

Khayyam Journal of Mathematics

 emis.de/journals/KJM kjm-math.org
TOEPLITZ AND HANKEL OPERATORS ON A VECTOR-VALUED BERGMAN SPACE

NAMITA DAS
Communicated by A.R. Mirmostafaee

Abstract

In this paper we derive certain algebraic properties of Toeplitz and Hankel operators defined on the vector-valued Bergman spaces $L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$ where \mathbb{D} is the open unit disk in \mathbb{C} and $n \geq 1$. We show that the set of all Toeplitz operators $T_{\Phi}, \Phi \in L_{M_{n}}^{\infty}(\mathbb{D})$ is strongly dense in the set of all bounded linear operators $\mathcal{L}\left(L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})\right)$ and characterize all finite rank little Hankel operators.

1. Introduction

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ be the open unit disc in the complex plane \mathbb{C} and let $d A(z)=\frac{1}{\pi} d x d y=\frac{1}{\pi} r d r d \theta$ be the area measure on \mathbb{D} normalised so that the area of \mathbb{D} is 1 . For $1 \leq p<\infty$, the Bergman space $L_{a}^{p}(\mathbb{D})$ is the space of all holomorphic functions f in \mathbb{D} for which

$$
\|f\|_{L_{a}^{p}(\mathbb{D})}=\left(\int_{\mathbb{D}}|f(z)|^{p} d A(z)\right)^{\frac{1}{p}}<\infty
$$

The quantity $\|.\|_{L_{a}^{p}(\mathbb{D})}$ is a norm if $p \geq 1$. Thus $L_{a}^{p}(\mathbb{D})$ is the subspace of holomorphic functions that are in the space $L^{p}(\mathbb{D}, d A)$. The Bergman spaces are Banach spaces, which is a consequence of the estimate:

$$
\sup _{z \in K}|f(z)| \leq C_{K}\|f\|_{L_{a}^{p}(\mathbb{D})}
$$

valid on compact subsets K of \mathbb{D}. If $p=2$, then $L_{a}^{p}(\mathbb{D})$ is a Hilbert space. Since point evaluation at $z \in \mathbb{D}$ is a bounded linear functional [12] on the Hilbert

[^0]space $L_{a}^{2}(\mathbb{D})$, the Riesz representation theorem implies that there exists a unique function K_{z} in $L_{a}^{2}(\mathbb{D})$ such that
$$
f(z)=\int_{\mathbb{D}} f(w) \overline{K_{z}(w)} d A(w)
$$
for all f in $L_{a}^{2}(\mathbb{D})$. Let $K(z, w)$ be the function on $\mathbb{D} \times \mathbb{D}$ defined by
$$
K(z, w)=\overline{K_{z}(w)} .
$$

The function $K(z, w)$ is thus the reproducing kernel for the Bergman space $L_{a}^{2}(\mathbb{D})$ and is called the Bergman kernel. The sequence $\left\{e_{n}(z)\right\}_{n \geq 0}=\left\{\sqrt{n+1} z^{n}\right\}_{n \geq 0}$ of functions [12] form the standard orthonormal basis for $L_{a}^{2}(\mathbb{D})$ and

$$
K(z, w)=\sum_{n=1}^{\infty} e_{n}(z) \overline{e_{n}(w)} .
$$

The Bergman kernel is independent of the choice of orthonormal basis and $K(z, w)=\frac{1}{(1-z \bar{w})^{2}}$. Let $k_{a}(z)=\frac{K(z, a)}{\sqrt{K(a, a)}}=\frac{1-|a|^{2}}{(1-\bar{a} z)^{2}}$. These functions k_{a} are called the normalized reproducing kernels of $L_{a}^{2}(\mathbb{D})$; it is clear that they are unit vectors in $L_{a}^{2}(\mathbb{D})$. Let $L^{\infty}(\mathbb{D}, d A)$ denote the Banach space of Lebesgue measurable functions f on \mathbb{D} with

$$
\|f\|_{\infty}=\operatorname{esssup}\{|f(z)|: z \in \mathbb{D}\}<\infty
$$

and $H^{\infty}(\mathbb{D})$ be the space of bounded analytic functions on \mathbb{D}.
Let $L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})=L_{a}^{2}(\mathbb{D}) \otimes \mathbb{C}^{n}$ and $L_{M_{n}}^{\infty}(\mathbb{D})=L^{\infty}(\mathbb{D}) \otimes M_{n}$ where $M_{n}(\mathbb{C})=$ $M_{n}, n \geq 1$ is the set of all $n \times n$ matrices with entries in \mathbb{C}. The space $L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D}), n \geq$ 1 is called the vector-valued Bergman space. The inner product on $L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$ is defined as

$$
\langle f, g\rangle_{L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})}=\int_{\mathbb{D}}\langle f(z), g(z)\rangle_{\mathbb{C}^{n}} d A(z) .
$$

With this inner product $L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$ is a Hilbert space. The norm defined on $L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$ is given by

$$
\|f\|_{L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D}, d A)}^{2}=\int_{\mathbb{D}}\|f(z)\|_{\mathbb{C}^{n}}^{2} d A(z)
$$

It is a closed subspace of $L^{2, \mathbb{C}^{n}}(\mathbb{D}, d A)=L^{2}(\mathbb{D}, d A) \otimes \mathbb{C}^{n}$. Let P denote the orthogonal projection from $L^{2, \mathbb{C}^{n}}(\mathbb{D}, d A)$ onto $L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$. For $\Phi \in L_{M_{n}}^{\infty}(\mathbb{D})$, we define the Toeplitz operator T_{Φ} from $L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$ into itself as $T_{\Phi} f=P(\Phi f)$ and the Hankel operator H_{Φ} from $L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$ into $\left(L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})\right)^{\perp}=L^{2, \mathbb{C}^{n}}(\mathbb{D}, d A) \ominus L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$ as $H_{\Phi} f=(I-P)(\Phi f)$. For $\Phi \in L_{M_{n}}^{\infty}(\mathbb{D})$, define $\|\Phi\|_{\infty}=\operatorname{esssup}_{z \in \mathbb{D}}\|\Phi(z)\|$. If $\Phi \in L_{M_{n}}^{\infty}(\mathbb{D})$, then it is not difficult to see that $\left\|T_{\Phi}\right\| \leq\|\Phi\|_{\infty}$ and $\left\|H_{\Phi}\right\| \leq\|\Phi\|_{\infty}$. This is so as $\|P\| \leq 1$ and $\|I-P\| \leq 1$.

For $\Phi \in L_{M_{n}}^{\infty}(\mathbb{D})$, we define the little Hankel operator S_{Φ} from $L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$ into itself as $S_{\Phi} f=P J(\Phi f)$ where $J: L^{2, \mathbb{C}^{n}}(\mathbb{D}, d A) \rightarrow L^{2, \mathbb{C}^{n}}(\mathbb{D}, d A)$ is defined as $J f(z)=f(\bar{z})$. The map J is unitary. There are also many equivalent ways of defining little Hankel operators. Let $\overline{L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})}=\overline{L_{a}^{2}(\mathbb{D})} \otimes \mathbb{C}^{n}$. For $\Phi \in L_{M_{n}}^{\infty}(\mathbb{D})$, define h_{Φ} from $L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$ into $\overline{L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})}$ as $h_{\Phi} f=\bar{P}(\Phi f)$ where \bar{P} is the orthogonal
projection from $L^{2, \mathbb{C}^{n}}(\mathbb{D}, d A)$ onto $\overline{L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})}$. It is not difficult to verify that $h_{\Phi}=$ $J S_{\Phi}$.

Let $\mathcal{L}(H)$ be the set of all bounded linear operators from the Hilbert space H into itself and $\mathcal{L} C(H)$ be the set of all compact operators in $\mathcal{L}(H)$.

Consider the direct sum $\sum_{k=1}^{n} \oplus L_{k}$, with each L_{k} the same Hilbert space $L_{a}^{2}(\mathbb{D})$. Define the bounded linear operators

$$
U_{i}: L_{a}^{2}(\mathbb{D}) \longrightarrow \sum_{k=1}^{n} \oplus L_{k}, \quad V_{i}: \sum_{k=1}^{n} \oplus L_{k} \longrightarrow L_{a}^{2}(\mathbb{D})
$$

for each $i \in\{1,2, \cdots, n\}$ as follows. When $f \in L_{a}^{2}(\mathbb{D})$ and $g=\left\{g_{k}\right\} \in$ $\sum_{k=1}^{n} \oplus L_{k}, V_{i} g=g_{i}$ and $U_{i} f$ is the family $\left\{h_{k}\right\}$ in which $h_{i}=f$ and all other h_{k} are 0 . Let L_{i}^{\prime} be the range of U_{i}. It consists of all elements $\left\{h_{k}\right\}$ of $\sum_{k=1}^{n} \oplus L_{k}$ in which $h_{k}=0$ when $k \neq i$. The space L_{i}^{\prime} is a closed subspace of $\sum_{k=1}^{n} \oplus L_{k}$ and observe that $V_{i} U_{i}$ is the identity operator on $L_{a}^{2}(\mathbb{D})$ and $U_{i} V_{i}$ is the projection E_{i} from $\sum_{k=1}^{n} \oplus L_{k}$ onto L_{i}^{\prime}. Since the subspace $L_{i}^{\prime}, i \in\{1,2, \cdots, n\}$ are pairwise orthogonal, and $\bigvee_{i=1}^{n} L_{i}^{\prime}=\sum_{k=1}^{n} \oplus L_{k}$, it follows that the sum $\sum_{i=1}^{n} E_{i}=I$. Note that $U_{i}=V_{i}^{*}$, since

$$
\left\langle U_{i} f,\left\{f_{k}\right\}\right\rangle=\left\langle f, f_{i}\right\rangle=\left\langle f, V_{i}\left\{f_{k}\right\}\right\rangle
$$

whenever $f \in L_{a}^{2}(\mathbb{D})$ and $\left\{f_{k}\right\} \in \sum_{k=1}^{n} \oplus L_{k}$. With each bounded linear operator T acting on $\sum_{k=1}^{n} \oplus L_{k}$, we associate a matrix $\left(T_{i j}\right)_{1 \leq i, j \leq n}$, with entries $T_{i j}$ in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ defined by

$$
\begin{equation*}
T_{i j}=V_{i} T U_{j} \tag{1.1}
\end{equation*}
$$

If $g=\left\{g_{k}\right\} \in \sum_{k=1}^{n} \oplus L_{k}$, then $T g$ is an element $\left\{p_{k}\right\}$ of $\sum_{k=1}^{n} \oplus L_{k}$ and

$$
p_{i}=V_{i} T g=V_{i} T\left(\sum_{k=1}^{n} E_{k} g\right)=\sum_{k=1}^{n} V_{i} T U_{j} V_{j} g=\sum_{j=1}^{n} T_{i j} g_{j} .
$$

Thus

$$
\begin{equation*}
T\left(\sum_{k=1}^{n} \oplus g_{k}\right)=\sum_{k=1}^{n} \oplus p_{k} \text { where } p_{i}=\sum_{j=1}^{n} T_{i j} g_{j}, i \in\{1,2, \cdots, n\} \tag{1.2}
\end{equation*}
$$

The usual rules of matrix algebra have natural analogues in this situation. From (1.1), the matrix elements $T_{i j}$ depend linearly on T. Since

$$
V_{i} T^{*} U_{j}=U_{i}^{*} T^{*} V_{j}^{*}=\left(V_{j} T U_{i}\right)^{*}=\left(T_{j i}\right)^{*}
$$

the matrix of T^{*} has $\left(T_{j i}\right)^{*}$ in the (i, j) position. If S and T are bounded linear operators acting on $\sum_{k=1}^{n} \oplus L_{k}$, and $R=S T$, then

$$
\begin{aligned}
R_{i j} & =V_{i} R U_{j}=V_{i} S T U_{j}=\sum_{k=1}^{n} V_{i} S E_{k} T U_{j} \\
& =\sum_{k=1}^{n} V_{i} S U_{k} V_{k} T U_{j}=\sum_{k=1}^{n} S_{i k} T_{k j} .
\end{aligned}
$$

Thus we establish a one-to-one correspondence between elements of $\mathcal{L}\left(\sum_{k=1}^{n} \oplus L_{k}\right)$ and certain matrices $\left(T_{i j}\right)_{i, j=1}^{n}$ with entries $T_{i j}$ in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$. Each such matrix corresponds to some bounded operator T acting on $\sum_{k=1}^{n} \oplus L_{k}$; indeed, T is defined by (1.2), and its boundedness follows at once from the relations

$$
\begin{gathered}
\left\|\left\{p_{k}\right\}\right\|^{2}=\sum_{i=1}^{n}\left\|p_{i}\right\|^{2}=\sum_{i=1}^{n}\left\|\sum_{j=1}^{n} T_{i j} g_{j}\right\|^{2} \leq \sum_{i=1}^{n}\left(\sum_{j=1}^{n}\left\|T_{i j}\right\|\left\|g_{j}\right\|\right)^{2} \\
\leq \sum_{i=1}^{n}\left(\sum_{j=1}^{n}\left\|T_{i j}\right\|^{2}\right)\left(\sum_{j=1}^{n}\left\|g_{j}\right\|^{2}\right)=\left(\sum_{i=1}^{n} \sum_{j=1}^{n}\left\|T_{i j}\right\|^{2}\right)\left\|\left\{g_{k}\right\}\right\|^{2}
\end{gathered}
$$

In this paper we derive certain algebraic properties of Toeplitz and Hankel operators defined on the vector-valued Bergman spaces $L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D}), n \geq 1$. We have shown that if there exists $A, B \in \mathcal{L}\left(L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})\right)$ such that $A T_{\Phi} B=T_{\Phi}$ for all $\Phi \in L_{M_{n}}^{\infty}(\mathbb{D})$, then $A=\alpha I_{\mathcal{L}\left(L_{a}^{2, C n}(\mathbb{D})\right)}, B=\beta I_{\mathcal{L}\left(L_{a}^{2, C^{n}}(\mathbb{D})\right)}, \alpha, \beta \in \mathbb{C}$ and $\alpha \beta=1$ and that the set of all Toeplitz operators $T_{\Phi}, \Phi \in L_{M_{n}}^{\infty}(\mathbb{D})$ is strongly dense in the set of all bounded linear operators $\mathcal{L}\left(L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})\right)$ and characterize all finite rank little Hankel operators defined on the vector-valued Bergman space. The layout of this paper is as follows. In section 2, we establish that if $A T_{\Phi} B=T_{\Phi}$ for all $\Phi \in L_{M_{n}}^{\infty}(\mathbb{D})$, then $A=\alpha I_{\mathcal{L}\left(L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})\right)}, B=\beta I_{\mathcal{L}\left(L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})\right)}, \alpha, \beta \in \mathbb{C}$ and $\alpha \beta=1$. Furthermore, it is shown that the set of all Toeplitz operators $T_{\Phi}, \Phi \in L_{M_{n}}^{\infty}(\mathbb{D})$ from $L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$ into itself is strongly dense in the Banach space $\mathcal{L}\left(L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})\right)$. In section 3, we prove that there exists no finite rank Hankel operator H_{Φ} with nonconstant matrix-valued symbol Φ that is diagonal. We further establish certain elementary properties of little Hankel operators and characterize all finite rank little Hankel operators with diagonal matrix-valued symbols.

2. Toeplitz operators with symbols in $L_{M_{n}}^{\infty}(\mathbb{D})$

In this section we have shown that if there exists $A, B \in \mathcal{L}\left(L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})\right)$ such that $A T_{\Phi} B=T_{\Phi}$ for all $\Phi \in L_{M_{n}}^{\infty}(\mathbb{D})$, then $A=\alpha I_{\mathcal{L}\left(L_{a}^{2, C^{n}}(\mathbb{D})\right)}, B=\beta I_{\mathcal{L}\left(L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})\right)}, \alpha, \beta \in$ \mathbb{C} and $\alpha \beta=1$. Here $I_{\mathcal{L}\left(L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})\right)}$ is the identity operator from the space $L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$ into itself. Further, we show that the set of all Toeplitz operators $T_{\Phi}, \Phi \in L_{M_{n}}^{\infty}(\mathbb{D})$ from $L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$ into itself is strongly dense in the Banach space $\mathcal{L}\left(L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})\right)$.
Theorem 2.1. If $A, B \in \mathcal{L}\left(L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})\right), n \geq 1$ and $A T_{\Phi} B=T_{\Phi}$ for all $\Phi \in$ $L_{M_{n}}^{\infty}(\mathbb{D})$, then $A=\alpha I_{\mathcal{L}\left(L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})\right)}, B=\beta I_{\mathcal{L}\left(L_{a}^{2, C^{n}}(\mathbb{D})\right)}, \alpha, \beta \in \mathbb{C}$ and $\alpha \beta=1$.
Proof. Suppose $A, B \in \mathcal{L}\left(L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})\right), n \geq 1$ and $A T_{\Phi} B=T_{\Phi}$ for all $\Phi \in L_{M_{n}}^{\infty}(\mathbb{D})$. Since $L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})=L_{a}^{2}(\mathbb{D}) \otimes \mathbb{C}^{n}$, we obtain

$$
A=\left(\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 n} \\
A_{21} & A_{22} & \cdots & A_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
A_{n 1} & A_{n 2} & \cdots & A_{n n}
\end{array}\right) \text { and } B=\left(\begin{array}{cccc}
B_{11} & B_{12} & \cdots & B_{1 n} \\
B_{21} & B_{22} & \cdots & B_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
B_{n 1} & B_{n 2} & \cdots & B_{n n}
\end{array}\right) \text {, where }
$$

$A_{i j}, B_{i j} \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ for all $i, j \in\{1,2, \cdots, n\}$. Here $A_{i j}=V_{i} A U_{j}$ and $B_{i j}=$
$V_{i} B U_{j}$ for all $i, j \in\{1,2, \cdots, n\}$. Further, as $\Phi \in L_{M_{n}}^{\infty}(\mathbb{D})=L^{\infty}(\mathbb{D}) \otimes M_{n}$, we have $\Phi=\left(\begin{array}{cccc}\phi_{11} & \phi_{12} & \cdots & \phi_{1 n} \\ \phi_{21} & \phi_{22} & \cdots & \phi_{2 n} \\ \vdots & \vdots & \cdots & \vdots \\ \phi_{n 1} & \phi_{n 2} & \cdots & \phi_{n n}\end{array}\right)$, where $\phi_{i j} \in L^{\infty}(\mathbb{D})$ for all $i, j \in\{1,2, \cdots, n\}$.
Hence

$$
T_{\Phi}=\left(\begin{array}{cccc}
T_{\phi_{11}} & T_{\phi_{12}} & \cdots & T_{\phi_{1 n}} \\
T_{\phi_{21}} & T_{\phi_{22}} & \cdots & T_{\phi_{2 n}} \\
\vdots & \vdots & \cdots & \vdots \\
T_{\phi_{n 1}} & T_{\phi_{n 2}} & \cdots & T_{\phi_{n n}}
\end{array}\right)
$$

By considering elementary matrices of the type

$$
\left(\begin{array}{ccccccc}
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & T_{\phi_{i j}} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0
\end{array}\right)
$$

with just one nonzero (i, j) th entry $T_{\phi_{i j}}, \phi_{i j} \in L^{\infty}(\mathbb{D}), i, j \in\{1,2, \cdots, n\}$ and using the operator equations

$$
\begin{aligned}
&\left(\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 n} \\
A_{21} & A_{22} & \cdots & A_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
A_{n 1} & A_{n 2} & \cdots & A_{n n}
\end{array}\right)\left(\begin{array}{ccccccc}
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & T_{\phi_{i j}} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0
\end{array}\right)\left(\begin{array}{ccccc}
B_{11} & B_{12} & \cdots & B_{1 n} \\
B_{21} & B_{22} & \cdots & B_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
B_{n 1} & B_{n 2} & \cdots & B_{n n}
\end{array}\right) \\
&=\left(\begin{array}{ccccccc}
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & T_{\phi_{i j}} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0
\end{array}\right),
\end{aligned}
$$

it follows from [5] that $V_{i} A U_{j}=V_{i} B U_{j}=0$ if $i \neq j, i, j=1,2, \cdots, n$ and $V_{i} A U_{i}=$ $\alpha I_{\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)}, V_{i} B U_{i}=\beta I_{\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)}$ for all $i=1,2, \cdots, n$ and for some $\alpha, \beta \in \mathbb{C}$ such that $\alpha \beta=1$. This implies $A=\alpha I_{\mathcal{L}\left(L_{a}^{2, C n}(\mathbb{D})\right)}$ and $B=\beta I_{\mathcal{L}\left(L_{a}^{2, C n}(\mathbb{D})\right)}$. The theorem follows.

Theorem 2.2. Let $T \in \mathcal{L}\left(L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})\right), n \geq 1, F_{i}=\left(\begin{array}{c}F_{i 1} \\ \vdots \\ F_{\text {in }}\end{array}\right) \in L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D}), G_{i}=$ $\left(\begin{array}{c}G_{i 1} \\ \vdots \\ G_{i n}\end{array}\right) \in L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D}), i=1, \cdots, N$. Then there exists $\Phi \in L_{M_{n}}^{\infty}(\mathbb{D})$ such that $\left\langle T_{\Phi} F_{i}, G_{i}\right\rangle=\left\langle T F_{i}, G_{i}\right\rangle, i=1, \cdots, N$.

Proof. Let $f_{1}, f_{2}, \cdots, f_{k}$ and $g_{1}, g_{2}, \cdots, g_{m}$ respectively be bases of the finitedimensional subspaces of $L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$ generated by F_{1}, \cdots, F_{N} and G_{1}, \cdots, G_{N}. We shall find $\Phi \in L_{M_{n}}^{\infty}(\mathbb{D})$ such that $\left\langle T_{\Phi} f_{i}, g_{j}\right\rangle=\left\langle T f_{i}, g_{j}\right\rangle$ for all $i=1, \cdots, k$ and $j=1, \cdots, m$.

Consider the operator $R: L_{M_{n}}^{\infty}(\mathbb{D}) \rightarrow \mathbb{C}^{k \times m}$, defined by $(R \Phi)_{i j}=\left\langle T_{\Phi} f_{i}, g_{j}\right\rangle$, $i=1, \cdots, k$ and $j=1, \cdots, m$. Suppose $u \in \mathbb{C}^{k \times m}$ is orthogonal to the range of R. That is, let

$$
\sum_{i=1}^{k} \sum_{j=1}^{m}(R \Phi)_{i j} \overline{\bar{u}} \overline{i j}=0
$$

for all $\Phi \in L_{M_{n}}^{\infty}(\mathbb{D})$. This implies (taking $\Phi=I_{n \times n}$, the identity matrix)

$$
\sum_{i=1}^{k} \sum_{j=1}^{m}\left\langle f_{i}, g_{j}\right\rangle_{L_{a}^{2, C^{n}}(\mathbb{D})} \overline{u_{i j}}=0
$$

Hence

$$
\sum_{i=1}^{k} \sum_{j=1}^{m}\left\langle f_{i}(z), g_{j}(z)\right\rangle_{\mathbb{C}^{n}} \overline{u_{i j}}=0
$$

almost everywhere on \mathbb{D}. Since the left hand side is obviously continuous on \mathbb{D}, this equality holds, in fact, on the whole of \mathbb{D}. Thus the function

$$
\Omega(x, y)=\sum_{i=1}^{k} \sum_{j=1}^{m}\left\langle f_{i}(x), g_{j}(\bar{y})\right\rangle_{\mathbb{C}^{n}} \overline{u_{i j}}
$$

which is analytic in $\mathbb{D} \times \mathbb{D}$, equals zero when $x=\bar{y}$. By the uniqueness theorem [11], this implies that $\Omega \equiv 0$ on $\mathbb{D} \times \mathbb{D}$. Because, functions $f_{i}, i=1,2, \cdots, k$, are linearly independent, we obtain

$$
\sum_{j=1}^{m} u_{i j} g_{j}(\bar{y})=0
$$

for all $y \in \mathbb{D}, i=1,2, \cdots, k$; but $g_{j}, j=1,2, \cdots, m$, are also linearly independent, and so $u_{i j}=0$ for all i, j; i.e., $u=0$. This means that the range of R is all of $\mathbb{C}^{k \times m}$ and the result follows.

Theorem 2.3. The set of all Toeplitz operators $T_{\Phi}, \Phi \in L_{M_{n}}^{\infty}(\mathbb{D})$ is dense in $\mathcal{L}\left(L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})\right)$ in the strong operator topology.

Proof. From Theorem 2.2, it follows that the collection $\mathcal{N}=\left\{T_{\Phi}: \Phi \in L_{M_{n}}^{\infty}(\mathbb{D})\right\}$ is dense in $\mathcal{L}\left(L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})\right)$ in the weak operator topology. As \mathcal{N} is a subspace, i.e., a convex set, its weak operator topology and strong operator topology closures coincide. Hence \mathcal{N} is dense in $\mathcal{L}\left(L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})\right)$ in the strong operator topology. Let $T \in \mathcal{L}\left(L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})\right)$. Then there exists $\Phi_{N} \in L_{M_{n}}^{\infty}(\mathbb{D})$ such that $T_{\Phi_{N}} \rightarrow T$ in the strong operator topology. This can also be verified as follows: Let $T=$

$$
\left(\begin{array}{cccc}
T_{11} & T_{12} & \cdots & T_{1 n} \\
T_{21} & T_{22} & \cdots & T_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
T_{n 1} & T_{n 2} & \cdots & T_{n n}
\end{array}\right)
$$

where $T_{i j}=V_{i} T U_{j} \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$. From [6] and [7], it
follows that $\left\{T_{\phi}: \phi \in L^{\infty}(\mathbb{D})\right\}$ is dense in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ in the strong operator topology. Thus there exists a sequence $T_{\phi_{m}^{i j j}}$ that converges to $T_{i j}$ strongly for all $i, j \in$ $\{1,2, \cdots, n\}$. Let $\Phi_{m}=\left(\phi_{m}^{i j}\right)_{i, j=1}^{n}$. Then for $F=\left(f_{1}, f_{2}, \cdots, f_{n}\right)^{T} \in L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$, we obtain

$$
\begin{aligned}
\left\|T_{\Phi_{m}} F-T F\right\|^{2} & =\left\|\left(\begin{array}{cccc}
T_{\phi_{m}^{11}}-T_{11} & T_{\phi_{m}^{12}}-T_{12} & \cdots & T_{\phi_{m}^{1 n}}-T_{1 n} \\
T_{\phi_{m}^{2}}-T_{21} & T_{\phi_{m}^{22}}-T_{22} & \cdots & T_{\phi_{m}^{2 n}}-T_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
T_{\phi_{m}^{n 1}}-T_{n 1} & T_{\phi_{m}^{n 2}}-T_{n 2} & \cdots & T_{\phi_{m}^{n n}}-T_{n n}
\end{array}\right)\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right)\right\|^{2} \\
& =\left\|\left(\begin{array}{c}
\left(T_{\phi_{m}^{11}}-T_{11}\right) f_{1}+\left(T_{\phi_{m}^{12}}-T_{12}\right) f_{2}+\cdots+\left(T_{\phi_{m}^{1 n}}-T_{1 n}\right) f_{n} \\
\left(T_{\phi_{m}^{21}}-T_{21}\right) f_{1}+\left(T_{\phi_{m}^{22}}-T_{22}\right) f_{2}+\cdots+\left(T_{\phi_{m}^{2 n}}-T_{2 n}\right) f_{n} \\
\\
\left(T_{\phi_{m}^{n 1}}-T_{n 1}\right) f_{1}+\left(T_{\phi_{m}^{n 2}}-T_{n 2}\right) f_{2}+\cdots+\left(T_{\phi_{m}^{n n}}-T_{n n}\right) f_{n}
\end{array}\right)\right\|^{2} \\
& \leq \sum_{i, j=1}^{n}\left\|T_{\phi_{m}^{i j}} f_{j}-T_{i j} f_{j}\right\|^{2} \rightarrow 0
\end{aligned}
$$

as $m \rightarrow \infty$. Hence the set of all Toeplitz operators $\left\{T_{\Phi}, \Phi \in L_{M_{n}}^{\infty}(\mathbb{D})\right\}$ is dense in $\mathcal{L}\left(L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})\right)$ in the strong operator topology.

3. Hankel operators with matrix-valued symbols

Suppose $\Phi \in L_{M_{n}}^{\infty}(\mathbb{D})$. In this section we show that $H_{\Phi} \equiv 0$ if and only if $\Phi \in$ $H_{M_{n}}^{\infty}(\mathbb{D})$ and that there exists no finite rank Hankel operator H_{Φ} with nonconstant matrix-valued symbol Φ that is diagonal. We further establish certain elementary properties of little Hankel operators and characterize all finite rank little Hankel operators with diagonal matrix-valued symbols.

Theorem 3.1. Let $\Phi \in L_{M_{n}}^{\infty}(\mathbb{D})$ and $\Phi=\left(\begin{array}{cccc}\phi_{11} & 0 & \cdots & 0 \\ 0 & \phi_{22} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \phi_{n n}\end{array}\right)$, where $\phi_{i i} \in$
$L^{\infty}(\mathbb{D}), 1 \leq i \leq n$. The following hold:
(i) The operator $H_{\Phi} \equiv 0$ if and only if $\Phi \in H_{M_{n}}^{\infty}(\mathbb{D})$.
(ii) The operator $H_{\phi_{j} j} \neq 0$ for all $j \in\{1,2, \cdots, n\}$ if and only if $\operatorname{ker} H_{\Phi}=$ $\{0\}$. Further $H_{\Phi} \equiv 0$ if and only if $\operatorname{ker} H_{\Phi}=L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$.
(iii) If in addition, $\Phi \in H_{M_{n}}^{\infty}(\mathbb{D})$, then the operator $H_{\Phi^{*}}$ is a finite rank Hankel operator if and only if Φ is a diagonal matrix with entries in \mathbb{C}.

Proof. It is not difficult to see that $H_{\Phi}=\left(\begin{array}{cccc}H_{\phi_{11}} & 0 & \cdots & 0 \\ 0 & H_{\phi_{22}} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & H_{\phi_{n n}}\end{array}\right)$ where $H_{\phi_{i i}} \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ is a Hankel operator with symbol $\phi_{i i} \in L^{\infty}(\mathbb{D})$.

Suppose $\phi \in L^{\infty}(\mathbb{D})$. Before we begin the proof of the theorem, the points to note are the following:
(a)If $\phi f \in L_{a}^{2}(\mathbb{D})$ for all $f \in L_{a}^{2}(\mathbb{D})$ then $\phi \in H^{\infty}(\mathbb{D})$.
(b) $H_{\phi} \equiv 0$ if and only if $\phi \in H^{\infty}(\mathbb{D})$.

The statement (a) can be verified as follows: Suppose $\phi L_{a}^{2}(\mathbb{D}) \subset L_{a}^{2}(\mathbb{D})$. Then $T_{\phi} f=\phi f$ and therefore $\phi(z)=\frac{T_{\phi} f(z)}{f(z)}$. Hence ϕ is analytic on $\mathbb{D}-\{$ zeros of $f\}$. Each isolated singularity of ϕ in \mathbb{D} is removable, since ϕ is assumed to be bounded. Thus ϕ is analytic on \mathbb{D}. Since $\phi \in L^{\infty}(\mathbb{D})$, we have $\phi \in H^{\infty}(\mathbb{D})$.

To establish (b), suppose $H_{\phi} \equiv 0$. Then $H_{\phi} f=0$ for all $f \in L_{a}^{2}(\mathbb{D})$. That is, $T_{\phi} f=\phi f$. From (a) it follows that $\phi \in H^{\infty}(\mathbb{D})$. Conversely, if $\phi \in H^{\infty}(\mathbb{D})$, then $\phi f \in L_{a}^{2}(\mathbb{D})$ for all $f \in L_{a}^{2}(\mathbb{D})$. Hence $H_{\phi} f=0$ for all $f \in L_{a}^{2}(\mathbb{D})$. Therefore $H_{\phi} \equiv 0$.

Now (i) follows from (a) and (b) since $H_{\Phi} \equiv 0$ if and only if $H_{\phi_{j j}} \equiv 0$ for all $j \in\{1,2, \cdots, n\}$. That is, if and only if $\phi_{j j} \in H^{\infty}(\mathbb{D})$ for all $j \in\{1,2, \cdots, n\}$. Thus $H_{\Phi} \equiv 0$ if and only if $\Phi \in H_{M_{n}}^{\infty}(\mathbb{D})$.
To prove (ii), suppose $\phi \in L^{\infty}(\mathbb{D})$. Then

$$
\begin{aligned}
\operatorname{ker} H_{\phi} & =\left\{f \in L_{a}^{2}(\mathbb{D}):(I-P)(\phi f)=0\right\} \\
& =\left\{f \in L_{a}^{2}(\mathbb{D}): \phi f \in L_{a}^{2}(\mathbb{D})\right\} .
\end{aligned}
$$

Now if ker $H_{\phi} \neq\{0\}$, then $\phi \in H^{\infty}(\mathbb{D})$ (proceed as in (a)). This implies H_{ϕ} is equivalent to zero and $\operatorname{ker} H_{\phi}=L_{a}^{2}(\mathbb{D})$. Thus if $H_{\phi} \neq 0$, then ker $H_{\phi}=\{0\}$. Further, if ker $H_{\phi}=\{0\}$ then it follows that $\phi \notin H^{\infty}(\mathbb{D})$ and $H_{\phi} \not \equiv 0$. To prove (ii), let $\Phi \in L_{M_{n}}^{\infty}(\mathbb{D})$. Then ker H_{Φ} is equal to

$$
\begin{aligned}
& \left\{\left(f_{1}, f_{2}, \cdots, f_{n}\right) \in L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D}):\left(\begin{array}{cccc}
H_{\phi_{11}} & 0 & \cdots & 0 \\
0 & H_{\phi_{22}} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & H_{\phi_{n n}}
\end{array}\right)\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)\right\} \\
& =\left\{\left(f_{1}, f_{2}, \cdots, f_{n}\right) \in L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D}): H_{\phi_{j j} j} f_{j}=0 \text { for all } j \in\{1,2, \cdots, n\}\right\} .
\end{aligned}
$$

Thus it follows that $\operatorname{ker} H_{\Phi}=\{0\}$ if and only if $\operatorname{ker} H_{\phi_{j j}}=\{0\}$ for all $j \in$ $\{1,2, \cdots, n\}$. But ker $H_{\phi_{j j}}=\{0\}$ for all $j \in\{1,2, \cdots, n\}$ if and only if $H_{\phi_{j j}} \neq 0$ for all $j \in\{1,2, \cdots, n\}$.
To prove (iii), we shall first show that if $\phi \in H^{\infty}(\mathbb{D})$, then $H_{\bar{\phi}}$ is a finite rank Hankel operator if and only if ϕ is a constant. This can be verified as follows:

Sufficiency is obvious. For the necessity, suppose that $H_{\bar{\phi}}$ is a finite rank operator, where ϕ is analytic on \mathbb{D}. Then

$$
\operatorname{ker} H_{\bar{\phi}}=\left\{f \in L_{a}^{2}(\mathbb{D}):(I-P)(\bar{\phi} f)=0\right\}=\left\{f \in L_{a}^{2}(\mathbb{D}): \bar{\phi} f \in L_{a}^{2}(\mathbb{D})\right\}
$$

has finite codimension and is invariant under multiplication by z. By the result of Axler and Bourdon [1], there exists a polynomial q whose roots lie in \mathbb{D} such that ker $H_{\phi}=q L_{a}^{2}(\mathbb{D})$. Let $\phi(z)=\sum c_{k} z^{k}$; then $\bar{\phi}(z) q(z) \in L_{a}^{2}(\mathbb{D})$ implies that either ϕ is a constant or $q=0$. If $q=0$ then ker $H_{\bar{\phi}}=\{0\}$. This implies (Range $\left.H_{\bar{\phi}}^{*}\right)^{\perp}=\{0\}$. Hence Range $H_{\bar{\phi}}^{*}=L_{a}^{2}(\mathbb{D})$. This implies $H_{\bar{\phi}}$ is not of finite rank. Hence $q \neq 0$ since $H_{\bar{\phi}}$ has finite rank, so the claim is verified.

Now if $\Phi \in H_{M_{n}}^{\infty}(\mathbb{D})$ then $H_{\Phi^{*}}$ is a finite rank Hankel operator if and only if $H_{\overline{\phi_{j j}}}$ is of finite rank for all $j \in\{1,2, \cdots, n\}$. That is, if and only if $\overline{\phi_{j j}}$ is a constant for all $j \in\{1,2, \cdots, n\}$. That is, if and only if Φ is a diagonal matrix with entries in \mathbb{C}.

Definition-3.1 A function $G \in L_{a}^{2}(\mathbb{D})$ is called an inner function in $L_{a}^{2}(\mathbb{D})$ if $|G|^{2}-1$ is orthogonal to H^{∞}.
This definition of inner function in a Bergman space was given by Korenblum and Stessin [10]. If N is a subspace of $L_{a}^{2}(\mathbb{D})$, let $Z(N)=\{z \in \mathbb{D}: f(z)=0$ for all $f \in$ $N\}$, which is called the common zero set of functions in N. Hence if z_{1} is a zero of multiplicity at most n of all functions in N, then z_{1} appears n times in the set $Z(N)$, and each z_{1} is treated as a distinct element of $Z(N)$.
Theorem 3.2. Let $\Phi=\left(\phi_{i j}\right)$ where $\phi_{i j} \in L^{\infty}(\mathbb{D}), 1 \leq i, j \leq n$. Suppose $\phi_{i j}=0$ if $i \neq j$ and let $S_{\Phi} \in \mathcal{L}\left(L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})\right)$ be the little Hankel operator with symbol Φ. The following hold:
(i) The operator $S_{\Phi} \equiv 0$ if and only if $\Phi \in{\overline{\left(L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})\right)}}^{\perp}$.
(ii) The operator $S \in \mathcal{L}\left(L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})\right)$ is a little Hankel operator if and only if $T_{z I_{n \times n}}^{*} S=S T_{z I_{n \times n}}$ where $I_{n \times n}$ is the identity matrix of order n.
(iii) If $\Psi \in L_{M_{n}}^{\infty}(\mathbb{D})$, then the subspace $\operatorname{ker} S_{\Psi}$ is an invariant subspace of $T_{z I_{n \times n}}$.
(iv) Let $\Psi=\left(\psi_{i j}\right)$, $\psi_{i j} \in L^{\infty}(\mathbb{D})$ and $\psi_{i j}^{+}(z)=\overline{\psi_{i j}(\bar{z})}, 1 \leq i, j \leq n$. Then $S_{\Psi}^{*}=S_{\Psi^{+}}$where $\Psi^{+}=\left(\psi_{i j}^{+}\right)_{1 \leq i, j \leq n}$.
(v) If for $j \in\{1,2, \cdots, n\}$, $\operatorname{ker} S_{\phi_{j j}}=\left\{f \in L_{a}^{2}(\mathbb{D}): f=0\right.$ on $\left.\boldsymbol{b}_{j j}\right\}$ where $\boldsymbol{b}_{\boldsymbol{j} \boldsymbol{j}}=\left\{b_{j j}^{k}\right\}_{k=1}^{\infty}$ is an infinite sequence of points in \mathbb{D}, then there exists an inner function $G \in L_{a}^{2}(\mathbb{D})$ such that $\operatorname{ker} S_{\Phi}=G L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D}) \cap L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$.
(vi) If S_{Φ} is a finite rank little Hankel operator on $L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$ then $\operatorname{ker} S_{\Phi}=$ $G L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$ for some inner function $G \in L_{a}^{2}(\mathbb{D})$ and the following hold: (1) G vanishes on $\mathbf{a}=\left\{a_{j}\right\}_{j=1}^{N}$, a finite sequence of points in \mathbb{D}. (2) $\|G\|_{L^{2}}=1$. (3) G is equal to a constant plus a linear combination of the Bergman kernel functions $K\left(z, a_{1}\right), K\left(z, a_{2}\right), \ldots, K\left(z, a_{n}\right)$ and certain of their derivatives.(4) $|G|^{2}-1$ is orthogonal to L_{h}^{1}, the class of harmonic functions in L^{1} of the disc.
Proof. To prove (i), assume $\phi \in L^{\infty}(\mathbb{D})$. We shall first verify that $S_{\phi} \equiv 0$ if and only if $\phi \in\left(\overline{L_{a}^{2}(\mathbb{D})}\right)^{\perp}$. Suppose $S_{\phi} \equiv 0$. Then $S_{\phi} f=0$ for all $f \in L_{a}^{2}(\mathbb{D})$. Thus $P J(\phi f)=0$ and hence $\phi f \in\left(\overline{L_{a}^{2}(\mathbb{D})}\right)^{\perp}$, for all $f \in L_{a}^{2}(\mathbb{D})$. Since $1 \in L_{a}^{2}(\mathbb{D})$,
$\phi \in\left(\overline{L_{a}^{2}(\mathbb{D})}\right)^{\perp}$. Now suppose $\phi \in\left(\overline{L_{a}^{2}(\mathbb{D})}\right)^{\perp}$. This implies $\langle\phi, \bar{g}\rangle=0$ for all $g \in L_{a}^{2}(\mathbb{D})$. Hence $\langle\phi f, \bar{g}\rangle=\langle\phi, \overline{f g}\rangle=0$ for all $g \in L_{a}^{2}(\mathbb{D})$ and $f \in H^{\infty}(\mathbb{D})$. Thus $\left\langle h_{\phi} f, \bar{g}\right\rangle=\langle\bar{P}(\phi f), \bar{g}\rangle=0$ for all $g \in L_{a}^{2}(\mathbb{D})$ and $f \in H^{\infty}(\mathbb{D})$. Thus $h_{\phi} f=0$ for all $f \in H^{\infty}(\mathbb{D})$. Since $H^{\infty}(\mathbb{D})$ is dense in $L_{a}^{2}(\mathbb{D})$, we obtain $h_{\phi} \equiv 0$. That is, $S_{\phi}=J h_{\phi} \equiv 0$.

Now to prove (i), notice that $S_{\Phi} \equiv 0$ if and only if $S_{\phi_{j j}} \equiv 0$ for all $j \in$ $\{1,2, \cdots, n\}$. This is true if and only if $\phi_{j j} \in\left(\overline{L_{a}^{2}(\mathbb{D})}\right)^{\perp}$. That is, if $\Phi \in{\left.\overline{\left(L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})\right.}\right)^{\perp} \text {. } . ~ \text {. }}^{\text {. }}$

Now we prove (ii). Let $S \in \mathcal{L}\left(L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})\right)$. Since $L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})=L_{a}^{2}(\mathbb{D}) \oplus L_{a}^{2}(\mathbb{D}) \oplus \cdots \oplus$ $L_{a}^{2}(\mathbb{D})$, the operator $S=\left(\begin{array}{cccc}S_{11} & S_{12} & \cdots & S_{1 n} \\ S_{21} & S_{22} & \cdots & S_{2 n} \\ \vdots & \vdots & \cdots & \vdots \\ S_{n 1} & S_{n 2} & \cdots & S_{n n}\end{array}\right)$ for some $S_{i j} \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right), 1 \leq$ $i, j \leq n$. Suppose $T_{z I_{n \times n}}^{*} S=S T_{z I_{n \times n}}$. This implies $T_{z}^{*} S_{i j}=S_{i j} T_{z}$. From [8], it follows that $S_{i j}=S_{\psi_{i j}}$ for $\psi_{i j} \in L^{\infty}(\mathbb{D}), 1 \leq i, j \leq n$. Thus

$$
S=\left(\begin{array}{cccc}
S_{\psi_{11}} & S_{\psi_{12}} & \cdots & S_{\psi_{1 n}} \\
S_{\psi_{21}} & S_{\psi_{22}} & \cdots & S_{\psi_{2 n}} \\
\vdots & \vdots & \cdots & \vdots \\
S_{\psi_{n 1}} & S_{\psi_{n 2}} & \cdots & S_{\psi_{n n}}
\end{array}\right)
$$

That is, $S=S_{\Psi}$ where $\Psi=\left(\begin{array}{cccc}\psi_{11} & \psi_{12} & \cdots & \psi_{1 n} \\ \psi_{21} & \psi_{22} & \cdots & \psi_{2 n} \\ \vdots & \vdots & \cdots & \vdots \\ \psi_{n 1} & \psi_{n 2} & \cdots & \psi_{n n}\end{array}\right)$. Conversely, suppose $S \in \mathcal{L}\left(L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})\right)$ is a little Hankel operator. That is, $S=S_{\Psi}$ where $\Psi \in L_{M_{n}}^{\infty}(\mathbb{D})$. Let $\Psi=\left(\psi_{i j}\right)_{1 \leq i, j \leq n}$. Then $S_{\Psi}=\left(S_{\psi_{i j}}\right)_{1 \leq i, j \leq n}$. From [8], it follows that $T_{z}^{*} S_{\psi_{i j}}=$ $S_{\psi_{i j}} T_{z}$. This implies $T_{z I_{n \times n}}^{*} S_{\Psi}=S_{\Psi} T_{z I_{n \times n}}$.

To prove (iii), let $f \in \operatorname{ker} S_{\Psi}$. Then $S_{\Psi} T_{z I_{n \times n}} f=T_{z I_{n \times n}}^{*} S_{\Psi} f=0$. That is, $T_{z I_{n \times n}} f \in \operatorname{ker} S_{\Psi}$.

To prove (iv), we shall first verify that if $\psi \in L^{\infty}(\mathbb{D})$ then $S_{\psi}^{*}=S_{\psi^{+}}$where $\psi^{+}(z)=\overline{\psi(\bar{z})}$. Let $f, g \in L_{a}^{2}(\mathbb{D})$. Then

$$
\begin{aligned}
\left\langle S_{\psi}^{*} f, g\right\rangle & =\left\langle f, S_{\psi} g\right\rangle \\
& =\langle f, P J(\psi g)\rangle \\
& =\langle f,(J \psi) J g\rangle \\
& =\langle\overline{J \psi} f, J g\rangle \\
& =\left\langle\psi^{+} f, J g\right\rangle \\
& =\left\langle J\left(\psi^{+} f\right), g\right\rangle \\
& =\left\langle P J\left(\psi^{+} f\right), g\right\rangle \\
& =\left\langle S_{\psi+} f, g\right\rangle .
\end{aligned}
$$

Thus $S_{\psi}^{*}=S_{\psi^{+}}$. Now if $\Psi=\left(\psi_{i j}\right)_{1 \leq i, j \leq n}$ then $S_{\Psi}=\left(S_{\psi_{i j}}\right)_{1 \leq i, j \leq n}$. Then $S_{\Psi}^{*}=$ $\left(S_{\psi_{i j}}^{*}\right)_{1 \leq i, j \leq n}=\left(S_{\psi_{i j}^{+}}\right)_{1 \leq i, j \leq n}=S_{\Psi^{+}}$.

Now we prove (v). Notice that for $1 \leq j \leq n, \operatorname{ker} S_{\phi_{j j}}$ is an invariant subspace of T_{z}. If $\operatorname{ker} S_{\phi_{j j}}$ can be expressed in terms of its common zero set, i.e., if $\operatorname{ker} S_{\phi_{j j}}=$
$\left\{f \in L_{a}^{2}(\mathbb{D}): f=0\right.$ on $\left.\boldsymbol{b}_{\boldsymbol{j} j}\right\}$, then by [3],[4] and [9], $\operatorname{ker} S_{\phi_{j j}}=G_{j j} L_{a}^{2}(\mathbb{D}) \cap$ $L_{a}^{2}(\mathbb{D})$ for some inner functions $G_{j j} \in L_{a}^{2}(\mathbb{D})$ formed by the corresponding zeros $\left\{b_{j j}^{k}\right\}_{k=1}^{\infty}, j=1,2, \cdots, n$. Let G be the inner function formed by the union of zeros of the functions $G_{j j}, j=1,2, \cdots, n$ counting multiplicities. It is not difficult to see that $\operatorname{ker} S_{\Phi}=G L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D}) \cap L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$ as $\operatorname{ker} S_{\Phi}$ is an invariant subspace of $T_{z I_{n \times n}}$.

To prove (vi), first we shall verify that if $\phi \in L^{\infty}(\mathbb{D})$ and S_{ϕ} is a finite rank little Hankel operator on $L_{a}^{2}(\mathbb{D})$, then $\operatorname{ker} S_{\phi}=G L_{a}^{2}(\mathbb{D})$ for some inner function $G \in L_{a}^{2}(\mathbb{D})$.

Since S_{ϕ} is a little Hankel operator on $L_{a}^{2}(\mathbb{D})$, hence $T_{z}^{*} S_{\phi}=S_{\phi} T_{z}$. So ker S_{ϕ} is invariant under multiplication by z and $\operatorname{ker} S_{\phi}$ has finite codimension since S_{ϕ} is of finite rank. Let $\mathbf{a}=\left\{a_{j}\right\}_{j=1}^{N}$ be the common zeroes (counting multiplicities) of functions in $\operatorname{ker} S_{\phi}$ i.e., $\mathcal{Z}\left(\operatorname{ker} S_{\phi}\right)=\left\{a_{j}\right\}_{j=1}^{N}$. Let G be the extremal function for the problem

$$
\sup \left\{R e f^{(k)}(0): f \in L_{a}^{2},\|f\|_{L^{2}} \leq 1, f=0 \text { on } \mathbf{a}\right\}
$$

where k is the multiplicity of the number of times zero appears in $\mathbf{a}=\left\{a_{j}\right\}_{j=1}^{N}(k=$ 0 if $0 \notin\left\{a_{j}\right\}_{j=1}^{N}$). It is clear from [2],[3], [4] and [9] that G satisfies the conditions (1)-(4) and G vanishes precisely on a in $\overline{\mathbb{D}}$ counting multiplicities. Moreover, for every function $f \in L_{a}^{2}(\mathbb{D})$ that vanishes on $\mathbf{a}=\left\{a_{j}\right\}_{j=1}^{N}$ there exists $g \in L_{a}^{2}(\mathbb{D})$ such that $f=G g$. Hence ker $S_{\phi}=G L_{a}^{2}(\mathbb{D})$.

Now suppose $\Phi \in L_{M_{n}}^{\infty}(\mathbb{D})$ and $\Phi=\left(\begin{array}{cccc}\phi_{11} & 0 & \cdots & 0 \\ 0 & \phi_{22} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \phi_{n n}\end{array}\right), \phi_{j j} \in L^{\infty}(\mathbb{D})$ and S_{Φ} is a finite rank little Hankel operator on $L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$. Then $S_{\Phi}=\left(\begin{array}{cccc}S_{\phi_{11}} & 0 & \cdots & 0 \\ 0 & S_{\phi_{22}} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & S_{\phi_{n n}}\end{array}\right)$ and each $S_{\phi_{j j}}, 1 \leq j \leq n$ is a finite rank little Hankel operator on $L_{a}^{2}(\mathbb{D})$. From the argument above, it follows that $\operatorname{ker} S_{\phi_{j j}}=$ $G_{j j} L_{a}^{2}(\mathbb{D}), 1 \leq j \leq n$ where $G_{j j} \in L_{a}^{2}(\mathbb{D})$ is an inner function and each $G_{j j}$ vanishes on a finite set of points in $\mathbb{D},\left\|G_{j j}\right\|_{L^{2}}=1$ and each $G_{j j}$ is a linear combination of the Bergman kernels and some of their derivatives and $\left|G_{j j}\right|^{2}-1$ is orthogonal to L_{h}^{1}. Let $\left\{\gamma_{1}, \gamma_{2}, \cdots, \gamma_{l}\right\}$ be the union of the zeros of the functions $G_{j j}, 1 \leq j \leq n$ counting multiplicities. Let $G \in L_{a}^{2}(\mathbb{D})$ be the inner function formed by the zeros $\gamma_{1}, \gamma_{2}, \cdots, \gamma_{l}$ taking multiplicities into account. It is not difficult to verify that $\operatorname{ker} S_{\phi}=G L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$ and G is formed by a linear combination of (see [2], [3], [4] and [9]) the Bergman kernels and some of their derivatives and G satisfies the conditions (1)-(4).

Theorem 3.3. If $\Psi=\left(\psi_{i j}\right) \in L_{M_{n}}^{\infty}(\mathbb{D})$ where $\psi_{i j}=0, i \neq j$ and S_{Ψ} is a finite rank little Hankel operator on $L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$ then $\Psi=\Phi+\chi$ where $\Phi=\left(\phi_{i j}\right), \phi_{i j} \in$ $L^{\infty}(\mathbb{D}), 1 \leq i, j \leq n, \phi_{i j}=0, i \neq j$ and each $\overline{\phi_{j j}}$ is a linear combination of
the Bergman kernels and some of their derivatives and $\chi=\left(\theta_{i j}\right)$ where $\theta_{i j} \in$ $\left(\overline{L_{a}^{2}}\right)^{\perp} \cap L^{\infty}(\mathbb{D})$ and $\theta_{i j}=0, i \neq j$.

Proof. Since $\Psi=\left(\psi_{i j}\right)_{1 \leq i, j \leq n} \in L_{M_{n}}^{\infty}(\mathbb{D})$ and $\psi_{i j}=0, i \neq j$, we have
$S_{\Psi}=\left(\begin{array}{cccc}S_{\psi_{11}} & 0 & \cdots & 0 \\ 0 & S_{\psi_{22}} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & S_{\psi_{n n}}\end{array}\right)$. The operator S_{Ψ} is a finite rank little Hankel operator if and only if each $S_{\psi_{j j}}$ is a finite rank little Hankel operator on $L_{a}^{2}(\mathbb{D})$ for all $j \in\{1,2, \cdots, n\}$. Now let $1 \leq j \leq n$. Since for each $j, S_{\psi_{j j}}$ is a finite rank little Hankel operator on $L_{a}^{2}(\mathbb{D})$, there exist inner functions $G_{j j} \in L_{a}^{2}(\mathbb{D})$ such that $\operatorname{ker} S_{\psi_{j j}}=G_{j j} L_{a}^{2}(\mathbb{D})$. Thus $\psi_{j j} G_{j j} \in\left(\overline{L_{a}^{2}}\right)^{\perp}$. So $\left\langle\underline{\psi_{j j}} G_{j j} \underline{\bar{h}\rangle}=0\right.$ for all $h \in L_{a}^{2}(\mathbb{D})$, that is, $\left\langle G_{j j} h, \overline{\psi_{j j}}\right\rangle=0$ for all $h \in L_{a}^{2}(\mathbb{D})$ and so $\overline{\psi_{j j}}=\overline{\phi_{j j}}+\overline{\theta_{j j}}$ where $\overline{\theta_{j j}} \in\left(L_{a}^{2}\right)^{\perp}$, the orthogonal complement of $L_{a}^{2}(\mathbb{D})$ with respect to $L^{2}(\mathbb{D}, d A)$ and $\overline{\phi_{j j}} \in\left(G_{j j} L_{a}^{2}\right)^{\perp}$, the orthogonal complement of $G_{j j} L_{a}^{2}(\mathbb{D})$ with respect to $L_{a}^{2}(\mathbb{D})$. Suppose the function $G_{j j}$ vanishes precisely at $\boldsymbol{d}^{j}=\left\{d_{1}^{j}, d_{2}^{j}, \cdots, d_{m_{j}}^{j}\right\}$, a finite number of points in \mathbb{D} counting multiplicities. Since $K_{d_{1}^{j}}, K_{d_{2}^{j}}, \ldots, K_{d_{m_{j}}^{j}}$ and their derivatives (where if the point $\alpha \in \mathbb{D}$ occurs k times in \boldsymbol{d}^{j} then we include the functions $\left.(1-\bar{\alpha} z)^{-2}, z(1-\bar{\alpha} z)^{-3}, \ldots, z^{k-1}(1-\bar{\alpha} z)^{-k-1}\right)$ form a basis for $\left(G_{j j} L_{a}^{2}(\mathbb{D})\right)^{\perp}, j \in\{1,2, \cdots, n\}$, hence $\overline{\phi_{j j}}$ is a linear combination of the Bergman kernels and some of their derivatives and $\overline{\theta_{j j}} \in\left(L_{a}^{2}(\mathbb{D})\right)^{\perp} \cap L^{\infty}(\mathbb{D})$ since $\overline{\psi_{j j}}, \overline{\phi_{j j}} \in L^{\infty}(\mathbb{D})$. Thus $\Psi=\Phi+\chi$ where $\Phi=\left(\phi_{j j}\right), \chi=\left(\theta_{j j}\right)$ and $\overline{\phi_{j j}}$ is a linear combination of the Bergman kernels and some of their derivatives and $\theta_{j j} \in\left(\overline{L_{a}^{2}(\mathbb{D})}\right)^{\perp} \cap L^{\infty}(\mathbb{D})$.

Now let $\mathbf{b}=\left\{b_{j}\right\}_{j=1}^{\infty}$ be an infinite sequence of points in \mathbb{D}. Let $\mathcal{I}=I(\mathbf{b})=$ $\left\{f \in L_{a}^{2}(\mathbb{D}): f=0\right.$ on $\left.\mathbf{b}\right\}$. Let $G_{\mathbf{b}}$ be the solution of the extremal problem

$$
\begin{equation*}
\sup \left\{\operatorname{Re} f^{(n)}(0): f \in \mathcal{I},\|f\|_{L^{2}} \leq 1\right\} \tag{3.1}
\end{equation*}
$$

where n is the number of times zero appears in the sequence \mathbf{b} (i.e., the functions in \mathcal{I} have a common zero of order n at the origin). The natural question that arises at this point is to see if it is possible to construct a little Hankel operator $S_{\Phi}, \Phi \in L_{M_{n}}^{\infty}(\mathbb{D})$ whose kernel is $G_{\mathbf{b}} L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D}) \cap L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$. In the case that $\mathbf{b}=$ $\left\{b_{j}\right\}_{j=1}^{N}$ is a finite set of points in \mathbb{D}, it is possible to construct a little Hankel operator $S_{\Phi}, \Phi \in L_{M_{n}^{\infty}(\mathbb{D})}$ such that $\operatorname{ker} S_{\Phi}=G_{\mathbf{b}} L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$ as follows:
Theorem 3.4. Let $\mathbf{b}=\left(b_{j}\right)_{j=1}^{N}$ be a finite set of points in \mathbb{D} and $\mathcal{I}=I(\mathbf{b})=$ $\left\{f \in L_{a}^{2}(\mathbb{D}): f=0\right.$ on $\left.\mathbf{b}\right\}$ and let $G_{\mathbf{b}}$ be the solution of the extremal problem (3.1). Let

$$
\bar{\phi}=\sum_{j=1}^{N} \sum_{\nu=0}^{m_{j}-1} c_{j \nu} \frac{\partial^{\nu}}{\partial{\overline{b_{j}^{j}}}^{\nu}} K_{b_{j}}(z),
$$

where $c_{j \nu} \neq 0$ for all j, ν and m_{j} is the number of times b_{j} appears in \mathbf{b}. Then $\operatorname{ker} S_{\Phi}=G_{\mathbf{b}} L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$ where $\Phi=\left(\phi_{r s}\right)_{r, s=1}^{n}$ and $\phi_{r s}=\phi$ if $r=s$ and 0 , if $r \neq s$.

Proof. The set of vectors $\left\{K_{b_{1}}, \ldots, \frac{\partial^{m_{1}-1}}{\partial \bar{b}_{1}^{m_{1}-1}} K_{b_{1}}, \ldots, K_{b_{N}}, \ldots, \frac{\partial^{m_{n}-1}}{\partial \bar{b}_{N}^{m_{n}-1}} K_{b_{N}}\right\}$ forms a basis [9] for $\left(G_{\mathbf{b}} L_{a}^{2}(\mathbb{D})\right)^{\perp}$. By the Gram-Schmidt orthogonalization process we can get an orthonormal basis $\left\{\psi_{j}\right\}_{j=1}^{l}$ for $\left(G_{\mathbf{b}} L_{a}^{2}(\mathbb{D})\right)^{\perp}$. If $\bar{\phi} \in\left(G_{\mathbf{b}} L_{a}^{2}\right)^{\perp}$ then $\left\langle\bar{\phi}, G_{\mathbf{b}} t\right\rangle=0$ for all $t \in L_{a}^{2}(\mathbb{D})$, i.e., $\left\langle\bar{t}, \phi G_{\mathbf{b}}\right\rangle=0$ for all $t \in L_{a}^{2}(\mathbb{D})$ and so $G_{\mathbf{b}} \in \operatorname{ker} S_{\phi}$. Since $\operatorname{ker} S_{\phi}$ is invariant under the operator of multiplication by z we have that

$$
\begin{equation*}
G_{\mathbf{b}} L_{a}^{2}(\mathbb{D}) \subset \operatorname{ker} S_{\phi} \tag{3.2}
\end{equation*}
$$

Suppose $f \in \operatorname{ker} S_{\phi}$; then $\langle\phi f, \bar{h}\rangle=0$ for all $h \in L_{a}^{2}(\mathbb{D})$, so in particular $\left\langle\phi f, \overline{K_{b_{j}}}\right\rangle=$ 0 for all $j=1,2, \ldots N$. Therefore, $\left\langle\bar{\phi} \bar{f}, K_{b_{j}}\right\rangle=0$ for all $j=1,2, \ldots N$. Thus $\overline{\phi\left(b_{j}\right) f\left(b_{j}\right)}=0$ for all $j=1,2, \ldots N$. Since $\overline{\phi\left(b_{j}\right)} \neq 0$ for all $j=1,2, \ldots N$, hence $\overline{f\left(b_{j}\right)}=0$ for all $j=1,2, \ldots N$. Thus $f \in \mathcal{I}$. Since $G_{\mathbf{b}}$ is the solution of the extremal problem (3.1) therefore, $f \in G_{\mathbf{b}} L_{a}^{2}$. Hence

$$
\begin{equation*}
\operatorname{ker} S_{\phi} \subset G_{\mathbf{b}} L_{a}^{2} . \tag{3.3}
\end{equation*}
$$

From (3.2) and (3.3), $\operatorname{ker} S_{\phi}=G_{\mathbf{b}} L_{a}^{2}(\mathbb{D})=\mathcal{I}$. Now let $\Phi=\left(\phi_{r s}\right)_{r, s=1}^{n}$ where $\phi_{r s}=\phi$ if $r=s$ and 0 , if $r \neq s$. It is not difficult now to verify that ker $S_{\Phi}=$ $G_{\mathbf{b}} L_{a}^{2, \mathbb{C}^{n}}(\mathbb{D})$.

References

1. S. Axler and P. Bourdon, Finite co-dimensional invariant subspaces of Bergman spaces, Trans. Amer. Math. Soc. 306 (1988), 805- 817.
2. N. Das, The kernel of a Hankel operator on the Bergman space, Bull. London Math. Soc. 31 (1999), 75-80.
3. P.L. Duren, D. Khavinson, H.S. Shapiro and C. Sundberg, Contractive zero-divisors in Bergman spaces, Pacific J. Math. 157 (1993), 37-56.
4. P.L. Duren, D. Khavinson, H.S. Shapiro and C. Sundberg, Invariant subspaces in Bergman spaces and the biharmonic equation, Michigan Math. J. 41 (1994), 247-259.
5. M. Engliś, A note on Toeplitz operators on Bergman spaces, Comm. Math. Univ. Carolinae 29 (1988), 217-219.
6. M. Engliś, Some density theorems for Toeplitz operators on Bergman spaces, Czechoslovak Math. J. 40 (1990), 491-502.
7. M. Engliś, Density of algebras generated by Toeplitz operators on Bergman spaces, Ark. Mat. 30 (1992), 227-243.
8. N.S. Faour, A theorem of Nehari type, Illinois J. Math. 35 (1991), 533-535.
9. H. Hedenmalm, A factorization theorem for square area-integrable analytic functions, J. Reine. Angew. Math. 422 (1991), 45-68.
10. B. Korenblum and M. Stessin On Toeplitz-invariant subspaces of the Bergman space, J. Funct. Anal. 111 (1993), 76-96.
11. S.G. Krantz, Function Theory of Several Complex Variables,, John Wiley, New York, 1982.
12. K. Zhu, Operator Theory in Function Spaces, Monographs and Textbooks in Pure and Applied Mathematics, Marcell Dekker Inc. 139, New York and Basel, 1990.
P.G. Department of Mathematics, Utkal University, Vanivihar, Bhubaneswar, 751004, , Odisha, India

E-mail address: namitadas440@yahoo.co.in

[^0]: Date: Received: 07 November 2014; Accepted: 18 December 2015.
 2010 Mathematics Subject Classification. 47B38, 47B35, 46E40, 46E22.
 Key words and phrases. Bergman space, Toeplitz operators, little Hankel operators, strongoperator topology, finite rank operators.

