergence theorems for finding a common element of the set of common
fixed points of multivalued demicontractive mapping and the set of solutions of
an equilibrium problem in a real Hilbert space. Our contribution lies in the fact
that our iterative method solves the fixed point problem for set-valued mappings
and equilibrium problem at same time. Finally, some applications are given to
validate our new findings.

2. Main results

The demiclosedness of a nonlinear operator T usually plays an important role
in dealing with the convergence of fixed point iterative algorithms.
Definition 2.1. Let H be a real Hilbert space and let T : D(T ) ⊂ H → 2H be a
multivalued mapping. Then I−T is said to be demiclosed at 0 if for any sequence
{xn} ⊂ D(T ) such that {xn} converges weakly to p and d(xn, Txn) converges to
zero, then p ∈ Tp.
Now we state our main result.
Theorem 2.2. Let H be a real Hilbert space and let K be a nonempty, closed
convex cone of H.Let f be a bifunction from K ×K → R satisfying (A1)–(A4)
and let S : K → CB(K) be a multivalued β-demicontractive mapping such that
F := EP (f) ∩ Fix(S) ̸= ∅ and Sp = {p}, for all p ∈ F. Assume that I − S is
demiclosed at the origin. Let {xn} and {un} be sequences defined iteratively from
arbitrary x0 ∈ K by

f(un, y) +
1

rn
⟨y − un, un − xn⟩ ≥ 0, for all y ∈ K,

yn = θnun + (1− θn)wn, wn ∈ Sun,
xn+1 = αn(λnxn) + (1− αn)yn, n ≥ 0,

(2.1)

where {αn} ⊂ (0, 1), {θn}, {λn} ⊂ (0, 1), and {rn} ⊂]0,∞[ satisfy

(i) lim
n→∞

αn = 0,
∞∑
n=0

(1− λn)αn = ∞ and lim
n→∞

λn = 1;



134 T.M.M. SOW

(ii) θn ∈]β, 1[ and lim
n→∞

inf(1− θn)(θn − β) > 0,

(iii) lim
n→∞

inf rn > 0.

Then, {xn} and {un} defined by (2.1) converge strongly to x∗ ∈ F, where x∗ =
PF (0).

Proof. By using properties of K, we have t(λx)+(1−t)y ∈ K, for all λ, t ∈ (0, 1),
and x, y ∈ K. Therefore, the sequence {xn} generated by (2.1) is well defined.
Now, we prove that the sequence {xn} is bounded. Let p ∈ F. Then from un =
Trnxn, we have

∥un − p∥ = ∥Trnxn − Trnp∥ ≤ ∥xn − p∥, for all n ≥ 0.

From (2.1) and the fact that Sp = {p}, we have

∥yn − p∥2 =
∥∥∥θn(un − p) + (1− θn)(wn − p)

∥∥∥2

= θn∥un − p∥2 + (1− θn)∥wn − p∥2 − θn(1− θn)∥wn − un∥2.
Using the fact that S is β-demi-contractive and Sp = {p}, we obtain

∥yn − p∥2 ≤ θn∥un − p∥2 + (1− θn)D(Sun, Sp)
2 − (1− θn)θn∥un − wn∥2

≤ θn∥un − p∥2 + (1− θn)
(
∥un − p∥2 + βd(un, Sun)

2
)

−(1− θn)θn∥un − wn∥2.
Hence,

∥yn − p∥ ≤ ∥un − p∥2 − (1− θn)(θn − β)∥un − wn∥2. (2.2)
Since θn ∈]β, 1[, we obtain

∥yn − p
∥∥∥ ≤ ∥un − p

∥∥∥.
Therefore

∥yn − p∥ ≤ ∥un − p∥ ≤ ∥xn − p∥. (2.3)
Using (2.1) and inequality (2.3), we have

∥xn+1 − p∥ = ∥αn(λnxn) + (1− αn)yn − p∥
≤ αnλn∥xn − p∥+ (1− λn)αn∥p∥+ (1− αn)∥yn − p∥
≤ αnλn∥xn − p∥+ (1− λn)αn∥p∥+ (1− αn)∥xn − p∥
= [1− (1− λn)αn]∥xn − p∥+ (1− λn)αn∥p∥.

Therefore
∥xn+1 − p∥ ≤ max {∥xn − p∥, ∥p∥}.

Hence, {xn} is bounded and so {yn}. From (2.1), (2.2), and convexity of ∥.∥2, we
have

∥xn+1 − p∥2 = ∥αn(λnxn) + (1− αn)yn − p∥2

≤ αn∥λnxn − p∥2 + (1− αn)∥yn − p∥2

≤ αn∥λnxn − p∥2 + (1− αn)
[
∥un − p∥2
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−(1− θn)(θn − β)∥un − wn∥2]
≤ αn∥λnxn − p∥2 + ∥un − p∥2 − (1− θn)(θn − β)∥un − wn∥2

≤ ∥xn − p∥2 + αn∥λnxn − p∥2 − (1− θn)(θn − β)∥un − wn∥2.
Therefore,

(1− θn)(θn − β)∥un − wn∥2 ≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + αn∥λnxn − p∥2.
Since {xn} is bounded, then there exists a constant B > 0 such that

∥λnxn − p∥2 ≤ B, for all n ≥ 0.

Hence,
(1− θn)(θn − β)∥un − wn∥2 ≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + αnB. (2.4)

Now we prove that {xn} converges strongly to x∗. We divide the proof into two
cases.
Case 1. Assume that the sequence {∥xn−p∥} is monotonically decreasing. Then
{∥xn − p∥} is convergent. Clearly, we have

lim
n→∞

∥xn − p∥2 − ∥xn+1 − p∥2 = 0. (2.5)

It then implies from (2.4) that
lim
n→∞

(1− θn)(θn − β)∥un − wn∥2 = 0.

Using the fact that lim
n→∞

inf(1− θn)(θn − β), we have

lim
n→∞

∥un − wn∥ = 0.

Hence,
lim
n→∞

d(un, Sun) = 0. (2.6)
Let p ∈ F . Then

∥un − p∥2 = ∥Trnxn − Trnp∥2

≤ ⟨Trnxn − Trnp, xn − p⟩
≤ ⟨un − p, xn − p⟩

=
1

2
(∥un − p∥2 + ∥xn − p∥2 − ∥xn − un∥2),

and hence
∥un − p∥2 ≤ ∥xn − p∥2 − ∥xn − un∥2.

Therefore, from (2.1), we obtain
∥xn+1 − p∥2 = ∥αn(λnxn) + (1− αn)yn − p∥2

≤ ∥αn((λnxn)− p) + (1− αn)(yn − p)∥2

≤ (1− αn)
2∥yn − p∥2 + 2αn⟨(λnxn)− p, xn+1 − p⟩

≤ (1− αn)
2∥un − p∥2 + 2αnλn⟨xn − p, xn+1 − p⟩

+2(1− λn)αn⟨p, xn+1 − p⟩
≤ (1− αn)

2(∥xn − p∥2 − ∥xn − un∥2)
+2αnλn∥xn − p∥∥xn+1 − p∥+ 2αn(1− λn)∥p∥∥xn+1 − p∥
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≤ (1− 2αn + α2
n)∥xn − p∥2 − (1− αn)

2∥xn − un∥2

+2αnλn∥xn − p∥∥xn+1 − p∥+ 2αn(1− λn)∥p∥∥xn+1 − p∥
≤ ∥xn − p∥2 + αn∥xn − p∥2 − (1− αn)

2∥xn − un∥2

+2αnλn∥xn − p∥∥xn+1 − p∥+ 2αn(1− λn)∥p∥∥xn+1 − p∥,
and hence

(1− αn)
2∥xn − un∥2 ≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + αn∥xn − p∥2

+2αnλn∥xn − p∥∥xn+1 − p∥
+2αn(1− λn)∥p∥∥xn+1 − p∥.

Thanks inequality (2.5) and αn → 0 as n → ∞, we have
∥xn − un∥ → 0 as, n → ∞.

Next, we prove that lim sup
n→+∞

⟨x∗, x∗ − xn⟩ ≤ 0. We choose a subsequence {xnk
} of

{xn} such that
lim sup
n→+∞

⟨x∗, x∗ − xn⟩ = lim
k→+∞

⟨x∗, x∗ − xnk
⟩.

Since H is reflexive and {unk
} is bounded, there exists a subsequence {unkj

} of
{unk

} that converges weakly to a ∈ K. From (2.6) and the fact that I − S is
demiclosed, we obtain a ∈ Fix(S). Without loss of generality, we can assume
that unk

⇀ a.Let us show a ∈ EP (f). By the same argument as in the proof
of [1] and (A2) that

1

rn
⟨y − un, un − xn⟩ ≥ f(y, un)

and hence
⟨y − unk

,
unk

− xnk

rnk

⟩ ≥ f(y, unk
).

Since unk
− xnk

rnk

→ 0 and unk
⇀ a, it follows from (A4) that f(y, a) ≤ 0 for all

y ∈ K. For t with 0 < t < 1 and y ∈ K, let yt = ty + (1 − t)a. Since y ∈ K and
a ∈ K, we have yt ∈ K and hence f(yt, a) ≤ 0. Therefore, from (A1) and (A4),
we have

0 = f(yt, yt) ≤ tf(yt, y) + (1− t)f(yt, a) ≤ tf(yt, y)

and hence 0 ≤ f(yt, y). From (A3), we have f(a, y) ≥ 0 for all y ∈ K and hence
a ∈ EP (f). Therefore, a ∈ Fix(S) ∩ EP (f) = F.
On other hand, using the fact that x∗ = PF (0) (properties of metric projection),
we then have

lim sup
n→+∞

⟨x∗, x∗ − xn⟩ = lim
k→+∞

⟨x∗, x∗ − xnk
⟩

= ⟨x∗, x∗ − a)⟩ ≤ 0.

Finally, we show that xn → x∗. From (2.1), we have
∥xn+1 − x∗∥2 = ⟨xn+1 − x∗, xn+1 − x∗⟩ = αnλn⟨xn − x∗, xn+1 − x∗⟩
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+(1− λn)αn⟨x∗, x∗ − xn+1⟩+ (1− αn)⟨yn − x∗, xn+1 − x∗⟩
≤ αnλn⟨xn − x∗, xn+1 − x∗⟩+ (1− λn)αn⟨x∗, x∗ − xn+1⟩

+(1− αn)∥yn − x∗∥∥xn+1 − x∗∥
≤ αnλn∥xn − x∗∥∥xn+1 − x∗∥+ (1− λn)αn⟨x∗, x∗ − xn+1⟩

+(1− αn)∥xn − x∗∥∥xn+1 − x∗∥
≤ [1− (1− λn)αn]∥xn − x∗∥∥xn+1 − x∗∥

+(1− λn)αn⟨x∗, x∗ − xn+1⟩

≤ 1− (1− λn)αn

2
(∥xn − x∗∥2 + ∥xn+1 − x∗∥2)

+(1− λn)αn⟨x∗, x∗ − xn+1⟩,
which implies that

∥xn+1 − x∗∥2 ≤ [1− (1− λn)αn]∥xn − x∗∥+ 2(1− λn)αn⟨x∗, x∗ − xn+1⟩.
Moreover, thanks to [30], we then have xn → x∗.

Case 2. Assume that the sequence {∥xn − x∗∥} is not monotonically decreasing.
Set Bn = ∥xn − x∗∥, and let τ : N → N be a mapping for all n ≥ n0 (for some n0

large enough) by τ(n) = max{k ∈ N : k ≤ n, Bk ≤ Bk+1}.
We have τ is a nondecreasing sequence such that τ(n) → ∞ as n → ∞ and
Bτ(n) ≤ Bτ(n)+1 for n ≥ n0. From (2.4), we have

(1− ατ(n))(θτ(n) − β)(1− θτ(n))∥uτ(n) − wτ(n)∥2 ≤ ατ(n)B → 0 as n → ∞.

Furthermore, we have
∥uτ(n) − wτ(n)∥ → 0 as n → ∞.

Hence,
lim
n→∞

d
(
uτ(n), Suτ(n)

)
= 0.

By the same argument as in case 1, we can show that xτ(n) converges weakly in
H and lim sup

n→+∞
⟨x∗, x∗ − xτ(n)⟩ ≤ 0. We have for all n ≥ n0,

0 ≤ ∥xτ(n)+1 − x∗∥2 − ∥xτ(n) − x∗∥2 ≤
(
1− λτ(n)

)
ατ(n)[−∥xτ(n) − x∗∥2

+2⟨x∗, x∗ − xτ(n)+1⟩],
which implies that

∥xτ(n) − x∗∥2 ≤ 2⟨x∗, x∗ − xτ(n)+1⟩.
Then, we have

lim
n→∞

∥xτ(n) − x∗∥2 = 0.

Therefore,
lim
n→∞

Bτ(n) = lim
n→∞

Bτ(n)+1 = 0.

Moreover, thanks to [16], we then have
0 ≤ Bn ≤ max{Bτ(n), Bτ(n)+1} = Bτ(n)+1.
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Hence, lim
n→∞

Bn = 0, that is, {xn} converges strongly to x∗. □

Remark 2.3. Many already studied problems in the literature can be considered as
special cases of this paper; see, for example, [1,4,9,12,24,28,29] and the references
therein. Our results are applicable for finding a common solution of variational
and fixed point problems involving set-valued operators in real Hilbert spaces
(see, for example, [27] for more details).

Acknowledgement. The author thanks the referees for their work and their
valuable suggestions that helped to improve the presentation of this paper.
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