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Abstract. This paper deals with an existence result of renormalized solutions
for nonlinear parabolic equations of the type

∂b(x, u)

∂t
− div a(x, t, u,∇u)− div Φ(x, t, u) = f in QT = Ω× (0, T ),

where b(x, ·) is a strictly increasing C1-function for every x ∈ Ω with b(x, 0) =
0, the lower order term Φ satisfies a natural growth condition described by the
appropriate Orlicz function M , and f is an element of L1(QT ). We do not
assume any growth restrictions neither on M nor on its conjugate M .

1. Introduction

Let Ω be a bounded open subset of RN satisfying the segment property, N ≥
2, let QT = Ω × (0, T ), where T is a positive real number, and let M be an
Orlicz function. Let A(u) := −div a(x, t, u,∇u) be a so-called Leray–Lions type
operator whose prototype is the p-Laplacian operator and let b : Ω × R → R be
a Carathéodory function such that b(x, ·) is a strictly increasing C1-function for
any fixed x ∈ Ω with b(x, 0) = 0.
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In this paper, we prove the existence of renormalized solutions in the setting
of Orlicz spaces to the following Cauchy–Dirichlet boundary value problem

∂b(x, u)

∂t
+ A(u)− div Φ(x, t, u) = f in QT ,

b(x, u)(t = 0) = b(x, u0) in Ω,
u = 0 on ∂Ω× (0, T ),

(1.1)

where u0 ∈ L1(Ω), f ∈ L1(QT ), and Φ satisfies the following natural growth
condition

|Φ(x, t, s)| ≤ γ(x, t) +M
−1
(M(|s|)) with γ ∈ EM(QT ), (1.2)

where EM denotes the closure, in the Orlicz space defined by the complementary
M , of the set of bounded measurable functions with compact support in Ω.

Problem (1.1) has been studied in different particular cases, we give some works
in this direction. In the classical Sobolev spaces and in a special case where Φ ≡ 0,
b is a maximal monotone graph on R and a(x, t, s, ξ) is independent of s, existence
and uniqueness of a renormalized solution have been proved by Blanchard and
Murat [9] and by Blanchard and Porretta [11] in the case where a(x, t, s, ξ) is
independent of t. Aberqi, Bennouna, and Redwane [1] investigated problem (1.1)
in the case M(t) = tp for a measure µ = f − div(F ), with f ∈ L1(QT ), F ∈
(Lp

′
(Q))N , and Φ satisfies the condition

|Φ(x, t, s)| ≤ c(x, t)|s|γ,

with c(x, t) ∈ Lτ (QT ) for some τ =
N + p

p− 1
and γ =

N + 2

N + p
(p− 1).

Concerning contributions in Orlicz spaces framework, Azroul, Redwane, and
Rhoudaf [6] proved the existence of renormalized solution, where Φ depends only
on u (without dependence on x) and b(x, u) = b(u), the same result has been
given by Redwane [24], where b(x, u) depends on x and u.

Recently, in the setting of Orlicz spaces, Hadj Nassar, Moussa and Rhoudaf [21]
have studied the existence of renormalized solution for problem (1.1) in the case
f ∈ L1(QT ) under a nonnatural growth condition on Φ prescribed by an
N -function P that increases essentially less rapidly than the Orlicz function M
defining the framework spaces, namely,

|Φ(x, t, s)| ≤ P
−1
(P (|s|)) with P ≺≺M. (1.3)

Indeed, there is no growth with respect to the spatial variable (x, t), thus, condi-
tion (1.3) does not define a general growth condition. Our approach in this paper
is how to deal with the issue: Passing from assuming condition (1.3) to assuming
the weaker one (1.2). Motivated by the above mentioned works, we establish the
existence of renormalized solutions for problem (1.1) in Orlicz spaces, where Φ
satisfies condition (1.2), without assuming any restriction on the N -function M
neither on its complementary M . We avoid to use the concept of Orlicz function
grows essentially more slowly than another, we use a direct and a concise method
unlike as in [21]. Note that, if γ(x, t) = 0, then condition (1.2) is natural and
less restrictive than (1.3). Thus, we find the same result as in [21] under a best
condition. Moreover, if γ(x, t) 6= 0, then we get a complete growth condition on
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Φ. Thus, our work has two directions, weakening the growth restriction on Φ and
restoring the general natural growth condition.

In dealing with this problem, we have encountered some difficulties, essentially,
under the natural growth assumption (1.2), it is difficult to prove the existence
of solution for the approximate problem and proving its convergence, which are
the basic results in the proof of such solutions. The improvement from condition
(1.3) to condition (1.2) follows thanks to an algebraic trick combined with the
convexity of M and Young’s inequality on a specific positive quantities.

This article is organized as follows: In section 2, we recall some well-known
preliminaries, results, and properties of Orlicz–Sobolev spaces and inhomoge-
neous Orlicz–Sobolev spaces. Section 3 is devoted to basic assumptions, problem
setting, and the proof of the main result that is Theorem 3.4.

2. Preliminaries

2.1. Orlicz–Sobolev spaces. Let M : R+ → R+ be a continuous and convex
function with

M(t) > 0 for t > 0, lim
t→0

M(t)

t
= 0 and lim

t→+∞

M(t)

t
= +∞.

The function M is said an N -function or an Orlicz function, and the N -function
complementary to M is defined as

M(t) = sup
{
st−M(s), s ≥ 0

}
.

We recall that (see [2])

M(t) ≤ tM
−1
(M(t)) ≤ 2M(t) for all t ≥ 0 (2.1)

and the Young’s inequality: for all s, t ≥ 0,
st ≤M(s) +M(t).

We say that M satisfies the ∆2-condition (or M ∈ ∆2) if for some k > 0,
M(2t) ≤ kM(t) for all t≥ 0, (2.2)

and if (2.2) holds only for t ≥ t0, then M is said to satisfy the ∆2-condition near
infinity.

Let M1 and M2 be two N -functions. The notation M1 ≺≺M2 means that M1

grows essentially less rapidly than M2, that is,

for all ϵ > 0, lim
t→∞

M1(t)

M2(ϵt)
= 0,

that is the case if and only if

lim
t→∞

(M2)
−1(t)

(M1)−1(t)
= 0.

Let Ω be an open subset of RN . The Orlicz class KM(Ω) (resp., the Orlicz
space LM(Ω)) is defined as the set of (equivalence class of) real-valued measurable
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functions u on Ω such that∫
Ω

M(|u(x)|)dx <∞ (resp.
∫
Ω

M
( |u(x)|

λ

)
dx <∞ for some λ > 0).

Endowed with the norm

‖u‖M = inf
{
λ > 0 :

∫
Ω

M
( |u(x)|

λ

)
dx ≤ 1

}
,

LM(Ω) is a Banach space and KM(Ω) is a convex subset of LM(Ω). The closure
in LM(Ω) of the set of bounded measurable functions with compact support in Ω
is denoted by EM(Ω).

The Orlicz–Sobolev spaceW 1LM(Ω) (resp. W 1EM(Ω)) is the space of functions
u such that u and its distributional derivatives up to order 1 are in LM(Ω) (resp.
EM(Ω)).

This is a Banach space under the norm

‖u‖1,M =
∑
|α|≤1

‖Dαu‖M .

Thus, W 1LM(Ω) and W 1EM(Ω) can be identified with subspaces of the product
of (N +1) copies of LM(Ω). Denoting this product by ΠLM , we will use the weak
topologies σ(ΠLM ,ΠEM) and σ(ΠLM ,ΠLM).

The spaceW 1
0EM(Ω) is defined as the norm closure of the Schwartz space D(Ω)

in W 1EM(Ω) and the space W 1
0LM(Ω) as the σ(ΠLM ,ΠEM) closure of D(Ω) in

W 1LM(Ω).
We say that a sequence {un} converges to u for the modular convergence in

W 1LM(Ω) if, for some λ > 0,∫
Ω

M
( |Dαun −Dαu|

λ

)
dx→ 0 for all |α| ≤ 1;

this implies convergence for σ(ΠLM ,ΠLM).
IfM satisfies the∆2-condition on R+ (near infinity only if Ω has finite measure),

then the modular convergence coincides with norm convergence. Recall that the
norm ‖Du‖M defined on W 1

0LM(Ω) is equivalent to ‖u‖1,M (see [17]).
Let W−1LM(Ω) (resp. W−1EM(Ω)) denote the space of distributions on Ω,

which can be written as sums of derivatives of order ≤ 1 of functions in LM(Ω)
(resp. EM(Ω)). It is a Banach space under the usual quotient norm.

If the open set Ω has the segment property, then the space D(Ω) is dense in
W 1

0LM(Ω) for the topology σ(ΠLM ,ΠLM) (see [17]). Consequently, the action
of a distribution in W−1LM(Ω) on an element of W 1

0LM(Ω) is well defined. For
more details one can see, for example, [2] or [22].

2.2. Inhomogeneous Orlicz–Sobolev spaces. Let Ω be a bounded open sub-
set of RN and let T > 0, and set QT = Ω× (0, T ). For each α ∈ (IN∗)N , denote
by Dα

x the distributional derivative on QT of order α with respect to the variable
x ∈ Ω. The inhomogeneous Orlicz–Sobolev spaces are defined as follows:

W 1,xLM(QT ) =
{
u ∈ LM(QT ) : D

α
xu ∈ LM(QT ) for all |α| ≤ 1

}
,
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and
W 1,xEM(QT ) =

{
u ∈ EM(QT ) : D

α
xu ∈ EM(QT ) for all |α| ≤ 1

}
.

The last space is a subspace of the first one, and both are Banach spaces under
the norm

‖u‖ =
∑
|α|≤1

‖Dα
xu‖M,QT

.

We can easily show that they form a complementary system when Ω satisfies the
segment property. These spaces are considered as subspaces of the product space
ΠLM(QT ), which have as many copies as there are α-order derivatives, |α| ≤ 1.
We shall also consider the weak topologies σ(ΠLM ,ΠEM) and σ(ΠLM ,ΠLM)).
If u ∈ W 1,xLM(QT ), then the function t 7→ u(t) = u(t, ·) is defined on (0, T ) with
values in W 1LM(Ω). If, further, u ∈ W 1,xEM(QT ), then the concerned function
is aW 1EM(Ω)-valued and is strongly measurable. Furthermore the following em-
bedding holds: W 1,xEM(QT ) ⊂ L1(0, T ;W 1EM(Ω)). The space W 1,xLM(QT ) is
not in general separable, if u ∈ W 1,xLM(QT ), we cannot conclude that the func-
tion u(t) is measurable on (0, T ). However, the scalar function t 7→‖ u(t) ‖M,Ω is in
L1(0, T ). The spaceW 1,x

0 EM(QT ) is defined as the (norm) closure inW 1,xEM(QT )
of D(QT ). It is proved that when Ω has the segment property, then each element
u of the closure of D(QT ) with respect of the weak* topology σ(ΠLM ,ΠEM) is
a limit, in W 1,xLM(QT ), of some subsequence (un) ⊂ D(QT ) for the modular
convergence; that is, if, for some λ > 0, such that for all |α| ≤ 1;∫

QT

M
( |Dα

xun −Dα
xu|

λ

)
dx dt −→ 0 as n −→ ∞.

This implies that (un) converges to u in W 1,xLM(QT ) for the weak topology
σ(ΠLM ,ΠEM). Consequently,

D(QT )
σ(ΠLM ,ΠEM )

= D(QT )
σ(ΠLM ,ΠLM )

.

This space will be denoted by W 1,x
0 LM(QT ). Furthermore,

W 1,x
0 EM(QT ) = W 1,x

0 LM(QT ) ∩ ΠEM .

We have then the following complementary system(
W 1,x

0 LM(QT ), F,W
1,x
0 EM(QT ), F0

)
,

where F is the dual space of W 1,x
0 EM(QT ). It is also, except for an isomorphism,

the quotient of ΠLM by the polar set W 1,x
0 EM(QT )

⊥, and will be denoted by
F = W−1,xLM(QT ) and it is shown that,

W−1,xLM(QT ) =
{
f =

∑
|α|≤1

Dα
xfα : fα ∈ LM(QT )

}
.

This space will be equipped with the usual quotient norm

‖f‖ = inf
∑
|α|≤1

‖fα‖M,QT
,
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where the infimum is taken on all possible decompositions

f =
∑
|α|≤1

Dα
xfα, fα ∈ LM(QT ).

The space F0 is then given by

W−1,xLM(QT ) =
{
f =

∑
|α|≤1

Dα
xfα : fα ∈ EM(QT )

}
and is denoted by F0 = W−1,xEM(QT ).

Lemma 2.1. Let Ω be an open subset of RN with finite measure. Also let M ,
P , and Q be N-functions such that Q ≺≺ P , and let f : Ω × R → R be a
Carathéodory function such that, for a.e. x ∈ Ω and for all s ∈ R,

|f(x, s)| ≤ c(x) + k1P
−1M(k2|s|),

where k1, k2 are real constants and c(x) ∈ EQ(Ω). Then the Nemytskii operator
Nf , defined by Nf (u)(x) = f(x, u(x)), is strongly continuous from P (EM ,

1
k2
) =

{u ∈ LM(Ω) : d(u,EM(Ω)) < 1
k2
} into EQ(Ω).

Lemma 2.2. Let uk, u ∈ LM(Ω). If uk → u for the modular convergence, then
uk → u for σ(LM , LM).

Lemma 2.3 ([3, Lemma 1]). If un → u for the modular convergence (with every
λ > 0) in LM(QT ), then un → u strongly in LM(QT ).

Lemma 2.4 ([17]). Let F : R → R be uniformly lipschitzian, with F (0) = 0.
Let M be a Orlicz function and let u ∈ W 1LM(Ω) (resp. W 1EM(Ω)). Then,
F (u) ∈ W 1LM(Ω) (resp. W 1EM(Ω)). Moreover, if the set of discontinuity points
D of F ′ is finite, then

∂

∂xi
F (u) =

 F ′(u)
∂u

∂xi
a.e. in {x ∈ Ω : u(x) /∈ D},

0 a.e. in {x ∈ Ω : u(x) ∈ D}.

Lemma 2.5 ([17]). Let F : R → R be uniformly lipschitzian, with F (0) = 0 and
let M be an Orlicz function. we assume that the set of discontinuity points D
of F ′ is finite. Then the mapping F : W 1LM(Ω) → W 1LM(Ω) is sequentially
continuous with respect to the weak* topology σ(ΠLM ,ΠEM).

Lemma 2.6 ([16]). Let Ω be a bounded open subset of RN , N ≥ 2, satisfying the
segment property. Then{

u ∈ W 1,x
0 LM(QT ) :

∂u

∂t
∈ W−1,xLM(QT ) + L1(QT )

}
⊂ C

(
[0, T ], L1(Ω)

)
.

Lemma 2.7 (Integral Poincaré’s type inequality in inhomogeneous Orlicz spaces
[16]). Let Ω be a bounded open subset of RN and let M be an Orlicz function.
Then there exist two positive constants δ, λ > 0 such that∫

QT

M(δ|u(x, t)|) dx dt ≤
∫
QT

λM(|∇u(x, t)|) dx dt for all u ∈ W 1,x
0 LM(QT ).
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Lemma 2.8. If fn ⊂ L1(Ω) with fn → f ∈ L1(Ω) a.e. in Ω, fn, f ≥ 0 a. e. in
Ω and

∫
Ω

fn(x) dx→
∫
Ω

f(x) dx, then fn → f in L1(Ω).

Lemma 2.9 ([17]). Suppose that Ω satisfies the segment property and let u ∈
W 1

0LM(Ω). Then, there exists a sequence (un) ⊂ D(Ω) such that un → u for
the modular convergence in W 1

0LM(Ω). Furthermore, if u ∈ W 1
0LM(Ω) ∩ L∞(Ω),

then
‖un‖∞ ≤ (N + 1)‖u‖∞.

3. Basic assumptions and main result

Through this paper, Ω is a bounded open subset of RN satisfying the segment
property, N ≥ 2, QT = Ω × (0, T ) where T is a positive real number, and M
is an Orlicz function. Consider b : Ω × R → R a Carathéodory function such
that for every x ∈ Ω, b(x, s) is a strictly increasing C1-function with b(x, 0) = 0
and for any k > 0, there exist λk > 0, a function Ak ∈ L∞(Ω), and a function
Ãk ∈ LM(Ω) such that,

λk ≤
∂b(x, s)

∂s
≤ Ak(x) and

∣∣∣∇x

(∂b(x, s)
∂s

)∣∣∣ ≤ Ãk(x). (3.1)

Let A : D(A) ⊂ W 1,x
0 LM(QT ) → W−1,xLM(QT ) be an operator of Leray—Lions

type of the form
Au := −div a(x, t, u,∇u).

Our main goal in this study is to prove the existence of renormalized solutions in
the setting of Orlicz spaces for the nonlinear problem

∂b(x, u)

∂t
− div a(x, t, u,∇u)− div Φ(x, t, u) = f in QT ,

b(x, u)(t = 0) = b(x, u0) in Ω,
u = 0 on ∂Ω× (0, T ),

(3.2)

where a : QT × R× RN → RN is a Caratheodory function satisfying, for almost
every (x, t) ∈ QT and for all s ∈ R, ξ, η ∈ RN(ξ 6= η) the following conditions:

(H1): There exist a function c(x, t) ∈ EM(QT ), some positive constants k1
and k2, and an Orlicz function P ≺≺M such that

|a(x, t, s, ξ)| ≤ c(x, t) +M
−1
(P (k1|s|) +M

−1
(M(k2|ξ|)).

(H2): The vector a is strictly monotone(
a(x, t, s, ξ)− a(x, t, s, η)

)
·
(
ξ − η

)
> 0.

(H3): a is coercive, there exists a constant α > 0 such that
a(x, t, s, ξ) · ξ ≥ αM(|ξ|).

For the lower order term, we assume that Φ : QT × R → RN is a Caratheodory
function satisfying the following condition:

(H4): For all s ∈ R and for almost every x ∈ Ω,

|Φ(x, t, s)| ≤ γ(x, t) +M
−1
(M(|s|)), with γ ∈ EM(QT ).
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For that concern the right hand, f ∈ L1(QT ). u0 ∈ L1(Ω),
Lemma 3.1 ([21]). Under assumptions (H1)–(H3), let (Zn) be a sequence in
W 1,x

0 LM(QT ) such that
Zn ⇀ Z in W 1,x

0 LM(QT ) for σ(ΠLM(QT ),ΠEM(QT )),(
a(x, t, Zn,∇Zn)

)
n

is bounded in
(
LM(QT )

)N

,

lim
n,s→∞

∫
QT

(
a(x, t, Zn,∇Zn)− a(x, t, Zn,∇Zχs)

)
·
(
∇Zn −∇Zχs

)
dxdt = 0,

where χs denotes the characteristic function of the set Ωs =
{
x ∈ Ω : |∇Z| ≤ s

}
.

Then,
∇Zn → ∇Z a.e. in QT ,

lim
n→∞

∫
QT

a(x, t, Zn,∇Zn)∇Zn dx =

∫
QT

a(x, t, Z,∇Z)∇Z dxdt,

M(|∇Zn|) −→M(|∇Z|) in L1(QT ).
In what follows, we will use the following real function of a real variable, called

the truncation at height k > 0,

Tk(s) = max
(
− k,min(k, s)

)
=

{
s if |s| ≤ k,

k
s

|s|
if |s| > k.

Now, we give the definition of a renormalized solution for problem (3.2).
Definition 3.2. A measurable function u defined on QT is said a renormalized
solution for problem (3.2), if

Tk(u) ∈ W 1,x
0 LM(QT ) for all k ≥ 0, and b(x, u) ∈ L∞(0, T, L1(Ω)),

lim
m→∞

∫
{m≤|u(x,t)|≤m+1}

a(x, t, u,∇u)∇u dxdt = 0,

and if, for every function r (renormalization) in W 1,∞(R) with compact support,
we have

∂Br(x,u)
∂t

− div (r(u)a(x, t, u,∇u)) + r′(u)a(x, t, u,∇u)∇u
−div (r(u)Φ(x, t, u)) + r′(u)Φ(x, t, u)∇u = fr(u) in D′(QT ),

(3.3)

where Br(x, τ) =

∫ τ

0

∂b(x, s)

∂s
r′(s) ds and Br(x, u)(t = 0) = Br(x, u0) in Ω.

Remark 3.3. [21,24] For every r ∈ W 2,∞(R) nondecreasing function with supp(r′) ⊂
[−k, k] and (3.1), we have

λk|r(s1)− r(s2)| ≤ |Br(x, s1)− Br(x, s2)| ≤ ‖Ak‖L∞(Ω)|r(s1)− r(s2)|,
for almost every x ∈ Ω and for every s1, s2 ∈ R.

The following theorem is our main result.
Theorem 3.4. Suppose that assumptions (H1)-(H4) hold true and that f ∈
L1(QT ). Then there exists at least a renormalized solution for problem (3.2).
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The proof of the above theorem is divided into four steps.
Step 1: Approximate problems.

Let fn be a sequence of regular function in C∞
0 (QT ), which converges strongly to

f in L1(QT ) and such that ‖fn‖L1 ≤ ‖f‖L1 and for each n ∈ IN∗. Put

bn(x, s) = Tn(b(x, s)) +
1

n
s,

an(x, t, s, ξ) = a(x, t, Tn(s), ξ) a.e (x, t) ∈ QT , for all s ∈ R, for all ξ ∈ RN ,

and
Φn(x, t, s) = Φ(x, t, Tn(s)) a.e (x, t) ∈ QT , for all s ∈ R.

Let u0n ∈ C∞
0 (Ω) such that

‖ bn(x, u0n) ‖L1≤‖ b(x, u0) ‖L1 and bn(x, u0n) −→ b(x, u0) in L1(Ω).

Consider the following approximate problem:
∂bn(x, un)

∂t
− div a(x, t, un,∇un)− div Φn(x, t, un) = fn in QT ,

bn(x, un)(t = 0) = bn(x, u0) in Ω,
un = 0 on ∂Ω× (0, T ).

(3.4)

Let zn(x, t, un,∇un) = an(x, t, un,∇un) + Φn(x, t, un), which satisfies (A1), (A2),
(A3), and (A4) of [20]. Indeed, it remains to prove (A4), to do this we use Young’s
inequality as follows:

|Φn(x, t, un)∇un| ≤ |γ(x, t)||∇un|+M
−1
(M(|Tn(un)|))|∇un|

=
α2

α + 2

α + 2

α2
|γ(x, t)||∇un|

+
α + 1

α
M

−1
(M(|Tn(un)|))

α

α + 1
|∇un|

≤ α2

α + 2

(
M

(α + 2

α2
|γ(x, t)|

)
+M

(
|∇un|

))
+M

(α + 1

α
M

−1
(M(|Tn(un)|))

)
+M

( α

α + 1
|∇un|

)
.

While α

α + 1
< 1, using the convexity of M and since M and M

−1 ◦ M are
increasing functions, one has

|Φn(x, t, un)∇un| ≤ α2

α + 2
M

(α + 2

α2
|γ(x, t)|

)
+

α2

α + 2
M

(
|∇un|

)
+M

(α + 1

α
M

−1
(M(n))

)
+

α

α + 1
M

(
|∇un|

)
.

Then we get

Φn(x, t, un)∇un ≥ −
( α2

α + 2
+

α

α + 1

)
M

(
|∇un|

)
−M

(α + 1

α
M

−1
(M(n))

)
− α2

α + 2
M

(α + 2

α2
|γ(x, t)|

)
.
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Using this last inequality and (H3), we obtain

zn(x, t, un,∇un)∇un ≥
(
α− α2

α + 2
− α

α + 1

)
M

(
|∇un|

)
−M

(α + 1

α
M

−1
(M(n))

)
− α2

α + 2
M

(α + 2

α2
|γ(x, t)|

)
≥ α2

(α + 1)(α + 2)
M

(
|∇un|

)
−M

(α + 1

α
M

−1
(M(n))

)
− α2

α + 2
M

(α + 2

α2
|γ(x, t)|

)
.

Since γ ∈ EM(QT ), M
(α + 2

α2
|γ(x, t)|

)
∈ L1(QT ). Thus, from [16], the approxi-

mate problem (3.4) has at least one weak solution un ∈ W 1,x
0 LM(QT ).

Step 2: A priori estimates.

Proposition 3.5. Suppose that assumptions (H1)-(H4) hold true and let (un)n be
a solution of the approximate problem (3.4). Then, for all k > 0, there exist two
constants Ck and Ĉk (not depending on n), such that

‖ Tk(un) ‖W 1,x
0 LM (QT )≤ Ck, (3.5)

∫
Ω

Bn
k (x, un)(σ) dx ≤ Ĉk + k

(
‖f‖L1(QT ) + ‖b(x, u0‖L1(Ω)

)
, (3.6)

for almost any σ ∈ (0, T ), where Bn
k (x, τ) =

∫ τ

0

Tk(s)
∂bn(x, s)

∂s
ds, and

lim
k→∞

meas
{
(x, t) ∈ QT : |un| > k

}
= 0. (3.7)

Proof. Testing the approximate problem (3.4) by Tk(un)χ(0,σ), one has for every
σ ∈ (0, T )

∫
Ω

(
Bn

k (x, un)(σ)− Bn
k (x, u0n)

)
dx+

∫
Qσ

a(x, t, un,∇un)∇Tk(un) dx dt

+

∫
Qσ

Φn(x, t, un)∇Tk(un) dx dt =
∫
Qσ

fnTk(un) dx dt.

(3.8)
First, let us remark that Φn(x, t, un)∇Tk(un) is different from zero only on the
set {|un| ≤ k}, where Tk(un) = un. From (H4) and then Young’s inequality for
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an arbitrary α > 0 (the constant of coercivity), we have∫
Qσ

Φn(x, t, un)∇Tk(un) dx dt

≤
∫
Qσ

|γ(x, t)||∇Tk(un)| dx dt

+

∫
Qσ

M
−1
(M(|Tk(un)|))|∇Tk(un)| dx dt

=
α2

α + 2

∫
Qσ

α + 2

α2
|γ(x, t)||∇Tk(un)| dx dt

+

∫
Qσ

α + 1

α
M

−1
(M(|Tk(un)|))

α

α + 1
|∇Tk(un)| dx dt

≤ α2

α + 2

(∫
Qσ

M
(α + 2

α2
|γ(x, t)|

)
dx+

∫
Qσ

M
(
|∇Tk(un)|

)
dx dt

)
+

∫
Qσ

M
(α + 1

α
M

−1
(M(|Tk(un)|))

)
dx dt

+

∫
Qσ

M
( α

α + 1
|∇Tk(un)|

)
dx dt.

Since γ ∈ EM(Qσ), then
α2

α + 2

∫
Qσ

M
(α + 2

α2
|γ(x, t)|

)
dx dt = γ0 < +∞ and

while α

α + 1
< 1, using the convexity of M and the fact that M and M

−1 ◦M
are increasing functions, we get∫

Qσ

Φn(x, t, un)∇Tk(un) dx dt

≤ γ0 +
α2

α + 2

∫
Qσ

M
(
|∇Tk(un)|

)
dx dt

+

∫
Qσ

M
(α + 1

α
M

−1
(M(k))

)
dx dt

+
α

α + 1

∫
Qσ

M
(
|∇Tk(un)|

)
dx dt.

Using (2.1), there exists some constant Cα
k such that∫

Qσ

M
(α + 1

α
M

−1
(M(k))

)
dx dt ≤

∫
Qσ

M
(
2
α + 1

αk
M(k)

)
dx dt = Cα

k ,

which gives the estimate∫
Qσ

Φn(x, t, un)∇Tk(un) dx dt

≤ γ0 +
α2

α + 2

∫
Qσ

M
(
|∇Tk(un)|

)
dx dt

+Cα
k +

α

α + 1

∫
Qσ

M
(
|∇Tk(un)|

)
dx dt.

(3.9)
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On the other hand, we have ‖fn‖L1 ≤ ‖f‖L1 , which implies that∫
QT

fnTk(un) dx dt ≤ k‖f‖L1 . (3.10)

Concerning the first integral in (3.8), by the construction of Bn
k (x, un), we have∫

Ω

Bn
k (x, un)(σ) dx ≥ 0 (3.11)

and

0 ≤
∫
Ω

Bn
k (x, u0n) dx ≤ k

∫
Ω

|bn(x, u0n)| dx ≤ k‖b(x, u0)‖L1(Ω). (3.12)

Combining (3.8), (3.9), (3.10), (3.11) and (3.12) we get∫
Qσ

a(x, t, Tk(un),∇Tk(un))∇Tk(un) dx dt

≤ γ0 + kC + Cα
k +

α2

α + 2

∫
Qσ

M
(
|∇Tk(un)|

)
dx dt

+
α

α + 1

∫
Qσ

M
(
|∇Tk(un)|

)
dx dt,

(3.13)

where C = ‖f‖L1(Ω) + ‖b(x, u0)‖L1(Ω). Thanks to (H3), we deduce∫
Qσ

(
α− α2

α + 2
− α

α + 1

)
M

(
|∇Tk(un)|

)
dx dt ≤ γ0 + kC + Cα

k .

Since
(
α− α2

α + 2
− α

α + 1

)
=

α2

(α + 1)(α + 2)
> 0, finally we have∫

QT

M
(
|∇Tk(un)|

)
dx dt ≤ (γ0 + kC + Cα

k )
(α + 1)(α + 2)

α2
= Ck. (3.14)

To prove (3.6), we combine (3.8), (3.9), (3.10), (3.12), (3.13), and (3.14) with
Ĉk = Cα

k + Ck. Finally, we prove (3.7), to this end, since Tk(un) is bounded in
W 1,x

0 LM(QT ), there exist λ > 0 and a constant C0 such that∫
QT

M
( |Tk(un)|

λ

)
dx dt ≤ C0.

By using Young’s inequality, we obtain

meas
{
|un| > k

}
=

1

k

∫
{|un|>k}

k dx dt ≤ 1

k

∫
QT

|Tk(un)| dx dt

≤ λ

k

(∫
QT

M
( |Tk(un)|

λ

)
dx dt+

∫
QT

M(1) dx dt
)

≤ λ

k

(
C0 +M(1)|QT |

)
for all n, for all k > 0,

−→ 0 as k −→ ∞,

(3.15)

which implies (3.7). □
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Remark 3.6. Notice that, we can get differently another estimate like (3.15), by
using the integral Poincaré’s type inequality in inhomogeneous Orlicz spaces with
the constants δ and λ. Hence,

M
(
δk

)
meas

{
|un| > k

}
=

∫
{|un|>k}

M
(
δ|Tk(un)|

)
dx dt

≤ λ

∫
QT

M
(
|∇Tk(un|)

)
dx dt.

Then, from (3.14) we get

meas
{
|un| > k

}
≤ λCk

M
(
δk

) −→ 0 as k −→ ∞.

Lemma 3.7. Let un be a solution of the approximate problem (3.4). Then

(i) un −→ u a.e. in QT ,
(ii) bn(x, un) −→ b(x, u) a.e. in QT ,
(iii) b(x, u) ∈ L∞(0, T ;L1(Ω)).

Proof. For (i) and (ii), we argue as in [24, Proposition 5.3], we take a C2(R)

nondecreasing function Γk such that Γk(s) =

{
s for |s| ≤ k

2
,

k for |s| ≥ k,
and multiplying

the approximate problem (3.4) by Γ′
k(un), we obtain

∂Bn
Γ(x, un)

∂t
= div

(
a(x, t, un,∇un)Γ′

k(un)
)
− a(x, t, un,∇un)Γ′′

k(un)∇un
+div

(
Γ′
k(un)Φn(x, t, un)

)
− Γ′′

k(un)Φn(x, t, un)∇un + fnΓ
′
k(un),

(3.16)

where Bn
Γ(x, τ ) =

∫ τ

0

∂bnk(x, s)

∂s
Γ′
k(s) ds.

Remarking that M−1 ◦M is an increasing function, γ ∈ EM(QT ), supp(Γ′
k),

supp(Γ′′
k) ⊂ [−k, k], and using Young’s inequality, we get

∣∣∣ ∫
QT

Γ′
k(un)Φn(x, t, un) dx dt

∣∣∣
≤ ‖Γ′

k‖L∞

(∫
QT

|γ(x, t)| dx dt+
∫
QT

M
−1
(M(|Tk(un)|)) dx dt

)
≤ ‖Γ′

k‖L∞

(∫
QT

(
M(|γ(x, t)|) +M(1)

)
dx dt+

∫
QT

M
−1
(M(k)) dx dt

)
< C1,k,
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and (here, we use also estimate (3.14))∣∣∣ ∫
QT

Γ′′
k(un)Φn(x, t, un)∇un dx dt

∣∣∣
≤ ‖Γ′′

k‖L∞

(∫
QT

|γ(x, t)| dx dt+
∫
QT

M
−1
(M(|Tk(un)|))|∇Tk(un)| dx dt

)
≤ ‖Γ′′

k‖L∞

[ ∫
QT

(
M(|γ(x, t)|) +M(1)

)
dx dt+

∫
QT

M(k) dx dt

+

∫
QT

M(|∇Tk(un)|) dx dt
]

< C2,k,

where C1,k and C2,k are two positive constants independent of n. Then each term
in the right-hand side of (3.16) is bounded either in L1(QT ) or in W−1,xLM(QT ),
which implies that

∂Bn
Γ(x, un)

∂t
is bounded in L1(QT ) +W−1,xLM(QT ).

Moreover, due to the properties of Γ′
k and (3.1), we have

|∇Bn
Γ(x, un)| ≤ ‖Ak‖L∞(Ω)|∇Tk(un)|‖Γ′

k‖L∞(Ω) + k‖Γ′
k‖L∞(Ω)Ãk(x),

which implies by (3.5), that

Bn
Γ(x, un) is bounded in W 1,x

0 LM(QT ).

Arguing as in [9, 10, 24], we get (i) and (ii) of Lemma 3.7.
To prove (iii), using (ii), we pass to the limit inferior in (3.6) as n −→ +∞,

and we get

1

k

∫
Ω

Bk(x, u)(σ) dx ≤ Ĉk

k
+
(
‖f‖L1(QT ) + ‖b(x, u0‖L1(Ω)

)
,

for almost any σ ∈ (0, T ). Tanks to the definition of Bk(x, s) and the con-
vergence of 1

k

∫
Ω

Bk(x, u) to b(x, u) as k goes to +∞, this gives that b(x, u) ∈

L∞(0, T ;L1(Ω)). □

The next lemma will be used later, we prove it now.

Lemma 3.8. Let un be a solution of the approximate problem (3.4); then
(i) {a(x, t, Tk(un),∇Tk(un))}n is bounded in (LM(QT ))

N ,

(ii) lim
m→+∞

lim
n→+∞

∫
{m≤|un|≤m+1}

a(x, t, un,∇un)∇un dx = 0.

Proof. (i) We will use the Banach–Steinhaus theorem. Let ϕ ∈ (EM(QT ))
N be

an arbitrary function. From (H2), we can write(
a(x, t, Tk(un),∇Tk(un))− a(x, t, Tk(un), ϕ)

)
·
(
∇Tk(un)− ϕ

)
≥ 0,



154 M. BOURAHMA, A. BENKIRANE, J. BENNOUNA

which gives ∫
QT

a(x, t, Tk(un),∇Tk(un))ϕ dx

≤
∫
QT

a(x, t, Tk(un),∇Tk(un))∇Tk(un) dx

+

∫
QT

a(x, t, Tk(un), ϕ)(ϕ−∇Tk(un)) dx.

Let us denote by J1 and J2 the first and the second integral, respectively, in the
right-hand side of (3.16), so that

J1 =

∫
QT

a(x, t, Tk(un),∇Tk(un))∇Tk(un) dx.

Going back to (3.13), we obtain

J1 ≤ γ0 + kC + Cα
k +

α2

α + 2

∫
Qσ

M
(
|∇Tk(un)|

)
dx dt

+
α

α + 1

∫
Qσ

M
(
|∇Tk(un)|

)
dx dt,

and thanks to (3.5), there exists a positive constant CJ1 independent of n such
that

J1 ≤ CJ1 .

Now we estimate the integral J2. To this end, remark that

J2 =

∫
QT

a(x, t, Tk(un), ϕ)(ϕ−∇Tk(un)) dx dt

≤
∫
QT

|a(x, t, Tk(un), ϕ)||ϕ| dx dt+
∫
QT

|a(x, t, Tk(un), ϕ)||∇Tk(un)| dx dt.

On the other hand, let η be large enough. From (H1) and the convexity of M ,
we get ∫

QT

M
( |a(x, t, Tk(un), ϕ)|

η

)
dx dt

≤
∫
QT

M
(c(x, t) +M

−1
(P (k1|Tk(un)|) +M

−1
(M(k2|ϕ|))

η

)
dx dt

≤ 1

η

∫
QT

M(c(x, t)) dx dt+
1

η

∫
QT

M
(
M

−1
(P (k1|Tk(un)|))

)
dx dt

+
1

η

∫
QT

M
(
M

−1
(M(k2|ϕ|))

)
dx dt

≤ 1

η

∫
QT

M(c(x, t)) dx dt+
1

η

∫
QT

P (k1k) dx dt

+
1

η

∫
QT

M(k2|ϕ|) dx dt.

Since ϕ ∈ (EM(QT ))
N and c(x, t) ∈ EM(QT ), we deduce that {a(x, t, Tk(un), ϕ)}

is bounded in (LM(QT ))
N and we have {∇Tk(un)} is bounded in (LM(QT ))

N .
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Consequently, J2 ≤ CJ2 , where CJ2 is a positive constant not depending on n.
Then we obtain∫

QT

a(x, Tk(un),∇Tk(un))ϕ dx dt ≤ CJ1 + CJ2 . for all ϕ ∈ (EM(QT ))
N .

Finally, {a(x, t, Tk(un),∇Tk(un))}n is bounded in (LM(QT ))
N .

(ii) Testing (3.4) by θm(un) = Tm+1(un)− Tm(un), we have∫
Ω

Bm(x, un)(T ) dx+

∫
QT

a(x, t, un,∇un)∇θm(un) dx dt

+

∫
QT

Φn(x, t, un)∇θm(un) dx dt =
∫
Ω

Bm(x, u0n) dx+

∫
QT

fnθm(un) dx dt,

(3.17)

where Bm(x, τ) =

∫ τ

0

∂b(x, s)

∂s
θm(s)ds. Since Bm(x, un)(T ) ≥ 0, hence from (H3)

and (H4), it follows

α

∫
QT

M(|∇θm(un)|) dx dt

≤
∫
QT

M
−1
(M(|un|))|∇θm(un)| dx dt+

∫
QT

|γ(x, t)||∇θm(un)| dx dt

+

∫
Ω

Bm(x, u0n) dx+

∫
QT

fnθm(un) dx dt.

That means, knowing that ∇θm(un) = ∇unχEm a.e. in QT , where

Em :=
{
(x, t) ∈ QT : m ≤ |un| ≤ m+ 1

}
,

and following the same argument as in the proof of (3.5) of Proposition 3.5, we
get

α

∫
QT

M(|∇θm(un)|) dx dt

≤
∫
QT

M
−1
(M(|un|))|∇un|χEm dx dt+

∫
Em

|γ(x, t)||∇θm(un)| dx dt

+

∫
Ω

Bm(x, u0n) dx+

∫
QT

fnθm(un) dx dt

≤
∫
QT

M
(α + 1

α
M

−1
(M(|un|)

)
χEm dx dt+

∫
QT

M
( α

α + 1
|∇θm(un)|

)
dx dt

+
α2

α + 2

(∫
Em

M
(α + 2

α2
|γ(x, t)|

)
dx dt+

∫
QT

M
(
|∇θm(un)|

)
dx dt

)
+

∫
Ω

Bm(x, u0n) dx+

∫
QT

fnθm(un) dx dt.
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let Cα
max := max

(
(α + 1),

(α + 1)(α + 2)

α2

)
. It follows

∫
QT

M(|∇θm(un)|) dx dt

≤ Cα
max

[ ∫
Em

M
(α + 2

α2
|γ(x, t)|

)
dx dt+

∫
Ω

Bm(x, u0n) dx

+

∫
Em

M
(α + 1

α
M

−1
(M(|un|)

)
dx dt+

∫
QT

fnθm(un) dx dt
]
.

(3.18)

Now, let us concentrate on the convergence as n→ ∞ of each integral in (3.18),
which can be treated by the same way (Lebesgue’s dominated convergence theo-
rem). Take, for example, the first one∫
{m≤|un|≤m+1}

M
(α + 2

α2
|γ(x, t)|

)
dx =

∫
Ω

M
(α + 2

α2
|γ(x, t)|

)
χ{m≤|un|≤m+1} dx dt.

Put gn =M
(α + 2

α2
|γ(x, t)|

)
χ{m≤|un|≤m+1}, since χ is continuous, then

gn −→ g =M
(α + 2

α2
|γ(x, t)|

)
χ{m≤|u|≤m+1} a.e. in QT .

We have |gn| ≤M
(α + 2

α2
|γ(x, t)|

)
, which is integrable on QT , since γ ∈ EM(QT ).

From Lebesgue’s dominated convergence theorem, we obtain

lim
n→∞

∫
QT

gn dxdt =

∫
QT

lim
n→∞

gn dxdt =

∫
QT

M
(α + 2

α2
|γ(x, t)|

)
χ{m≤|u|≤m+1} dxdt.

Passing to the limit as n→ ∞ in (3.18), we get

limn→∞

∫
QT

M(|∇θm(un)|) dx dt

≤ Cα
max

[ ∫
{m≤|u|≤m+1}

M
(α + 2

α2
|γ(x)|

)
dx dt+

∫
Ω

Bm(x, u0) dx

+

∫
{m≤|u|≤m+1}

M
(α + 1

α
M

−1
(M(|u|)

)
dx dt

+

∫
QT

fθm(u) dx dt
]
.

(3.19)

Now, we will pass to the limit as m → ∞, by Lebesgue’s theorem each integral
in (3.19) goes to zero as m goes to ∞, which gives

lim
m→∞

lim
n→∞

∫
QT

M(|∇θm(un)|) dx dt = 0. (3.20)
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Our aim here is to prove that lim
m→∞

lim
n→∞

∫
QT

Φn(x, t, un)∇θm(un)dxdt = 0, to this

end, Young’s inequality allows us to get∫
QT

Φn(x, t, un)∇θm(un) dx dt ≤
∫
QT

M(|∇θm(un)|) dx dt

+

∫
Em

M(Φn(x, t, un)) dx dt.
(3.21)

We have already proved that the first integral in the right-hand side of (3.21) goes
to zero as m and n go to ∞. It remains to show that the second one goes to zero
again. Indeed, note that, for n ≥ m+1 ≥ |un|, we have Tn(un) = Tm+1(un) = un.
Then, from (H4) and the convexity of M we obtain∫

{m≤|un|≤m+1}
M(Φn(x, t, un)) dx dt

=

∫
{m≤|un|≤m+1}

M(|Φ(x, t, Tm+1(un))|) dx dt

≤
∫
{m≤|un|≤m+1}

M(M
−1
(M(|Tm+1(un)|)) dx dt

≤
∫
{m≤|un|≤m+1}

M(|Tm+1(un)|) dx dt

≤
∫
QT

M(m+ 1) dx dt.

We deduce that∫
{m≤|un|≤m+1}

M(|Φ(x, t, Tm+1(un))|) dx dt

=

∫
QT

M(|Φ(x, t, Tm+1(un)|) χ{m≤|un|≤m+1}dx dt ≤ C0,m.
(3.22)

Let us denote Gm
n =M(|Φ(x, t, Tm+1(un)|)χ{m≤|un|≤m+1} −→ Gm a.e. in Ω, where

Gm =M(|Φ(x, t, Tm+1(u)|) χ{m≤|u|≤m+1},

since M is continuous and Φ is a Carathéodory function. From (3.22), Gm
n is

bounded independently of n. Using Lebesgue’s theorem, it follows, as n −→ ∞∫
{m≤|un|≤m+1}

M(|Φn(x, t, un)|) dx dt −→
∫
{m≤|u|≤m+1}

M(|Φ(x, t, u)|) dx dt.

Then
lim

m→∞
lim
n→∞

∫
{m≤|un|≤m+1}

M(|Φn(x, t, un)|) dx dt = 0. (3.23)

Combining (3.20), (3.21), and (3.23), we get

lim
m→∞

lim
n→∞

∫
QT

Φn(x, t, un)∇θm(un) dx dt = 0.
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At the end, let m,n −→ ∞ in (3.17). Then we find

lim
m→∞

lim
n→∞

∫
{m≤|un|≤m+1}

a(x, t, un,∇un)∇un dx dt = 0. (3.24)

□
Step 3: Almost everywhere convergence of the gradients.

In this step, most parts of the proof of the following proposition are the same
argument as in [21].
Proposition 3.9. Let un be a solution of the approximate problem (3.4). Then,
for all k ≥ 0, we have (for a subsequence still denoted by un) as n→ +∞,

(i) ∇un → ∇u a.e. in QT ,

(ii) a(x, t, Tk(un),∇Tk(un))⇀ a(x, t, Tk(u),∇Tk(u)) weakly in (LM(QT ))
N ,

(iii) M(|∇Tk(un)|) →M(|∇Tk(u)|) strongly in L1(QT ).

Proof. Let θj ∈ D(QT ) be a sequence such that θj −→ u in W 1,x
0 LM(QT ) for the

modular convergence and let ψi ∈ D(Ω) be a sequence that converges strongly to
u0 in L1(Ω).

Put Zµ
i,j = Tk(θj)µ + e−µtTk(ψi), where Tk(θj)µ is the mollification with respect

to the time of Tk(θj). Notice that Zi
µ,j is a smooth function having the following

properties:
∂Zµ

i,j

dt
= µ(Tk(θj)− Zµ

i,j), Zµ
i,j(0) = Tk(ψi) and |Zµ

i,j| ≤ k,

Zµ
i,j −→ Tk(u)µ + e−µtTk(ψi), in W 1,x

0 LM(QT ) modularly as j −→ ∞,
Tk(u)µ + e−µtTk(ψi) −→ Tk(u), in W 1,x

0 LM(QT ) modularly as µ −→ ∞.
Let now the function hm be defined on R for any m ≥ k by

hm(r) =

 1 if |r| ≤ m,
−|r|+m+ 1 if m ≤ |r| ≤ m+ 1,
0 if |r| ≥ m+ 1.

Put Em =
{
(x, t) ∈ QT : m ≤ |un| ≤ m + 1

}
. Testing the approximate problem

(3.4) by the test function φµ,i
n,j,m = (Tk(un)− Zµ

i,j)hm(un), we get〈∂bn(x, un)
dt

, φµ,i
n,j,m

〉
+

∫
QT

a(x, t, un,∇un)(∇Tk(un)−∇Zµ
i,j)hm(un) dx dt

+

∫
QT

a(x, t, un,∇un)(Tk(un)− Zµ
i,j)∇unh′m(un) dx dt

+

∫
Em

Φn(x, t, un)∇unh′m(un)(Tk(un)− Zµ
i,j) dx dt

+

∫
QT

Φn(x, t, un)hm(un)(∇Tk(un)−∇Zµ
i,j) dx dt

=

∫
QT

fnφ
µ,i
n,j,m dx dt.
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We simply denote by ϵ(n, j, µ, i) and ϵ(n, j, µ) any quantities such that

lim
i→+∞

lim
µ→+∞

lim
j→+∞

lim
n→+∞

ϵ(n, j, µ, i) = 0,

lim
µ→+∞

lim
j→+∞

lim
n→+∞

ϵ(n, j, µ) = 0.

□

We have the following lemma, which can be found in [21, 24].

Lemma 3.10 (see [21, 24]). Let φµ,i
n,j,m = (Tk(un) − Zµ

i,j)hm(un). Then for any
k ≥ 0 we have 〈∂bn(x, un)

dt
, φµ,i

n,j,m

〉
≥ ϵ(n, j, µ, i),

where <,> denotes the duality pairing between L1(QT ) + W−1,xLM(QT ) and
L∞(QT ) ∩W 1,x

0 LM(QT ).

To complete the proof of Proposition 3.9, we establish the results below. For
any fixed k ≥ 0, we have
(r1)

∫
QT

fnφ
µ,i
n,j,m dx dt = ϵ(n, j, µ).

(r2)

∫
QT

Φn(x, t, un)hm(un)(∇Tk(un)−∇Zµ
i,j) dx dt = ϵ(n, j, µ).

(r3)

∫
Em

Φn(x, t, un)∇unh′m(un)(Tk(un)− Zµ
i,j) dx dt = ϵ(n, j, µ).

(r4)

∫
QT

a(x, t, un,∇un)(Tk(un)− Zµ
i,j)∇unh′m(un) dx dt ≤ ϵ(n, j, µ,m).

(r5)

∫
QT

[a(x, t, Tk(un),∇Tk(un))− a(x, t, Tk(un),∇Tk(u)χs)]

×[∇Tk(un)−∇Tk(u)χs] dx dt ≤ ϵ(n, j, µ,m, s).
The proofs of (r1), (r3), (r4), and (r5) are the same as in [21, 24].
To prove (r2), to this end, for n ≥ m+ 1, we have

Φn(x, t, un)hm(un) = Φ(x, t, Tm+1(un))hm(Tm+1(un)) a.e in QT .

Put Pn =M
( |Φ(x, t, Tm+1(un))− Φ(x, t, Tm+1(u))|

η

)
. Since Φ is continuous with

respect to its third argument and un −→ u a.e in QT , then Φ(x, t, Tm+1(un)) →
Φ(x, t, Tm+1(u)) a.e in Ω as n goes to infinity. Besides M(0) = 0, it follows

Pn −→ 0, a.e in Ω as n→ ∞.
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Using now the convexity of M and (H4), we have for every η > 0 and n ≥ m+1,

Pn =M
( |Φ(x, t, Tm+1(un))− Φ(x, t, Tm+1(u))|

η

)
≤M

( |Φ(x, t, Tm+1(un))|+ |Φ(x, t, Tm+1(u))|
η

)
≤M

(2
η
|γ(x, t)|+ 2

η
M

−1
(M(m+ 1))

)
=M

(1
2

4

η
|γ(x, t)|+ 1

2

4

η
M

−1
(M(m+ 1))

)
≤ 1

2
M(

4

η
|γ(x, t)|) + 1

2
M(

4

η
M

−1
(M(m+ 1))).

We put Cη
m(x, t) =

1

2
M(

4

η
|γ(x, t)|)+ 1

2
M(

4

η
M

−1
(M(m+1))). Since γ ∈ EM(QT ),

we have Cη
m ∈ L1(QT ), Then by Lebesgue’s dominated convergence theorem, we

get

lim
n→∞

∫
QT

Pn dx dt =

∫
QT

lim
n→∞

Pn dx dt = 0.

This implies that {Φ(x, t, Tm+1(un))} converges modularly to Φ(x, t, Tm+1(u)) as
n → ∞ in (LM(QT ))

N . Moreover, Φ(x, t, Tm+1(un)) and Φ(x, t, Tm+1(u)) lie in
(EM(QT ))

N , indeed, from (H4), we have for every η > 0∫
QT

M
( |Φ(x, t, Tm+1(un))|

η

)
dx dt

≤
∫
QT

M
(1
η
|γ(x, t)|+ 1

η
M

−1
(M(|Tm+1(un)|))

)
dx dt

≤
∫
QT

M
(1
2

2

η
|γ(x, t)|+ 1

2

2

η
M

−1
(M(m+ 1))

)
dx dt

≤
∫
QT

1

2
M(

2

η
|γ(x, t)|) dx dt+

∫
QT

1

2
M

(2
η
M

−1
(M(m+ 1))

)
dx dt

<∞ since γ ∈ EM(QT ) and Ω is bounded,

the same for Φ(x, t, Tm+1(u)). Thanks to Lemma 2.3, we deduce that

Φ(x, t, Tm+1(un)) −→ Φ(x, t, Tm+1(u)) strongly in (EM(QT ))
N .

On the other hand,∇Tk(un)⇀ ∇Tk(u) weakly in (LM(QT ))
N as n goes to infinity.

It follows that

lim
n→∞

∫
QT

Φ(x, t, un)hm(un)[∇Tk(un)−∇Zµ
i,j] dx dt

=

∫
QT

Φ(x, t, u)hm(u)[∇Tk(u)−∇Zµ
i,j] dx dt.

Using the modular convergence of Zµ
i,j as j −→ ∞ and then µ −→ ∞, we get

(r2). As a consequence of Lemma 3.1, the results of Proposition 3.9 follow.
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Step 4: Passing to the limit.
The limit u of the approximate solution un of (3.4) satisfies

lim
m→∞

∫
{m≤|u|≤m+1}

a(x, t, u,∇u)∇u dx dt = 0.

Proof. Fix m > 0, and we can write∫
{m≤|un|≤m+1}

a(x, t, un,∇un)∇un dx dt

=
(∫

QT

a(x, t, un,∇un)(∇Tm+1(un)−∇Tm(un)) dx dt
)

=
(∫

QT

a(x, t, Tm+1(un),∇Tm+1(un))∇Tm+1(un) dx dt

−
∫
QT

a(x, t, Tm(un),∇Tm(un))∇Tm(un)) dx dt
)
.

Using Proposition 3.9(ii)-(iii) and passing to the limit as n goes to infinity for
fixed m, we get

limn→∞

∫
{m≤|un|≤m+1}

a(x, t, un,∇un)∇un dx

=

∫
{m≤|u|≤m+1}

a(x, t, u,∇u)∇u dx.

Finally, we pass to the limit as m goes to infinity and then we use (3.24). It
follows

limm→∞ limn→∞

∫
{m≤|un|≤m+1}

a(x, t, un,∇un)∇un dx dt

= limm→∞

∫
{m≤|u|≤m+1}

a(x, t, u,∇u)∇u dx dt = 0,

which gives the desired result.
Now, we will pass to the limit. Testing the approximate problem (3.4) by r(un)

with r ∈ W 1,∞(R) having a compact support such that for k > 0, supp(r) ⊂
[−k, k], we get

∂Bn
r (x, un)

∂t
− div (r(un)a(x, t, un,∇un)) + r′(un)a(x, t, un,∇un)∇un

−div (r(un)Φ(x, t, un)) + r′(un)Φ(x, t, un)∇un = fr(un) in D′(QT ),
(3.25)

where Bn
r (x, τ ) =

∫ τ

0

∂bn(x, s)

∂s
r′(s) ds.

Our aim here is to pass to the limit in each term in the previous equality. Let
us start by the terms of the left-hand side.

Limit of the first term ∂Bn
r (x, un)

∂t
, since r is bounded and Bn

r (x, un) −→
Br(x, u) a.e in QT and in L∞(QT ) weak*, then

∂Bn
r (x, un)

∂t
−→ ∂Br(x, u)

∂t
in D′(QT ) as n→ ∞.
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Remark that, since r and r′ have a compact support in R, there exists k > 0 such
that supp(r), supp(r′) ⊂ [−k, k]. For n large enough, we have

r(un)a(x, t, un,∇un) = r(un)a(x, t, Tk(un),∇Tk(un)) a.e. in QT ,

r′(un)a(x, t, un,∇un)∇un = r′(un)a(x, t, Tk(un),∇Tk(un))∇Tk(un) a.e. in QT ,

r(un)Φn(x, t, un) = r(Tk(un))Φn(x, t, Tk(un)),

r′(un)Φn(x, t, un)∇un = r′(Tk(un))Φn(x, t, Tk(un))∇Tk(un).
For the second term of (3.25), since r(un) → r(u) a.e in QT as n → ∞, r is
bounded and by Proposition 3.9(ii)-(iii), we have

r(un)a(x, t, Tk(un),∇Tk(un))⇀ r(u)a(x, t, Tk(u),∇Tk(u))
weakly in (LM(QT ))

N for σ(ΠLM ,ΠEM). Then
r(un)a(x, t, un,∇un)⇀ r(u)a(x, t, u,∇u) weakly in (LM(QT ))

N .

Concerning the third term of (3.25), since r′(un) → r′(u) a.e in QT as n→ ∞, r′
is bounded, and using Proposition 3.9(ii)-(iii) we obtain, as n→ ∞
r′(un)a(x, t, un,∇un)∇un ⇀ r′(u)a(x, t, Tk(u),∇Tk(u))∇Tk(u) weakly in L1(QT ).

Then
r′(u)a(x, t, Tk(u),∇Tk(u))∇Tk(u) = r′(u)a(x, t, u,∇u)∇u a.e. in QT .

Arguing similarly, we get the limit of the fourth term of (3.25),
r(un)Φn(x, t, un) → r(u)Φ(x, t, u) strongly in (EM(QT ))

N .

For the remaining term of the left-hand side, we have r′(un) converges to r′(u)
and ∇Tk(un) ⇀ ∇Tk(u) weakly in (LM(QT ))

N as n → +∞, while Φn(x, Tk(un))
is uniformly bounded with respect to n and converges a.e. in QT to Φ(x, Tk(u))
as n tends to +∞. Therefore

r′(un)Φn(x, t, un)∇un ⇀ r′(u)Φ(x, t, u)∇u weakly in LM(QT ).

Concerning the right-hand side of (3.25), due to Lemma 3.7(i) and the fact that
fn converges strongly to f in L1(QT ), we have

fnr(un) −→ fr(u) strongly in L1(QT ) as n→ ∞.
Now, we are ready to pass to the limit as n→ ∞ in each term of (3.25) to conclude
that u satisfies (3.3). It remains to show that Br(x, u) satisfies the initial condi-
tion of (3.4). To do this, recall that, r′ has a compact support, we have Bn

r (x, un)
is bounded in L∞(QT ). Moreover, (3.25) and the above considerations on the be-

havior of the terms of this equation show that ∂B
n
r (x, un)

∂t
is bounded in L1(QT )+

W−1,xLM(QT ). As a consequence, an Aubin’s type lemma (see [25, Corollary 4])
and Lemma 2.6 imply that Bn

r (x, un) is in a compact set of C0([0, T ];L1(Ω)).
It follows that Bn

r (x, un)(t = 0) converges to Br(x, u)(t = 0) strongly in L1(Ω).
Due to Remark 3.3 and the fact that bn(x, u0n) −→ b(x, u0) in L1(Ω), we con-
clude that Bn

r (x, un)(t = 0) = Bn
r (x, u0n) converges to Br(x, u)(t = 0) strongly in

L1(Ω). Then we conclude that Br(x, u)(t = 0) = Br(x, u0) in Ω.
That is the full proof of the main result. □
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