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Abstract. This paper describes the semigroups generated by the Markov
processes in spaces with mixed norm and proves analogues of statistical ergodic
theorems for such semigroups.

1. Introduction and preliminaries

Semigroups generated by the Markov process in some function spaces plays an
important role in the theory of probability, economics, mathematical biology,
molecular physics, quantum physics and mechanics, and so on. In monographs
and textbooks I.I.Gikhman and A.V. Skorokhod [5], K. Yosida [16] M. Loeve
[14], V. Feller [4] semigroups generated by the Markov process in Lp spaces and
spaces of continuous functions and ergodic theorems for such semigroups studied
in detail.

Markov process in space of measurable functions of variables generated by lin-
ear operators depends on measurable parameters. Linear operators depend on
measurable parameters, that is random linear operators, appear in different ar-
eas of mathematics such as functional analysis, probability theory, mathematical
physics and so on.

In [15], A.V. Skorokhod considered the theory of random linear operators in
Hilbert spaces and investigated convergence of series of random operators. Also,
spectral theory of random linear operators was described and applications to
equations with random operators was given.
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In [3] G.P. Butsan investigated semigroups of operators on Hilbert spaces,
depending on measurable parameters.

The partial integral operators, that is random integral operators in ideal spaces
of measurable functions were considered in [1],[7]. In [10] K.K. Kydaybergenov
showed that a partial integral operator acting on Hilbert-Kaplansky module
L0[L2] is a cyclic compact operator on L0[L2].

In early 1990s A.E. Gutman [6] introduced measurable Banach bundles with
lifting, axiomatically. He also established that every Banach-Kantorovich space
over the ring of measurable functions can be expressed as measurable bundle of
Banach spaces.

Banach spaces with mixed norm were introduced in [11] and operators in this
spaces were studied in [12]. An ideal Banach space with mixed norm was consid-
ered in [2].

In this paper we consider the Markov process with invariant measure, generated
by a contraction semigroup in a function space with mixed norm. We prove
statistical ergodic theorems for such semigroup.

Let (Ω,Σ, µ) be a measure space with finite measure µ, and L0(Ω) be the
algebra of all measurable functions on Ω. Here the almost everywhere equal
functions are identified.

Let U be a linear space over the real field R. By ‖ · ‖ we denote an L0(Ω)-
valued norm on U . Then the pair (U , ‖ · ‖) is called a lattice-normed space (LNS)
over L0(Ω). An LNS, U , is said to be d-decomposable if for every x ∈ U and the
decomposition ‖x‖ = f +g with f and g disjoint positive elements in L0(Ω) there
exist y, z ∈ U such that x = y + z with ‖y‖ = f , ‖z‖ = g.

Suppose that (U , ‖ · ‖) is an LNS over L0(Ω). A net {xα} of elements of U is
said to be (bo)-converging to x ∈ E (in this case we write x = (bo)-limxα), if the
net {‖xα − x‖} (o)-converges to zero in L0(Ω) (written as (o)-lim ‖xα − x‖ = 0).
A net {xα}α∈A is called (bo)-fundamental if (xα − xβ)(α,β)∈A×A (bo)-converges to
zero.

An LNS in which every (bo)-fundamental net (bo)-converges is called (bo)-
complete. A Banach-Kantorovich space (BKS) over L0(Ω) is a (bo)-complete
d-decomposable LNS over L0(Ω). It is well known (see [12],[13]) that every BKS
E over L0(Ω) admits an L0(Ω)-module structure such that ‖fx‖ = |f | · ‖x‖ for
every x ∈ E, f ∈ L0(Ω), where |f | is the modulus of a function f ∈ L0(Ω).

A set B ⊂ U is called bounded, if the set {‖x‖ : x ∈ B} is order bounded in L0.
An operator T : U → U is called L0-linear, if T (αx+ βy) = αT (x) + βT (y) for

all α, β ∈ L0, x, y ∈ U . An L0-linear operator T is called L0–bounded, if for any
bounded set B in U , the set T (B) is bounded in U . For an L0-bounded operator
T we will put

‖T‖ = sup{‖T (x)‖ : ‖x‖ ≤ 1},
where 1 is the identity element in L0.

An ideal space on (Ω,Σ, µ) is a linear subset E in L0 such that

(x ∈ L0, y ∈ E; |x| ≤ |y|)⇒ (x ∈ E)

i.e., for every function y ∈ E, the set E contains its modulus and each function
with smaller modulus. A norm on an ideal space E is said to be monotone if



166 I. GANIEV, S. SADADDINOVA, U. GANIEV

(x, y ∈ E; |x| ≤ |y|) ⇒ ‖x‖E ≤ ‖y‖E. A sequence {bn} is said to be order
convergent (or o-convergent) to b if there is a sequence {an} in E satisfying

an ↓ 0 and |bn − b| ≤ an for all n, written as bn
(o)→ b or b = (o)− lim

n
bn.

A Banach ideal space on (Ω,Σ, µ) is defined as an ideal space E endowed with
a monotone norm making E into a Banach space.

A norm on a Banach ideal space E is said to be o-continuous or satisfies con-
dition (A) in E if (xn ↓ 0)⇒ ‖xn‖E → 0.

An even continuous convex function M : R → [0,∞) is called an N -function,

if lim
t→0

M(t)
t

= 0 and lim
t→∞

M(t)
t

= ∞. Every N -function M has the form M(t) =

|t|∫
0

p(s)ds, where p(t) is a nondecreasing function that is positive for t > 0, right-

continuous for t ≥ 0, satisfying p(0) = 0 and lim
t→∞

p(t) = ∞ (see [10]). Put

q(s) := sup{t : p(t) ≤ s}, s ≥ 0. The function N(t) :=
|t|∫
0

q(s)ds is an N -function

which is called the complementary N -function to M (see [8]).
The Orlicz space LM(Ω,Σ, µ) is the set of measurable functions f ∈ L0 such

that there exists a λ > 0 for which
∫
M(f

λ
)dµ <∞, with norm given by

‖f‖ = inf{λ > 0 :

∫
M

(
f

λ

)
dµ ≤ 1}.

Orlicz spaces are examples of Banach ideal spaces. If the N -function M meets
the 42-condition, i.e., M(2t) ≤ kM(t) for all t ≥ t0 ≥ 0, for some k > 0 and
t0 ≥ 0, then LM(Ω,Σ, µ) has condition (A).

Let E be an ideal space of measurable functions on (Ω,Σ, µ), (S,B,m) a mea-
sure space with complete measure m, and F a Banach ideal space of measurable
functions on (S,B,m). Denote by E[F ] the space of all measurable functions K
on Ω× S satisfying the following two conditions:

a) the equivalence class of functions x 7→ K(ω, x) belongs to F for almost
all ω ∈ Ω;

b) the function ω 7→ ‖K(ω, ·)‖F is measurable and its equivalence class ‖K‖
belongs to E.

It is known that E[F ] is a Banach-Kantorovich space over E with norm ‖K‖ and
E[F ] is an ideal space of measurable functions on Ω× S (see.[12], pp. 67).

If E is a Banach ideal space, then the equality ‖K‖E[F ] =‖ ‖K‖ ‖E makes E[F ]
a Banach space named a space with mixed norm.

Let L0(Ω, F ) := L0(Ω,Σ, µ, F ) be the space of equivalence classes of all Bochner
µ-measurable vector valued functions from Ω to F . As usual, the vector valued
functions are equivalent if they accept the same values almost everywhere on
Ω. If ũ ∈ L0(Ω, F ) is the equivalence class of a measurable vector valued func-
tion u : Ω → F , then the scalar function ω 7→ ‖u(ω)‖F is measurable and the
corresponding equivalence class, denoted by ‖ũ‖, belongs to L0(Ω).
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Put
E(F ) := {ũ ∈ L0(Ω, F ) : ‖ũ‖ ∈ E}.

Then (E(F ), ‖ · ‖) is a Banach-Kantorovich space over E (see [11], pp. 95).

Theorem 1.1. ([12], pp. 68). Let F be a Banach ideal space on (S,B,m) with
order semicontinuous norm. For any measurable vector f : Ω → F, there exists
a unique, up to equivalence measurable function K(ω, x) on Ω× S, such that for
almost all x ∈ S the equality K(ω, x) = (f(x))(ω) holds for almost all ω ∈ Ω.

Comparison of f̃ 7→ K̃ is an isometric isomorphism of E(F ) to the closed subspace
and sublattice E[F ].

Theorem 1.2. ([12], pp. 68). If the measure µ is not purely atomic, the lattice
- normed spaces E(F ) and E[F ] are the same if and only if F is a Banach ideal
space with order continuous norm.

Let F = Lp(S,B,m) be a Banach ideal space with norm ‖f‖p =

(∫
S

|f(x)|pdm
) 1

p

,

p ∈ [1; +∞).

Theorem 1.3. ([16], pp. 523). If P (t, x, A) is a Markov process with an invariant
measure m, the equality

(Ttf)(x) =

∫
S

f(y)P (t, x, dy), (1.1)

defines a positive bounded linear operator on Lp(S,B,m), such that Tt+s = TtTs
(t, s > 0), with Tt ·1 = 1 and ‖Ttf‖p ≤ ‖f‖p for all f ∈ Lp(S,B,m), p ∈ [1; +∞).

Theorem 1.4. ([16], pp. 532) (Statistical ergodic theorem). If P (t, x, A) is a
Markov process with invariant measure m, then for any function f ∈ Lp(S,B,m)

there exists a limit f ∗ ∈ Lp(S,B,m) of sequence 1
n

n∑
k=1

Tkf , with T1f
∗ = f ∗.

2. Markov semigroups in space E[Lp]

In this section we consider the Markov semigroups in E[Lp]. First we consider
the case E = L0 and F = Lp(S,B,m), p ≥ 1.

Let H be the subset of L0[Lp] of all functions of the form
n∑
i=1

χAi
fi, where

Ai ∈
∑

, Ai
⋂
Aj = 0 when i 6= j, fi ∈ Lp(S,B,m).

Lemma 2.1. The set H is (bo)-dense in L0[Lp].

Proof. By Theorem 1.2 we have L0[Lp] = L0(Ω, Lp).
If K ∈ L0[Lp], then there exists a sequence Kn ∈ L0(Ω, Lp) of the form

n∑
i=1

χAi
(ω)fi, where fi ∈ Lp, such that ‖Kn −K‖(ω) = ‖Kn(ω) −K(ω)‖Lp → 0

for almost all ω ∈ Ω as n → ∞. This means that ‖Kn −K‖
(o)→ 0 in L0, i.e. the

set {
n∑
i=1

χAi
(ω)fi} is (bo)-dense in L0[Lp]. �
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Theorem 2.2. Let P (t, x, A) be a Markov process with invariant measure m.
Then

Tt(K)(ω, x) =

∫
S

K(ω, y)P (t, x, dy)

defines L0-linear and L0- bounded positive linear operator in L0[Lp] such that
Tt+s = TtTs, with Tt1 = 1 and ‖TtK‖ ≤ ‖K‖.

Proof. As K(ω, x) ∈ Lp for almost all ω ∈ Ω, by Theorem 1.3 we have∥∥∥∥∫
S

K(ω, y)P (t, x, dy)

∥∥∥∥
Lp

≤ ‖K(ω, x)‖Lp (2.1)

for almost all ω ∈ Ω.
We will show that

∫
S

K(ω, y)P (t, x, dy) ∈ L0[Lp] for any K ∈ L0[Lp]. First, let

K ∈ H. Then Tt(K)(ω, x) =
∫
S

K(ω, y)P (t, x, dy) =
n∑
i=1

χAi
(ω)
∫
S

fi(y)P (t, x, dy) ∈

L0(Ω, Lp) and ‖TtK‖ ≤ ‖K‖.
In addition, Tt(gK) = gTt(K) for any simple function g =

m∑
i=1

λiχAi
∈ L0 and

any K ∈ H.
Let now K ∈ L0[Lp]. By Lemma 2.1 there exists a sequence {Kn} ⊂ H such

that ‖Kn−K‖
(o)→ 0 in L0 as n→∞. Hence ‖Kn−Km‖

(o)→ 0 in L0 as n,m→∞.

Since ‖TtKn − TtKm‖ ≤ ‖Kn − Km‖
(o)→ 0, as n,m → ∞, then the sequence

{TtKn} is (bo)-fundamental in L0[Lp]. Since L0[Lp] is (bo)-complete, then {TtKn}
(bo)-converges in L0[Lp]. The limit (bo)− lim

n→∞
TtKn is denoted by TtK, i.e.

TtK = (bo)− lim
n→∞

TtKn = (bo)− lim
n→∞

∫
S

Kn(ω, y)P (t, x, dy). (2.2)

Tt is a continuation of Tt from H to L0[Lp]. It is clear that Tt is well defined and
‖TtK‖ ≤ ‖K‖ for any K ∈ L0[Lp].

We will show that Tt is L0-linear. In fact, let α ∈ L0 and let {αn} be a sequence

of simple functions, such that αn
(o)→ α. Then ‖Tt(αK) − Tt(αnK)‖ ≤ ‖αK −

αnK‖ == |α− αn|‖K‖
(o)→ 0. This means that Tt(αK) = (bo)− lim

n→∞
Tt(αnK) for

any K ∈ L0[Lp] and α ∈ L0. So

Tt(αK) = (bo)− lim
n→∞

Tt(αnK) = (bo)− lim
n→∞

αnTt(K) = αTt(K),

i.e. Tt is L0-linear.
Now we show that Tt(K)(ω, x) =

∫
S

K(ω, y)P (t, x, dy) for any K ∈ L0[Lp].

Since K ∈ L0(Ω, Lp) = L0[Lp] then, by Lemma 2.1 there is a sequence {Kn} ⊂ H

such that ‖Kn −K‖
(o)→ 0, i.e. ‖Kn(ω, x)−K(ω, x)‖Lp → 0 for almost all ω ∈ Ω.
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As ∫
S

Kn(ω, y)P (t, x, dy) =
n∑
i=1

χAi
(ω)

∫
S

fi(y)P (t, x, dy),

then
∫
S

Kn(ω, y)P (t, x, dy) is a simple measurable vector valued function with

values in Lp, i.e.
∫
S

Kn(ω, y)P (t, x, dy) ∈ H. Using (2.1), we have

‖
∫
S

Kn(ω, y)P (t, x, dy)−
∫
S

K(ω, y)P (t, x, dy)‖Lp ≤ ‖Kn(ω, x)−K(ω, x)‖Lp → 0

for almost all ω ∈ Ω.
Consequently, for almost all ω ∈ Ω,

∫
S

K(ω, y)P (t, x, dy) is Bochner measurable,

i.e. ∫
S

K(ω, y)P (t, x, dy) ∈ L0(Ω, Lp) = L0[Lp],

with ∫
S

K(ω, y)P (t, x, dy) = (bo)− lim
n→∞

∫
S

Kn(ω, y)P (t, x, dy). (2.3)

From (2.2) and (2.3) it follows that Tt(K)(ω, x) =
∫
S

K(ω, y)P (t, x, dy) for almost

all ω ∈ Ω. In the equation Tt(K)(ω, x) =
n∑
i=1

χAi
(ω)
∫
S

fi(y)P (t, x, dy) for K ∈ H,

put
∫
S

f(y)P (t, x, dy) = St(f). Then Tt(K)(ω, x) =
n∑
i=1

χAi
(ω)St(f)(x).

Since for the operator St(f)(x) =
∫
S

f(y)P (t, x, dy) (see (1.1)) we have St+s =

StSs (t, s > 0) (see [16], p. 523), then Tt+s(K) = TtTs(K) for all K ∈ H. Hence
we obtain that the family of operators {Tt} is a semigroup in Banach-Kantorovich
space L0[Lp]. Finally, from the properties of the integral, we have Tt(K) ≥ 0 for
K ≥ 0 and Tt1 = 1. �

Remark 2.3. From Theorem 2.2 it follows that for any ideal space E of measurable
functions on (Ω,Σ, µ) the inclusion Tt(E[Lp]) ⊂ E[Lp] is true. In in this case
‖Tt‖E[Lp]→E[Lp] ≤ 1 for all t ∈ R.

Definition 2.4. Such a semigroups of linear operators {Tt} is said to be a Markov
semigroup in the space E[Lp].

Let us consider some examples of Markov semigroups.

Example 2.5. Let Ω be a countable set. Then L0[Lp] = s[Lp], where s is the
space of sequences. From the definition of the space L0[Lp] it follows that

s[Lp] =

{
K = (K1(x), K2(x), ...) :

∫
S

|Ki(x)|pdm <∞, i = 1, 2, ...

}
and

‖K‖ = (‖K1‖Lp , ‖K2‖Lp , ...) ∈ s,
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i.e. s[Lp] is a countably normed space. We define a family of linear operators
Tt : s[Lp] → s[Lp] by TtK = (K1(x + t), K2(x + t), ...) for t ≥ 0. Obviously,
‖Tt‖ ≤ 1, T0 = I, Tt+s = TtTs, i.e. the family {Tt} is a semigroup of contractions
in s[Lp].

Example 2.6. Assume that a family of linear operators {Tt} in s[Lp] is defined
by the equality

TtK =

(∫
S

K1(y)P (t, x, dy),

∫
S

K2(y)P (t, x, dy), ...

)
.

It is clear that we have the semigroup property Tt+s = TtTs, (t, s > 0).
From the relation

‖TtK‖ =

(∥∥∥∥∫
S

K1(y)P (t, x, dy)

∥∥∥∥
Lp

,

∥∥∥∥∫
S

K2(y)P (t, x, dy)

∥∥∥∥
Lp

, ...

)
≤

≤ (‖K1‖Lp , ‖K2‖Lp , ...) = ‖K‖
it follows that Tt is a contraction.

3. Statistical ergodic theorems for Markov semigroups in space
with mixed norm

In this section we will prove statistical ergodic theorems for Markov semigroups
in Banach-Kantorovich spaces E[Lp] with respect to E valued norm and in spaces
E[Lp] with respect to mixed numerical norm, where E is a Banach ideal space.

Theorem 3.1. For any function K ∈ L0[Lp], p ≥ 1, the limit

(bo)− lim
n→∞

1

n

n∑
k=1

TkK = K∗

exists in L0[Lp] such that T1K
∗ = K∗.

Proof. We set At(f) =
∫
S

f(y)P (t, x, dy). If K ∈ L0[Lp], then K(ω, x) ∈ Lp(S,m)

for almost all ω ∈ Ω and by Theorem 1.4, the limit lim
n→∞

1
n

n∑
k=1

Ak(K(ω, x)) =

K∗ω(x) exists in Lp(S,m) for almost all ω ∈ Ω. We show that the function of
two variables defined by K∗(ω, x) = K∗ω(x) belongs to L0[Lp] = L0(Ω, Lp) and

Sn(K) = 1
n

n∑
k=1

Tk(K) is (bo) convergent to K∗ in L0[Lp].

Since Sn(K) = 1
n

n∑
k=1

Tk(K) ∈ L0(Ω, Lp) and

‖Sn(K)(ω, ·)−K∗(ω, ·)‖Lp = ‖ 1

n

n∑
k=1

Ak(K(ω, ·))−K∗(ω, ·)‖Lp → 0

as n → ∞ for almost all ω ∈ Ω, then K∗(ω, x) is the limit of a sequence of
Bochner measurable functions Sn(K). Hence K∗ ∈ L0[Lp] and in this case (bo)−
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lim
n→∞

1
n

n∑
k=1

TkK = K∗. From the equality A1(K
∗
ω(x)) = K∗ω(x) for almost all ω ∈ Ω

it follows that T1K
∗ = K∗. �

Theorem 3.2. For any function K ∈ E[Lp] the limit

(bo)− lim
n→∞

1

n

n∑
k=1

TkK = K∗,

exists in E[Lp] and T1K
∗ = K∗.

Proof. If K ∈ E[Lp], then K ∈ L0(Ω, Lp) and by Theorem 3.1 there exists K∗ ∈
L0(Ω, Lp), such that { 1

n

n∑
k=1

TkK} (bo)-converges to K∗ in L0[Lp].

As ‖Sn(K)‖ = ‖ 1
n

n∑
k=1

TkK‖ ≤ 1
n

n∑
k=1

‖TkK‖ ≤ ‖K‖ ∈ E and ‖Sn(K)‖ (o)→ ‖K∗‖

in L0 we have ‖K∗‖ ≤ ‖K‖ and K∗ ∈ E[Lp]. Since

‖Sn(K)−K∗‖ ≤ 2‖K‖

for all n we get sup
n
‖Sn(K) − K∗‖ ∈ E. Hence ‖Sn(K) − K∗‖ (o)→ 0 in E i.e.

Sn(K)
(bo)→ K∗ in E[Lp]. �

We illustrate the statistical ergodic theorem in the following example.

Example 3.3. Let {Tt} be a semigroup of linear operators in s[Lp], which was
considered in Example 2.6. Then

1

n

n∑
k=1

TkK =

(
1

n

n∑
k=1

∫
S

K1(y)P (k, x, dy),
1

n

n∑
k=1

∫
S

K2(y)P (k, x, dy), ...

)
.

The operators AkKi =
∫
S

Ki(y)P (k, x, dy) map Lp(S,m) to Lp(S,m) and we have

Ak+m = AkAm.

By Theorem 1.4 lim
n→∞

1
n

n∑
k=1

AkKi = K∗i exists in in Lp(S,m) and A1K
∗
i = K∗i ,

for any i = 1, 2, ....
By K∗ we denote the element (K∗1 , K

∗
2 , ...) in s[Lp]. Since∥∥∥∥ 1

n

n∑
k=1

TkK −K∗
∥∥∥∥ =

=

(∥∥∥∥ 1

n

n∑
k=1

AkK1 −K∗1
∥∥∥∥
Lp(S,m)

,

∥∥∥∥ 1

n

n∑
k=1

AkK2 −K∗2
∥∥∥∥
Lp(S,m)

, ...

)
(o)→ 0

as n → ∞, then (bo) − lim
n→∞

1
n

n∑
k=1

TkK = K∗. As A1K
∗
i = K∗i for all i = 1, 2, ...,

then

T1K = (A1K
∗
1 , A1K

∗
2 , ...) = (K∗1 , K

∗
2 , ...) = K∗.
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Theorem 3.4. If a Banach ideal space E has condition (A), then for any function
K ∈ E[Lp],

lim
n→∞

‖ 1

n

n∑
k=1

TkK −K∗‖E[Lp] = 0,

and T1K
∗ = K∗.

Proof. By the Theorem 3.2 we have that for any K ∈ E[Lp] the (bo)–limit

(bo)− lim
n→∞

1

n

n∑
k=1

TkK = K∗,

exists in E[Lp] i.e.

‖ 1

n

n∑
k=1

TkK −K∗‖Lp

(o)→ 0

in E. That means that there is a sequence {an} in E satisfying an ↓ 0 and

‖ 1
n

n∑
k=1

TkK −K∗‖Lp ≤ an for all n. Since a Banach ideal space E has condition

(A) we get

‖ 1

n

n∑
k=1

TkK −K∗‖E[Lp] ≤ ‖an‖E → 0

as n→∞. �

Corollary 3.5. If the N-function M meets the 42-condition for any function
K ∈ LM [Lp],

lim
n→∞

‖ 1

n

n∑
k=1

TkK −K∗‖LM [Lp] = 0,

LM [Lp] and T1K
∗ = K∗.

Proof. As the Banach ideal space E = LM has condition (A) by Theorem 3.4

lim
n→∞

‖ 1

n

n∑
k=1

TkK −K∗‖LM [Lp] → 0

as n→∞. �

Corollary 3.6. For any function K ∈ Lq[Lp], q ≥ 1

lim
n→∞

‖ 1

n

n∑
k=1

TkK −K∗‖Lq [Lp] = 0

in Lq[Lp] and T1K
∗ = K∗.

Proof. As the Banach ideal space E = Lq has condition (A) by Theorem 3.4

lim
n→∞

‖ 1

n

n∑
k=1

TkK −K∗‖Lq [Lp] → 0

as n→∞. �
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