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Abstract. We deal with a problem of identification of an unknown source in
the abstract inverse Goursat problem with two-time variables. We show that
the considered problem is ill-posed according to the Hadamard sense. That is,
the solution does not depend continuously on the data. In order to overcome
the instability of the solution, we propose a regularization method via an iter-
ative procedure, with the help of an extra measurement at an internal point.
Some convergence results are established under a priori bound assumptions
on the exact solution. Finally, numerical tests are presented to illustrate the
accuracy and efficiency of the proposed regularization method.

1. Introduction

In classical evolution equations, the spatial variable was naturally accepted as
multidimensional, since the temporal variable was unidimensional. Recently a
new idea has been appeared: The mathematical models for certain natural phe-
nomena can be formulated by means of multi-time evolution partial differential
equations (PDEs). The term “multi-time” (“multi-temporal”) was introduced in
physics by Dirac in 1932 [8], considering multi-temporal wave functions described
by evolution PDEs. It was assumed in mathematics by Friedman (see [13]). The
classical physical examples of inverse Goursat problems are unidimensional in
time. For this category of problems there are several models, we can mention as
an example the age structured population dynamics with integral condition with
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respect to one of time variables was studied by many researchers; see [32,36] and
their references.

However nonclassical problems for abstract inverse Goursat problems with two-
time variables are not widely investigated. In the literature these problems are
encountered in various models of science and technology, particularly, mechanics,
physics [3, 4], biomathematics, and cosmology (see, for example, the works of
Baez, Hillion, and Uglum [2,15,16,35]), and in mathematical models of diffusion
of pollutants in water flows [17], mathematical models of age structured biological
population dynamics [19, 20, 38] and mathematical finance [12]. In these models
one of time variables is usual time and others might denote various quantities,
for example, coordinates, temperature, and age or size of individuals of biological
population.

In the present paper, we deal with a problem of identification of an unknown
source for an abstract inverse Goursat problem in abstract Hilbert spaces with
two-time variables. We will show that the problem is ill-posed in the sense that
the solution (if it exists) does not depend continuously on the data. In order
to obtain a stable numerical solution, we propose a regularization method via
an iterative regularization procedure based on the Kozlov–Maz’ya approach. We
show rigorously, with error estimates provided, that the corresponding regularized
solutions converge to the exact solution under some priori assumptions on the
solution.

The paper is organized as follows. In Section 2, we formulate the abstract
inverse Goursat problem with two-time variables and some preliminaries and
basic results are given. Section 3 is intended for giving a necessary and sufficient
condition for the solvability of our problem. In Section 4, the regularization
method will be given. We prove our main theorems of the paper with exact and
noisy data, and some error estimates are established under a priori regularity
assumption on the problem data. We present numerical experiments in Section
5 that verify the effectiveness of the proposed regularization method, and finally
conclusions are summarized in the last section.

2. Formulation of the problem and basic results

Throughout this paper, H denotes a complex separable Hilbert space endowed
with the inner product ⟨·, ·⟩ and the norm ∥ · ∥ and L(H) stands for the Banach
algebra of bounded linear operators onH. LetA : D(A) ⊂ H −→ H be a positive,
self-adjoint operator with compact resolvent. Then A has an orthonormal basis
of eigenvectors (ϕn) ⊂ H with real eigenvalues (λn) ⊂ R+, that is,

Aϕn = λnϕn, n ∈ N∗, ⟨ϕi, ϕj⟩ = δij =

{
1, if i = j,
0, if i ̸= j,

0 < ν ≤ λ1 ≤ λ2 ≤ λ3 ≤ . . . , lim
n→∞

λn = ∞,

for all h ∈ H, h =
∞∑
n=1

hnϕn, hn = ⟨h, ϕn⟩.
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2.1. Formulation of the problem. In this paper, we consider the following
inverse source problem of determining the unknown source term p ∈ H and the
function u(t) for t = (t1, t2) ∈]0, T1]×]0, T2] from the system of equations

∂2u(t)
∂t1∂t2

+ Au(t) = p, t = (t1, t2) ∈]0, T1]×]0, T2],

u(t1, 0) = 0, t1 ∈ [0, T1],
u(0, t2) = 0, t2 ∈ [0, T2],

(2.1)

where 0 < T1, T2 <∞ and g is a given H-valued function. The source function p
is unknown. We use the additional condition

u(a, b) = g, (a, b) ∈]0, T1[×]0, T2[, (2.2)
to identify the unknown source p.

Remark 2.1. In this study, we consider the homogeneous case to simplify calcu-
lations. For the nonhomogeneous case,

∂2u(t)
∂t1∂t2

+ Au(t) = p, t = (t1, t2) ∈]0, T1]×]0, T2],

u(t1, 0) = φ(t1), t1 ∈ [0, T1],
u(0, t2) = ψ(t2), t2 ∈ [0, T2],

(2.3)

we assume that φ and ψ satisfy the following assumptions:
φ(t1) ∈ D(A), t1 ∈ [0, T1], (H1)

ψ(t2) ∈ D(A), t2 ∈ [0, T2], (H2)

and
φ(0) = ψ(0) = χ ∈ D(A). (H3)

Under these conditions, we introduce the following function:
v(t1, t2) = u(t1, t2)− φ(t1)− ψ(t2) + χ.

we obtain a homogeneous problem with a new source p̂,
∂2v(t)
∂t1∂t2

+ Av(t) = p̂ = p+ η(t1, t2), t = (t1, t2) ∈]0, T1]×]0, T2],

v(t1, 0) = 0, t1 ∈ [0, T1],
v(0, t2) = 0, t2 ∈ [0, T2],

(2.4)

with η(t1, t2) = A(χ− φ(t1)− ψ(t2)).
To determine the unknown source p, we apply the same iterative procedure as

in the homogeneous case with an additional calculation in the numerical imple-
mentation.

In practice, the measurable data g is never known exactly. We assume that the
exact data g and the measured data gδ satisfy ∥g − gδ∥ ≤ δ, where δ is a noise
level.

In this paper, we continue the investigation started by Aksen [1], Boussetila
and Rebbani [5] for an ill-posed evolution problem with two-time variables t1 and
t2. We note that the case of multi-time variables does not seem to have been
widely investigated and that the literature devoted to this class of problems is
quite scarce. The study of this case is caused not only by theoretical interest, but
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also by practical necessity. Consequently, this paper wants to give a contribution
for multi-time inverse problems [19, 20, 27, 28, 34, 43].

As we know, there are several works on the subject of inverse source problems
by using numerical algorithms. There are also some regularization methods, with
strict theoretical analysis, such as the Fourier method, the quasi-reversibility
method, the simplified Tikhonov method, and the wavelet dual least squares
method. For more details, we refer the reader to [9, 18, 30, 31, 39, 41].

For regularizing problem (2.1), we propose an iterative regularization procedure
based on the Kozlov–Maz’ya approach with the help of an extra measurement
at an internal point given by (2.2). In [21, 22], Kozlov and Maz’ya proposed
an alternating iterative method to solve boundary value problems for general
strongly elliptic and formally self-adjoint systems. After that, this method has
attracted considerable attention of a lot of mathematicians and the idea has
been successfully used for solving various classes of ill-posed (elliptic, parabolic,
biparabolic, hyperbolic and fractional evolution) equations; see, for example, [6,
14, 24, 40].

2.2. Preliminaries and basic results. In this section, we present the notation
and functional setting and prepare some materials, which will be used in our
analysis.

For ease of reading, we summarize some well-known facts for nonexpansive
operators.

Definition 2.2. A linear operator M ∈ L(H) is called nonexpansive if
∥M∥ ≤ 1.

For more details concerning the theory of nonexpansive operators, we refer the
reader to Krasnosel’skii et al. [23, p. 66]. Let us consider the operator equation

Sφ = (I −M)φ = ψ, (2.5)
for nonexpansive operators M .

Theorem 2.3. Let M be a linear self-adjoint, positive, and nonexpansive operator
on H. Let ψ̂ ∈ H be such that equation (2.5) has a solution φ̂. If 1 is not an
eigenvalue of M , that is, (I −M) is injective, then the successive approximations

φn+1 =Mφn + ψ̂, n = 0, 1, 2, . . . ,

converge to φ̂ for any initial data φ0 ∈ H, and we have
φ̂− φn =Mn(φ0 − φ̂) −→ 0, n −→ ∞. (2.6)

Theorem 2.4 (Generalized Picard theorem, Prilepko [26, p. 502]). Let H be a
Hilbert space, let S be a positive self-adjoint, unbounded linear operator on H,
and let Θ : σ(A) −→ R be a continuous function not identically equal to zero,
such that

Θ(S) =

+∞∫
0

Θ(λ)dEλ ∈ L(H),
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where {Eλ, λ ≥ 0} is the spectral resolution of the identity associated to S. Let
Z(Θ) = {λ ∈ σ(A) : Θ(λ) = 0} be the set of zeros of the characteristic function
Θ(λ) supposed to be either empty or contains isolated points only. Then, the
equation

Θ(S)u = v,

is correctly solvable if and only if
(1) Z(Θ) ∩ σ(A) = ∅ (uniqueness condition).

(2)
+∞∫
0

1
|Θ(λ)|2d∥Eλv∥2 < +∞ (existence condition).

We denote by

Jn(x) =
+∞∑
k=0

(−1)k(x/2)n+2k

k!(n+ k)!
, x ∈ R, n = 0, 1, 2, . . . ,

the Bessel function of the first kind. Some basic properties of this function are
listed in the following lemma.

Lemma 2.5 ([25]). We have the following properties:
(1) J−n(x) = (−1)nJn(x),
(2) J0(0) = 1, Jn(0) = 0, n ∈ N∗,
(3) |J0(x)| ≤ 1, |Jn(x)| ≤ 1

2
,n ∈ N∗,

(4) lim
x−→0

J1(x)
x

= 1
2
, lim
x−→+∞

J0(x) = 0.

For a ≥ 0, we define the Riemann function by the following formula:
R(a; t1, t2) = J0(2

√
a
√
t1.t2), t1, t2 ∈ R+. (2.7)

By a simple calculation, we show the following expressions:
t2∫
0

t1∫
0

R(a; t1 − s1, t2 − s2)ds1ds2 =
1−R(a; t1, t2)

a
, (2.8)

∂

∂t1
{R(a; t1 − s1, t2 − s2)} = −

√
a

√
t2√
t1
J1(2

√
a
√
t1
√
t2), t1 > 0, (2.9)

∂

∂t2
{R(a; t1 − s1, t2 − s2)} = −

√
a

√
t1√
t2
J1(2

√
a
√
t1
√
t2), t2 > 0, (2.10)

for all t2 > 0, lim
t1−→0

{
−
√
a

√
t2√
t1
J1(2

√
a
√
t1
√
t2)

}
= −at2, (2.11)

for all t1 > 0, lim
t2−→0

{
−
√
a

√
t1√
t2
J1(2

√
a
√
t1
√
t2)

}
= −at1, (2.12)

for all t1 > 0, for all t2 > 0, lim
(t1,t2)−→(0,0)

∂

∂t1
{R(a; t1, t2)} = 0, (2.13)

for all t1 > 0, for all t2 > 0, lim
(t1,t2)−→(0,0)

∂

∂t2
{R(a; t1, t2)} = 0, (2.14)
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∂2

∂t1∂t2
{R(a; t1, t2)} =

∂2

∂t2∂t1
{R(a; t2, t1)} = −aR(a; t1, t2). (2.15)

On the basis of (ϕn) we introduce the Hilbert scale {Hs, s ∈ R} induced by A as
follows:

Hs = D(As) = {h ∈ H : ∥h∥2Hs =
∞∑
n=1

λ2sn |⟨h, ϕn⟩|2 < +∞}.

Let 0 < θ1 < θ2 and let 0 < θ3 < θ4. Then we have the following topological
inclusions:

Hθ2 ⊂ Hθ1 ⊂ H0 = H ⊂ H−θ3 ⊂ H−θ4 .

Remark 2.6. For s > 0, the Hilbert space H−s is the topological dual space of
Hs, that is, H−s = (Hs)′.

3. Analysis of the problem

3.1. The direct problem. Let us consider the following well-posed problem:
∂2v(t)
∂t1∂t2

+ Av(t) = p, t = (t1, t2) ∈]0, T1]×]0, T2],

v(t1, 0) = 0, t1 ∈ [0, T1],
v(0, t2) = 0, t2 ∈ [0, T2],

(3.1)

where 0 < T1, T2 < ∞ and p is a given H-valued function. By using the Fourier
expansion and the given function p,

p =
+∞∑
n=1

pnϕn, pn := ⟨p, ϕn⟩,

v(t) =
∞∑
n=1

vn(t)ϕn, vn(t) := ⟨v(t), ϕn⟩,

we obtain 
∂2vn(t)
∂t1∂t2

+ λnvn(t) = pn, t = (t1, t2) ∈]0, T1]×]0, T2],

vn(t1, 0) = 0, t1 ∈ [0, T1],
vn(0, t2) = 0, t2 ∈ [0, T2].

(3.2)

We recall here the following results.
Let D = (0, T1)× (0, T2) be a bounded rectangle in the plane R2 with coordi-

nates t = (t1, t2) ∈ D. We consider the equation
∂2U(t)

∂t1∂t2
+ AU(t) = f(t), t ∈ D,

U(t1, 0) = φ(t1), t1 ∈ [0, T1],
U(0, t2) = ψ(t2), t2 ∈ [0, T2],

(3.3)

where U and f are H-valued functions on D, φ (resp. ψ) is H-valued function
on [0, T1] (resp. [0, T2]), and

φ(0) = ψ(0) = η.
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It was shown (see [7], [11, Theorem 4.1, Formula (4.10)], and [29, Formula
6]) that under natural conditions on φ, ψ, and f with the help of the Riemann
function, the Goursat problem (3.3) is well-posed and its solution is given by

U(t1, t2) =R(A; t1, t2)η +

t1∫
0

R(A; t1 − s1, t2)φ
′(s1) ds1

+

t2∫
0

R(A; t1, t2 − s2)ψ
′(s2) ds2

+

t2∫
0

t1∫
0

R(A; t1 − s1, t2 − s2)f(s1, s2) ds1ds2, (3.4)

where R(A; t1, t2) = J0
(
2
√
t1t2A

)
∈ L(H) is the Riemann function defined in

terms of its spectral representation:

R(A; t1, t2)h =
+∞∑
n=1

R(λn; t1, t2)⟨h, ϕn⟩ϕn, h =
+∞∑
n=1

⟨h, ϕn⟩ϕn ∈ H.

By virtue of properties (2.7), (2.8), (2.15), and (3.4), we deduce that the exact
solution of (3.2) is given by

vn(t) = λ−1
n (1−R(λn; t1, t2)pn = λ−1

n (1− J0(2
√
λn

√
t1t2))pn. (3.5)

By using properties of the Bessel function J0(·) (Lemma 2.5(1), (2) and (3)),
we have

∥R(A; t1, t2)∥ = sup
n≥1

|R(λn; t1, t2)| ≤ 1, (3.6)

∥R(A; t1 = 0, t2)∥ = ∥R(A; t1, t2 = 0)∥ = ∥R(A; t1 = 0, t2 = 0)∥ = 1, (3.7)
∥R(A; t1, t2)∥ < 1, for all t1 > 0, t2 > 0, (3.8)

∥I −R(A; t1, t2)∥ = sup
n≥1

|1−R(λn; t1, t2)| ≤ 2, (3.9)

∥F (A; t1, t2)∥ = ∥A−1(I −R(A; t1, t2))∥ = sup
n≥1

|λ−1
n (1−R(λn; t1, t2))| ≤

2

λ1
.

(3.10)
Now we are in position to state our main results.

Theorem 3.1. For any p ∈ H (or H−1), Problem (3.2) admits a unique solution
given by

v(t1, t2) = F (A; t1, t2) = A−1(I−R(A; t1, t2))p =
+∞∑
n=1

λ−1
n (1−R(λn; t1, t2))⟨p, ϕn⟩ϕn.

(3.11)
Moreover, we have the following stability estimates:

sup
t=(t1,t2)∈Q

∥v(t)∥ ≤ 2

λ1
∥p∥, (3.12)
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sup
t=(t1,t2)∈Q

∥v(t)∥ ≤ 2∥p∥H−1 , (3.13)

where Q =]0, T1[×]0, T2[ and Q = [0, T1]× [0, T2].

Remark 3.2. By virtue of (2.9)–(2.15), the function F (A; t1, t2) =
A−1(I − R(A; t1, t2)) is strongly continuous, and for all p ∈ H, the function
v(t) = F (A; t1, t2)p satisfies the following regularity properties:

(1) for all t ∈ Q, v(t) ∈ H1, v(t) ∈ C(Q,H1);
(2) ∂v(t)

∂ti
∈ C(]0, T1]×]0, T2], H

1
2 ) ∩ C(Q,H), i = 1, 2;

(3) ∂2v(t)
∂t1∂t2

∈ C(Q,H).

3.2. The inverse problem. Using the internal condition u(a, b) = F (A; a, b)p =
g, we conclude that our inverse problem (2.1)–(2.2) is equivalent to the operator
equation

F (A; a, b)p = g. (3.14)
The theoretical analysis of problem (3.14) is essentially based on the characteristic
function F (λ; a, b) and the generalized Picard theorem 2.4. We easily check that

for all λ ≥ λ1, 0 < F (λ; a, b) =
1− J0(2

√
λ
√
ab)

λ
≤ 2

λ1
(3.15)

and
lim

λ−→+∞
F (λ; a, b) = 0, (3.16)

which implies that F (A; a, b) is an injective, compact positive self-adjoint opera-
tor, and its inverse F (A; a, b)−1 is unbounded operator given by

F (A; a, b)−1g =
+∞∑
n=1

λn

1− J0(2
√
λn

√
ab)

⟨g, ϕn⟩ϕn. (3.17)

This series is convergent if and only if

∥F (A; a, b)−1g∥2 =
+∞∑
n=1

λ2n

(1− J0(2
√
λn

√
ab))2

|⟨g, ϕn⟩|2 < +∞.

By a simple calculation, µn = λn

1−J0(2
√
λn

√
ab)

can be estimated as follows:

λn
2

≤ µn ≤ λn

1− J0(2
√
λ∗
√
ab)

, (3.18)

where at λ∗, the function J0(2
√
λ
√
ab) achieves its maximum positive value. From

(3.18) and by virtue of the generalized Picard theorem, we deduce that the inverse
problem (3.14) is correctly solvable if and only if g ∈ H1, that is,

+∞∑
n=1

λ2n|⟨g, ϕn⟩|2 < +∞. (3.19)
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Theorem 3.3. For all g ∈ H1, problem (3.14) admits a unique solution given by

p = F (A; a, b)−1g =
+∞∑
n=1

λn

1− J0(2
√
λn

√
ab)

⟨g, ϕn⟩ϕn. (3.20)

Theorem 3.4. For all g ∈ H1, problem (2.1)–(2.2) admits a unique solution
given by

u(t) = F (A; t1, t2)p =
+∞∑
n=1

1− J0(2
√
λn

√
t1t2)

1− J0(2
√
λn

√
ab)

⟨g, ϕn⟩ϕn. (3.21)

Remark 3.5. From (3.20) we see that p is unstable. This follows from the high-
frequency

µn =
λn

1− J0(2
√
λn

√
ab)

−→ +∞, n −→ +∞.

4. Iterative regularization and error estimates

Description of the method. The iterative algorithm for solving the ill-posed
problem (3.14) (resp. (2.1)–(2.2)) starts by letting p0 ∈ H be arbitrary. The first
approximation u0(t) is the solution to the direct (well-posed) problem

∂2u0(t)
∂t1∂t2

+ Au0(t) = p0, t = (t1, t2) ∈]0, T1]×]0, T2],

u0(t1, 0) = 0, t1 ∈ [0, T1],
u0(0, t2) = 0, t2 ∈ [0, T2].

(4.1)

We solve (4.1) and find

u0(t1, t2) = F (A; t1, t2)p
0 =

+∞∑
n=1

λ−1
n (1−R(λn; t1, t2))⟨p0, ϕn⟩ϕn. (4.2)

The second approximation (u1(t), p1) is obtained by solving
∂2u1(t)
∂t1∂t2

+ Au1(t) = p1, t = (t1, t2) ∈]0, T1]×]0, T2],

u1(t1, 0) = 0, t1 ∈ [0, T1],
u1(0, t2) = 0, t2 ∈ [0, T2],

(4.3)

where
p1 = p0 − ω

(
u0(a, b)− g

)
, (4.4)

0 < ω < ω∗ =
1

||F (A; a, b)||
,

and

||F (A; a, b)|| = sup
n≥1

1− J0(2
√
λn

√
ab)

λn
≤ 2

λ1
. (4.5)
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We solve (4.3) and find

u1(t1, t2) = F (A; t1, t2)p
1 =

+∞∑
n=1

λ−1
n (1−R(λn; t1, t2))⟨p1, ϕn⟩ϕn. (4.6)

Finally, we get uk+1 by solving the problem
∂2uk+1(t)
∂t1∂t2

+ Auk+1(t) = pk+1, t = (t1, t2) ∈]0, T1]×]0, T2],

uk+1(t1, 0) = 0, t1 ∈ [0, T1],
uk+1(0, t2) = 0, t2 ∈ [0, T2],

(4.7)

where
pk+1 = pk − ω

(
uk(a, b)− g

)
. (4.8)

We note here that k plays the role of regularization parameter and ω is an
accelerated factor for this iterative procedure.

We set G = I − ωF (A; a, b). If we iterate backwards in (4.8), then we obtain
pk = Gkp0 + (I −Gk)p,

pk − p = Gk(p0 − p),

uk(t)− u(t) = F (A; t1, t2)G
k(p0 − p).

Proposition 4.1. The operator G = I − ωF (A; a, b) is self-adjoint and nonex-
pansive on H (1 is not an eigenvalue of G). Moreover, let k ∈ N∗. Then∣∣∣∣∣

∣∣∣∣∣
k−1∑
i=0

Gi

∣∣∣∣∣
∣∣∣∣∣ ≤

k−1∑
i=0

||Gi|| ≤ k.

Proof. • The self-adjointness follows from the definition of G, since we have
the inequality

0 < G(λ) < 1, for all λ ≥ λ1,

which implies that σp(G) ⊂]0, 1[. Consequently 1 it is not an eigenvalue
of G.

• Since ∥G∥ ≤ 1, it follows immediately that ∥
∑k−1

i=0 G
i∥ ≤ k.

□
We provide the following lemma, which will be used in the proof of the con-

vergence estimates.

Lemma 4.2 ([37, 42]). For 0 < µ < 1, define

pk(µ) =
k−1∑
i=0

(1− µ)i,

and
rk(µ) = 1− pk(µ) = (1− µ)k,

there hold
pk(µ)µ

θ ≤ k1−θ, 0 ≤ θ ≤ 1,
rk(µ)µ

θ ≤ κθ(k + 1)−θ,
(4.9)
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where
κθ =

{
1, 0 ≤ θ ≤ 1,
θθ, θ > 1.

Now we are in a position to state the main result of this method.

Theorem 4.3. Let p0 be an arbitrary element for the iterative procedure suggested
above, and let uk be the kth approximate solution. Then we have

sup
t∈Q

||u(t)− uk(t)|| −→ 0, k −→ +∞. (4.10)

Moreover, if (p− p0) ∈ Hθ, θ > 0, then the rate of convergence of the method is
given by

sup
t∈Q

||u(t)− uk(t)|| ≤ τ

(1 + k)θ
, (4.11)

where τ = κθ
(
1
ω

)θ ( 1
M

)θ.
Proof. (i) It follows immediately from Theorem 2.3 and (3.15) that

||u(t)− uk(t)|| = ||F (A; t1, t2)Gk(p0 − p)||

≤ ||F (A; t1, t2)|| ||Gk(p0 − p)||

≤ 2
λ1
||Gk(p0 − p)|| −→ 0, k −→ +∞.

(4.12)

(ii) For notational convenience and simplicity, we denote
0 < µn = 1− ωF (λn; a, b) < 1 (4.13)

and
M = sup

λ≥λ1

1

1− J0(2
√
λ
√
ab)

. (4.14)

We have
||u(t)− uk(t)||2 = ||F (A; t1, t2)Gk(p0 − p)||2

≤
(

2
λ1

)2 +∞∑
n=1

(1− ωF (λn, a, b))
2k |(p− p0)n|2

and(
2

λ1

)2 +∞∑
n=1

(1− ωF (λn, a, b))
2k
∣∣(p− p0)n

∣∣2
=

(
2

λ1

)2 +∞∑
n=1

(1− ωF (λn, a, b))
2k (ωF (λn, a, b))

2θ(ωF (λn, a, b))
−2θ
∣∣(p− p0)n

∣∣2 .
By using (4.9) and (4.14), we derive the following estimates

(1− ωF (λn, a, b))
2k (ωF (λn, a, b))

2θ ≤
(
κθ

1

(k + 1)θ

)2

, (4.15)
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+∞∑
n=1

(ωF (λn, a, b))
−2θ
∣∣(p− p0)n

∣∣2 ≤ ( 1

ω

)2θ (
1

M

)2θ +∞∑
n=1

λ2θn
∣∣(p− p0)n

∣∣2 . (4.16)

Combining (4.15) and (4.15), we obtain the desired estimate. □

Remark 4.4. Let ukδ (t) be the kth approximate solution associated to inexact data
gδ such that ∥g − gδ∥ ≤ δ. Then we have

∥u(t)− ukδ (t)∥ ≤ △1 +△2,

where
△1 = ∥u(t)− uk(t)∥ ≤ τ

(1 + k)θ

and

△2 = ∥uk(t)− ukδ (t)∥ = ∥ωF (A; t1, t2)
k−1∑
i=0

(g − gδ)∥ ≤ ω
2

λ1
kδ.

If we choose k = k(δ) such that ω 2
λ1
kδ −→ 0 as δ −→ 0, then the total error

estimate is given by

sup
t∈Q

∥u(t)− ukδ (t)∥ ≤ τ

(1 + k)θ
+ ω

2

λ1
kδ. (4.17)

Remark 4.5. To speed up the proposed iterative method, we use a preconditioning
variant of this method [10, 33], which is described as

pk+1 = pk − ωS
(
uk(a, b)− g

)
, (4.18)

where S = A−r is the preconditioner, and r ≥ 0. The relaxation parameter ω is
chosen such that

0 < ω < ω∗ =
1

∥SF (A; a, b)∥
.

5. Numerical tests

In this section, we give a three-dimensional numerical test to show the feasibility
and efficiency of the proposed methods. Numerical experiments were carried out
by using MATLAB. We consider the following inverse problem:

ut1t2(x, t)− uxx(x, t) = p(x), x ∈ (0, π), t = (t1, t2) ∈]0, 2[×]0, 2[,
u(0, t1, t2) = u(π, t1, t2) = 0, (t1, t2) ∈ Q = [0, 2]× [0, 2],
u(x, 0, t2) = 0, t2 ∈ [0, 2],
u(x, t1, 0) = 0, t1 ∈ [0, 2],
u(x, 1, 1) = g(x), x ∈ [0, π],

(5.1)

where p(x) is the unknown source and u(x, 1, 1) = g(x) is the supplementary
condition. We know that

A = − ∂2

∂x2
, D(A) = H1

0 (0, π) ∩H2(0, π) ⊂ H = L2(0, π),
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is positive, self-adjoint with compact resolvent (A is diagonalizable). The eigen-
pairs (λn, ϕn) of A are

λn = n2, ϕn(x) =

√
2

π
sin(nx), n ∈ N∗.

In this case, formula (3.20) takes the form

p(x) =
2

π

+∞∑
k=1

k2

1− J0(2k)

 π∫
0

g(x) sin(kx)dx

 sin(kx). (5.2)

In the following, we consider an example that has an exact expression of solutions
(u(x, t1, t2), p(x)):

g(x) = u(x, 1, 1) =

√
2

π
(1− J0(2)) sin(x) +

√
2

π

1

4
(1− J0(4)) sin(2x),

p(x) =

√
2

π
sin(x) +

√
2

π
sin(2x).

Adding a random distributed perturbation (obtained by the MATLAB command
randn) to each data function, we obtain the vector gδ:

gδ = g + εrandn(size(g)),

where ε indicates the noise level of the measurement data and the function
“randn(.)” generates arrays of random numbers whose elements are normally
distributed with mean 0, variance σ2 = 1, and standard deviation σ = 1.
“randn(size(g))” returns an array of random entries that is the same size as
g. The bound on the measurement error δ can be measured in the sense of root
mean square error according to

δ = ∥gδ − g∥∗ =

(
1

M + 1

M+1∑
i=1

(
g(xi)− gδ(xi)

)2)1/2

.

The relative error RE(p) is given by

RE(p) =
∥pδk − p∥∗

∥p∥∗
. (5.3)

Iteration method. By using the central difference with step length h = π
N+1

to
approximate the first derivative ux and the second derivative uxx, we can get the
following semi-discrete problem:

ut1t2(xi, t)− Ah(xi, t) = 0, xi = ih, i = 1, . . . , N,
t = (t1, t2) ∈]0, 2[×]0, 2[,

u(x0 = 0, t1, t2) = u(xN+1 = π, t1, t2) = 0, (t1, t2) ∈ [0, 2]× [0, 2],
u(xi, 0, t2) = 0 = u(xi, t1, 0), i = 1, . . . , N, (t1, t2) ∈ [0, 2]× [0, 2],
u(xi, 1, 1) = gδ(xi), i = 1, . . . , N,

(5.4)
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where Ah is the discretization matrix stemming from the operator A = − d2

dx2 :

Ah =
1

h2
Tridiag(−1, 2,−1) ∈ MN(R)

is a symmetric, positive definite matrix. We assume that it is fine enough so that
the discretization errors are small compared to the uncertainty δ of the data; this
means that Ah is a good approximation of the differential operator A = − d2

dx2 ,
whose unboundedness is reflected in a large norm of Ah. The eigenpairs (µk, ek)
of Ah are given by

µk = 4

(
N + 1

π

)2

sin2

(
kπ

2(N + 1)

)
, ek =

(
sin

(
jkπ

N + 1

))N

j=1

, k = 1, . . . , N.

The discrete iterative approximation of (5.4) takes the form

pδk(xj) =
(
I − ωA−r

h F (Ah; 1, 1)
)k
p0(xj)+ω

k−1∑
i=0

(
I − ωA−r

h F (Ah; 1, 1)
)i
A−r

h gδ(xj),

(5.5)
where j = 1, . . . , N = 1000, r ≥ 0, and F (Ah; 1, 1) = (I − J0(2

√
Ah))A

−1
h ∈

MN(R).

5.1. Tables.

Table 1. Basic KM iteration method: The relative errors RE for
fixed ω, r and for various values of δ

N k ε ω r RE
1000 10 0.001 1.1590 0 0.0178
1000 10 0.01 1.1590 0 0.1266
1000 10 0.1 1.1590 0 1.2728
1000 4 0.1 1.1590 0 0.4558

Table 2. Preconditioning KM iteration method: The relative er-
rors RE for fixed ω, r, δ and for various values of k

N k ε ω r RE
1000 40 0.1 1.1567 1 0.0142
1000 35 0.1 1.1567 1 0.0128
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5.2. Conclusion and discussion. The numerical results (Figures 5–6) are quite
satisfactory. Even with the aggressive noise level δ = 0.1, the numerical solutions
are still in good agreement with the exact solution. In the case of KM iteration
without preconditioning (Figures 1–4), the method is sensitive, and the numerical
results obtained are far from the exact solutions, but for a low noise (δ = 0.001),
they can be improved for certain optimal choices of the parameters involved in
the method.

In this study, a convergent and stable reconstruction of an unknown right-hand
side has been obtained using an iterative regularization method. Both theoretical
and numerical studies have been provided.
5.3. Generalization. By using Mittag–Leffler and Wright-type functions, this
study can be extended to the fractional case, that is, we can generalize the ob-
tained results to the following fractional Goursat problem:

The inverse problem here is to determine the unknown source term p ∈ H and
the function u(t) for t = (t1, t2) ∈]0, T1]×]0, T2] from the additional data

u(a, b) = g, (a, b) ∈]0, T1[×]0, T2[, (5.6)
and the system of equations

Dα
t1
Dβ

t2u+ Au(t) = p, t = (t1, t2) ∈]0, T1]×]0, T2],

u(t1, 0) = 0, t1 ∈ [0, T1],
u(0, t2) = 0, t2 ∈ [0, T2],

(5.7)

where 0 < T1, T2 < ∞, g is a given H-valued function, 0 < α < 1, 0 < β < 1,
and the notation Dθ

y means the Djrbashian–Caputo derivative operator of order
θ ∈ (0, 1) for differentiable function, defined by

Dα
y u(y) =

1

Γ(1− θ)

∫ y

0

(y − s)−θu′y(s)ds, 0 < θ < 1.

5.4. Figures.
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Figure 1. Basic KM iteration method: δ = 0.1 (noise level), k =
10 (iteration number), r = 0 (preconditioner parameter).
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Figure 2. Basic KM iteration method: δ = 0.1 (noise level), k = 4
(iteration number), r = 0 (preconditioner parameter).
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Figure 3. Basic KM iteration method: δ = 0.01 (noise level),
k = 10 (iteration number), r = 0 (preconditioner parameter).
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Figure 4. Basic KM iteration method: δ = 0.001 (noise level),
k = 4 (iteration number), r = 0 (preconditioner parameter).
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Figure 5. Preconditioning KM iteration method: δ = 0.1 (noise
level), k = 35 (iteration number), r = 1 (preconditioner parame-
ter).
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Figure 6. Preconditioning KM iteration method: δ = 0.1 (noise
level), k = 40 (iteration number), r = 1 (preconditioner parame-
ter).
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