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ERROR LOCATING CODES BY USING BLOCKWISE-TENSOR
PRODUCT OF BLOCKWISE DETECTING/CORRECTING

CODES
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Abstract. In this paper, we obtain lower and upper bounds on the number
of parity check digits of a linear code that corrects e or less errors within a sub-
block. An example of such a code is provided. We introduce blockwise-tensor
product of matrices and using this, we propose classes of error locating codes
(or EL-codes) that can detect e or less errors within a sub-block and locate
several such corrupted sub-blocks.

1. Introduction

Error detecting codes are used by the receiver merely to detect the presence of
errors in a block of received digits, whereas error correcting codes at the receiver
are used to correct errors that may have occurred in transmission. To have a
good error correcting capability of the codes, long code length is required to be
considered, but this results in decreasing the information rate of the system. This
problem had been somewhat sorted out by Wolf and Elspas [15]. They introduced
the concept of error location by which a compromise between short and long code
length can be obtained. The technique in error location concept is that the block
of received digits is subdivided into mutually exclusive sub-blocks. The length
of the sub-blocks can be chosen relatively smaller requiring less number of parity
checks which can improve the information rate of the system. In this concept,
errors occurring within sub-block(s) are detected at the receiver, and in addition
the receiver is able to specify which particular sub-block(s) contains errors. Of
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course, the precise location of erroneous digit positions can not be located, but
the sub-block(s) containing errors can be identified. The codes following this
technique is referred to as error locating codes (in short EL-codes).

Wolf and Elspas [15] devised codes that could locate a single corrupted sub-
block containing a given number of random errors. Later on, Wolf in [13] obtained
a class of EL-codes capable of identifying corrupted sub-blocks by considering
tensor product of parity check matrices of two codes. In EL-codes, the errors
are considered to occur within sub-block(s). Such type of errors are found to be
in mostly storage and memory systems [6, 9]. Thus, there is a need to study
blockwise error detecting/correcting codes. For more study on error locating
codes and blockwise error correcting codes, one may refer to [2, 3, 4, 5, 6, 7, 8,
10, 16, 17].

1.1. Outline: The paper is organized as follows: In Section 2, we recall basic
definition and notations to make the paper self-contained. We present lower and
upper bounds on the number of parity check digits for a linear code correcting
e or less errors within a sub-block in Section 3. An example is given to support
our result. Wolf in [13, 14] studied construction of a class of EL-codes that can
locate several corrupted sub-blocks by considering tensor product of parity check
matrices of two codes. We introduce the concept of blockwise tensor product and
by using this we construct another classes of EL-codes (but of relatively smaller
length given in [13, 14]) that can locate several corrupted sub-blocks in Section
4. In Section 5, we present a comparative study between the bounds obtained
in Section 3-4, and some existing bounds. We verify that the development of
the codes obtained in Section 3-4 improves the efficiency of the communication
channel.

2. Basic Tools

In this section, we recall basic definition, notations and results to make the
paper self-contained. The largest integer less than or equal to x is denoted by
bxc. An (n, k) linear code will be considered as a subspace of the space of all
n-tuples over GF(q). The distance between two vectors shall be considered in
the Hamming sense. The minimum distance of a linear code is the minimum
of distances between any two code vectors. The information rate of the code is
k

n
. By a burst of length b, we mean a vector with nonzero entries in some b

consecutive positions and zeros elsewhere.
Next we consider following conditions for an (n, k) linear codes over GF (q) of
which the code length is divided into m mutually exclusive sub-blocks.

(1) The syndrome resulting from the occurrence of e or fewer errors within a
sub-block must be distinct from the all zero syndrome.

(2) The syndrome resulting from the occurrence of e or fewer errors within a
sub-block must be distinct from the syndrome resulting likewise from e or
fewer errors within any other sub-block.
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(3) The syndrome resulting from the occurrence of e or fewer errors within
a single sub-block must be distinct from the syndrome resulting likewise
from e or fewer errors within the same sub-block.

(4) The syndrome resulting from the occurrence of such errors within any
l(< m) or less sub-blocks must be non-zero and distinct from the syndrome
resulting likewise from within any same l(< m) or less sub-blocks.

(5) The syndrome resulting from the occurrence of such errors within any
l(< m) or less sub-blocks must be distinct from the syndrome resulting
likewise from within any other l(< m) or less sub-blocks.

The code capable of detecting e or fewer errors within a sub-block must satisfy
condition (1). The code capable of detecting and locating such error within a
sub-block must satisfy conditions (1) and (2). The code capable of correcting e
or fewer errors within a sub-block, the code should satisfy conditions (1) − (3).
Further, to locate any l(< m) sub-blocks containing e or fewer errors within a
sub-block, conditions (4) and (5) must be satisfied.

To conclude the section, we give the definition of tensor product of matrices
which can be found in literature (for example see, [1]).

Definition 2.1. Let A = [aij] be a m-by-n matrix and let B = (bij) be a p-by-q
matrix. The tensor product of A and B is defined as

A⊗B =


a11B a12B . . . . a1nB
a21B a22B . . . . a2nB
. . . . . . .
. . . . . . .

am1B am2B . . . . amnB

 .

3. Bounds on the number of parity check digits

Peterson and Weldon [11] gave lower and upper bounds for the linear codes
that correct e or less errors (see Theorem 4.5 and Theorem 4.7 in [11], also see
[12]). By using the technique given in [11], we present lower and upper bounds
for the linear codes that correct e or less errors within a sub-block.

Theorem 3.1. [Lower Bound] The number of parity check digits in an (n, k)
linear code over GF (q) subdivided into m sub-blocks of length t each, that corrects
e or less errors within a sub-block is bounded from below by

n− k ≥ logq

{
1 +m

e∑
i=1

(
t

i

)
(q − 1)i

}
. (3.1)

Proof. We prove the theorem by counting the number of syndromes that are
required to be nonzero and distinct by conditions (1), (2) and (3) (in Section 2),
and then setting this number less than or equal to qn−k, the number of maximum
possible syndromes. By conditions (1), (2) and (3), the syndromes produced
by e or less errors within a sub-block are nonzero and distinct, whether in the
same sub-block or in different sub-blocks. The total number of such syndromes,



BLOCKWISE TENSOR PRODUCT OF CODES 9

including the vector of all zeros, is given by (see Wolf [13])

1 +m

e∑
i=1

(
t

i

)
(q − 1)i.

Therefore, we must have

qn−k ≥ 1 +m
e∑
i=1

(
t

i

)
(q − 1)i

or,

n− k ≥ logq

{
1 +m

e∑
i=1

(
t

i

)
(q − 1)i

}
.

The result is proved. �

Remark 3.2. For m = 1, the inequality (3.1) reduces to

n− k ≥ logq

{
1 +

e∑
i=1

(
t

i

)
(q − 1)i

}
,

which coincides with the result of Theorem 4.5 of [11].

Theorem 3.3. [Upper Bound] There exists an (n, k) linear code over GF (q) sub-
divided into m sub-blocks of length t each, that corrects e or less errors within a
sub-block (t ≥ 2e) provided that

qn−k > 1+
2e−1∑
i=1

(
t− 1

i

)
(q−1)i+(m−1)

{
1+

e−1∑
i=1

(
t− 1

i

)
(q−1)i

} e∑
i=1

(
t

i

)
(q−1)i.

(3.2)

Proof. The existence of the code can be ensured by constructing a suitable
(n− k)× n parity check matrix H for the desired code. Without loss of general-
ity, we can assume that the columns of the first m − 1 sub-blocks of H and the
first j − 1 columns h1, h2, . . . , hj−1 of the mth sub-block have been appropriately
added. The jth column hj of the mth sub-block of the matrix H is needed to add
according to conditions (1)− (3). This is done in the following two cases:

Case I: First we consider condition (3), according to which the jth column hj
should not be a linear combination of previous any 2e− 1 or less columns of the
mth column sub-block. In other words

hj 6= uj−1hj−1 + uj−2hj−2 + · · ·+ u1h1, (3.3)

where ui ∈ GF (q) are any 2e− 1 or less nonzero coefficients.
The number of linear combinations on the R.H.S. of inequality (3.3), including

the vector of all zeros, is

1 +
2e−1∑
i=1

(
j − 1

i

)
(q − 1)i. (3.4)

(Note that the condition (1) is also taken care of in (3.4).)
Case II: In this case we consider condition (2), accordingly the jth column hj

should not be a linear combination of previous any e − 1 or less columns of the
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mth sub-block, together with any e or less columns within any other sub-block of
the previous m− 1 sub-blocks. In other words

hj 6= (uj−1hj−1 + uj−2hj−2 + · · ·+ u1h1) + (vihi + vi+1hi+1 + · · ·+ vi+b−1hi+b−1),
(3.5)

where ui, vi ∈ GF (q), ui are any e − 1 or less nonzero and hi are any e or less
columns of a sub-block from the previous m− 1 sub-blocks.

The number of linear combinations on the R.H.S. of the inequality (3.5) is
given by

(m− 1)

{
1 +

e−1∑
i=1

(
j − 1

i

)
(q − 1)i

} e∑
i=1

(
t

i

)
(q − 1)i. (3.6)

At worst, all the linear combinations computed in (3.4) and (3.6) might yield
distinct sums. Therefore, hj can be added to the mth sub-block of H provided
that

qn−k > expr.(3.4) + expr.(3.6)

i.e.

qn−k > 1+
2e−1∑
i=1

(
j − 1

i

)
(q−1)i+(m−1)

{
1+

e−1∑
i=1

(
j − 1

i

)
(q−1)i

} e∑
i=1

(
t

i

)
(q−1)i.

Replacing j by t gives the theorem. �

Remark 3.4. For m = 1, the inequality (3.2) reduces to

qn−k > 1 +
2e−1∑
i=1

(
t− 1

i

)
(q − 1)i,

which coincides with the result of Theorem 4.7 of [11].

Example 3.5. Consider a (12, 5) binary code with the following parity check
matrix 7 × 12 matrix P which has been constructed by the synthesis procedure
given in the proof of Theorem 3.3 by taking m = 3, t = 4, e = 2, q = 2.

P =



1 0 0 1 0 0 0 0 1 0 0 0
0 1 0 1 0 0 0 0 0 1 0 0
0 0 1 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 1 0 1 0 1 0 0
0 0 0 0 0 0 1 1 1 0 0 0


The null space of this matrix can be used to correct 2 or less errors within a
sub-block of length 4. It may be verified from Error Pattern-Syndrome Table 3.1
that syndromes produced by 2 or less errors within a sub-block, whether in the
same sub-block or in different sub-blocks are distinct.
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Table 3.1
Error Pattern - Syndrome Table

Error-patterns Syndromes

Errors within the first sub-block

1000 0000 0000 1000000

0100 0000 0000 0100000

0010 0000 0000 0010000

0001 0000 0000 1111000

1100 0000 0000 1100000

1010 0000 0000 1010000

1001 0000 0000 0111000

0110 0000 0000 0110000

0101 0000 0000 1011000

0011 0000 0000 1101000

Errors within the second sub-block

0000 1000 0000 0000100

0000 0100 0000 0000010

0000 0010 0000 0000001

0000 0001 0000 0001111

0000 1100 0000 0000110

0000 1010 0000 0000101

0000 1001 0000 0001011

0000 0110 0000 0000011

0000 0101 0000 0001101

0000 0011 0000 0001110

Errors within the third sub-block

0000 0000 1000 1000001

0000 0000 0100 0100010

0000 0000 0010 0010100

0000 0000 0001 0001000

0000 0000 1100 1100011

0000 0000 1010 1010101

0000 0000 1001 1001001

0000 0000 0110 0110110

0000 0000 0101 0101010

0000 0000 0011 0011100
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4. Blockwise-Tensor Product and EL-Codes

We start this section with the definition of Blockwise-Tensor Product of ma-
trices.

Definition 4.1. If A = (A1 A2 .... Am), where Ai is a k1 × k2 matrix and B =
(B1 B2 .... Bm) where Bi is a s1 × s2 matrix, the Blockwise-Tensor(Kronecker)
Product A⊗b B is the (k1s1)× (mk2s2) matrix

A⊗b B =
[
A1 ⊗B1 A2 ⊗B2 .... Am ⊗Bm

]
.

By using the blockwise-tensor product and codes discussed in Section 3, we
propose new classes of EL-codes that can locate several sub-blocks.

Consider a code of length n consists of m sub-blocks, each sub-block containing
t digits, then n = tm. Further if m = m1m2, then the code of length n can be
considered as consisting of m2 sub-blocks, each sub-block containing tm1 digits.
This new sub-blocks of length tm1 constitute ofm1 consecutive original sub-blocks
of length t. We call the new sub-blocks as cluster-sub-blocks of length tm1. First
we present a new class of EL-codes which can locate several sub-blocks within a
cluster-sub-block.

Theorem 4.2. Let C1(n1 = mt, n1 − k) be a linear code over GF (q) with parity
check matrix H that detects e1 or fewer errors within a sub-block of length t and
C2(n2 = ms, n2− ρ) be a linear code over GF (q) with parity check matrix P that
corrects e2 or fewer errors within a sub-block of length s. Then the (mts,mts−kρ)
code C obtained from the parity check matrix P⊗bH can detect e1 or fewer errors
within a sub-block of length t and locate any e2 or fewer such corrupted sub-blocks
within a cluster-sub-block of length ts.

Proof. The parity check matrix of the code C is given by

P ⊗b H =
[
P1 ⊗H1 P2 ⊗H2 .... Pm ⊗Hm

]
=


p111H1 p112H1 .. p11sH1 ... pm11Hm pm12Hm .. pm1sHm

. . .. . .. . .. . .

. . .. . .. . .. . .
p1ρ1H1 p1ρ2H1 .. p1ρsH1 ... pmρ1Hm pmρ2Hm .. pmρsHm


where Pi and Hj are sub-blocks of length t of P and H, respectively and plij is

the (ij)th element of sub matrix Pl (1 ≤ l ≤ m).
Consider the situation where e1 or fewer errors occur only in the λth sub-block

of length t. Let us write λ = (τ − 1)s + j, 1 ≤ j ≤ s, 1 ≤ τ ≤ m. Then, the
resulting syndrome is Sλ = (S1, S2, ...Sρ), where

Si =
t∑

r=1

urp
τ
ijh(τ)r = pτij

t∑
r=1

urh(τ)r = pτijAλ,

ur ∈ GF (q) are any e1 or less nonzero coefficients, h(τ)r are columns of the sub-

block Hτ and Aλ =
∑t

r=1 urh(τ)r . Furthermore, the sum Aλ can not be all zero
k-tuple, because the code C1 detects e1 or fewer errors within a sub-block of
length t. Also since, all pτij are nonzero, the syndrome S cannot be zero (which
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satisfies condition (1)). This shows that the code obtained from the parity check
matrix P ⊗b H can detect e1 or fewer errors within a sub-block of length t.

In order to locate any e2 or fewer sub-blocks of length t containing e1 or fewer er-
rors within a cluster-sub-block of length s, the syndrome resulting from detectable
errors occurring within any e2 or fewer sub-blocks within a cluster-sub-block is
distinct from syndromes resulting from detectable errors occurring within any
other e2 or fewer sub-blocks within the same cluster-sub-block. Let Sλi be the
syndrome corresponding to the λthi sub-block of length t within a cluster-sub-
block of length s, where λi = (τ1 − 1)s + ji, i = 1, 2, ..., 2e2. Each sub-block
contains e1 or fewer errors.
Assume that

2e2∑
i=1

xiS
λi = 0, xi ∈ GF (q), (4.1)

i.e. ( 2e2∑
i=1

xip
τi
1ji
Aλi ,

2e2∑
i=1

xip
τi
2ji
Aλi , ...,

2e2∑
i=1

xip
τi
ρji
Aλi

)
= 0

Since C2 corrects e2 or fewer errors within a sub-block of length s, all sets of
2e2 or fewer syndromes resulting from detectable errors within a sub-block are
linearly independent. So, the equation (4.1) has only trivial solution xi = 0 for
i = 1, 2, . . . , 2e2. This shows that condition (4) is true.
To show that the code C satisfies condition (5), suppose Sβi is the syndrome
corresponding to the βthi sub-block of length t within a cluster-sub-block of length
s, where βi = τ2s+ fi, i = 1, 2, ..., e2.
Let

e2∑
i=1

xiS
λi +

e2∑
i=1

yiS
βi = 0, xi, yi ∈ GF (q) (4.2)

i.e. ( e2∑
i=1

xip
τ1
1ji
Aλi +

e2∑
i=1

yip
τ2
1fi
Aβi ,

e2∑
i=1

xip
τ1
2ji
Aλi +

e2∑
i=1

yip
τ2
2fi
Aβi , ...

...,

e2∑
i=1

xip
τ1
ρji
Aλi +

e2∑
i=1

yip
τ2
ρfi
Aβi

)
= 0.

Then
e2∑
i=1

xip
τ1
rji
Aλi +

e2∑
i=1

yip
τ2
rfi
Aβi = 0, r = 1, 2, . . . , ρ.

The code C2 corrects e2 or fewer errors within a sub-block of length s, so the
syndromes of such errors within a sub-block are distinct from syndromes resulting
from such errors within any other sub-block. Therefore, the equation (4.2) gives
only trivial solution xi = 0 and yi = 0 for i = 1, 2, . . . , e2. Thus, condition (5) is
satisfied. Hence the theorem is proved. �
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Example 4.3. Consider a (9 = 3× 3, 6) binary code that detects 3 or less errors
within a sub-block of length 3 whose parity check matrix H is given by

H =

 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1


and the (12 = 4 × 3, 5) binary code that corrects 2 or less errors within a sub-
block of length 4 whose parity check matrix P is given in Example 3.5. Then the
blockwise-tensor product matrix P ⊗b H is given as follows.

P ⊗b H =



100 000 000 100 000 000 000 000 100 000 000 000
010 000 000 010 000 000 000 000 010 000 000 000
001 000 000 001 000 000 000 000 001 000 000 000
000 100 000 100 000 000 000 000 000 100 000 000
000 010 000 010 000 000 000 000 000 010 000 000
000 001 000 001 000 000 000 000 000 001 000 000
000 000 100 100 000 000 000 000 000 000 100 000
000 000 010 010 000 000 000 000 000 000 010 000
000 000 001 001 000 000 000 000 000 000 001 000
000 000 000 100 000 000 000 100 000 000 000 100
000 000 000 010 000 000 000 010 000 000 000 010
000 000 000 001 000 000 000 001 000 000 000 001
000 000 000 000 100 000 000 100 000 000 100 000
000 000 000 000 010 000 000 010 000 000 010 000
000 000 000 000 001 000 000 001 000 000 001 000
000 000 000 000 000 100 000 100 000 100 000 000
000 000 000 000 000 010 000 010 000 010 000 000
000 000 000 000 000 001 000 001 000 001 000 000
000 000 000 000 000 000 100 100 100 000 000 000
000 000 000 000 000 000 010 010 010 000 000 000
000 000 000 000 000 000 001 001 001 000 000 000


By Theorem 4.2, the null space of this matrix, i.e., the (36, 15) code not only

detects 3 or less errors within a sub-block of length 3, but also locates any 2 or
less sub-blocks within a cluster-sub-block of length 12. It can be verified from
error pattern-syndrome table (as done in Example 3.5) that:
(i) the syndromes of 3 or less errors within a cluster-sub-block of length 3 are
nonzero,
(ii) the syndromes of 2 or less such corrupted sub-blocks within a cluster-sub-
block of length 12 are all distinct.

The following two classes of EL-codes can be obtained by modifying the nature
of the code C2 in Theorem 4.2.

Theorem 4.4. Let C1(n1 = mt, n1 − k) be a linear code over GF (q) with parity
check matrix H that detects e1 or fewer errors within a sub-block of length t and
C2(n2 = ms, n2− ρ) be a linear code over GF (q) with parity check matrix P that
corrects e2 or fewer errors. Then the (mts,mts − kρ) code obtained from the
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parity check matrix P ⊗b H can detect e1 or fewer errors within a sub-block of
length t and locate any e2 or fewer such corrupted sub-blocks.

Proof. Similar to proof of Theorem 4.2. �

Theorem 4.5. Let C1(n1 = mt, n1 − k) be a linear code over GF (q) with parity
check matrix H that detects e1 or fewer errors within a sub-block of length t and
C2(n2 = ms, n2− ρ) be a linear code over GF (q) with parity check matrix P that
corrects any burst of length b or less. Then the (mts,mts−kρ) code obtained from
the parity check matrix P ⊗b H can detect e1 or fewer errors within a sub-block
of length t and locate any adjacent b or fewer such corrupted sub-blocks.

Proof. Similar to proof of Theorem 4.2. �

To conclude the section, we observe that distance of a code obtained by blockwise-
tensor product of the generator matrices of two blockwise linear codes coincides
with Theorem 5.3 given by Peterson and Weldon [11]. This is given in the fol-
lowing theorem.

Theorem 4.6. The distance of the linear code whose generator matrix is the
blockwise-tensor product of generator matrices of the two blockwise linear codes,
is the product of the distances of the two codes.

Proof. Consider the linear code C1 has distance D = d1 + d2 + ... + dm with
generator matrix G1 and the other linear code C2 has distance L = l1+ l2+ ...+ lm
with generator matrix G2. Then, a codevector of the code whose generator matrix
is blockwise-tensor product G1 ⊗b G2, must have weight at least

d1(l1 + l2 + · · ·+ lm) + d2(l1 + l2 + · · ·+ lm) + · · ·+ dm(l1 + l2 + · · ·+ lm) = DL.

Since D and L are the distances of the codes C1 and C2 respectively, there exists
a codevector of weight D in C1 and a codevector of weight L in C2. As a result,
there exist a codevector of weight DL in the code whose generator matrix is
G1 ⊗b G2. This completes the proof. �

5. Comparative Study

In the section, we make comparison between bounds on the number of parity
check digits for codes obtained in Section 3 and Section 4 with the following
bounds which already exist in literature.

Theorem 5.1. [11] For any (n, k) linear code that corrects e or less errors sat-
isfies the following inequality

qn−k ≥ 1 +
e∑
i=1

(
n

i

)
(q − 1)i.

Theorem 5.2. [11] There exists an (n, k) linear code that corrects e or less errors
provided that

qn−k > 1 +
2e−1∑
i=1

(
n

i

)
(q − 1)i.
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Theorem 5.3. [13] Let C1(n1 = mt, n1 − k) be a binary linear code with parity
check matrix H that detects e1 or fewer errors within a sub-block of length t and
C2(n2 = ms, n2 − ρ) be a nonbinary linear code over GF (2k) with parity check
matrix P that corrects e2 or less random errors (or any burst of length b or less).
Then, the (n1n2, n1n2−kρ) code obtained from the parity check matrix P ⊗H can
detect e1 or fewer errors within a sub-block of length n1 and locate any e2 or fewer
such corrupted sub-blocks (or any adjacent b or fewer such corrupted sub-blocks).

Comparison (I): First we compare bounds on the number of parity check
digits for the existence of linear codes discussed in Theorem 3.1 (Theorem 3.3)
and Theorem 5.1 (Theorem 5.2). Since for m 6= 1, we have

e∑
i=1

(
n

i

)
(q − 1)i > m

e∑
i=1

(
t

i

)
(q − 1)i

and
2e−1∑
i=1

(
n

i

)
(q − 1)i >

2e−1∑
i=1

(
t− 1

i

)
(q − 1)i

+ (m− 1)

{
1 +

e−1∑
i=1

(
t− 1

i

)
(q − 1)i

} e∑
i=1

(
t

i

)
(q − 1)i.

So, the necessary (sufficient) number of parity check digits for the existence of
linear codes considered in Theorem 3.1 (Theorem 3.3) is less than the necessary
(sufficient) number of parity check digits for (n, k) codes considered in Theorem
5.1 (Theorem 5.2).

Outcome: If errors are occurred blockwise, the codes discussed in Theorem
3.1 and Theorem 3.3 will be more efficient than the codes discussed in Theorem
5.1 and Theorem 5.2, respectively.

Comparison (II): We now compare the codes obtained in Theorem 4.4 and
Theorem 4.5 with the codes mentioned in Theorem 5.3. In Theorem 4.4 and
Theorem 4.5, we obtain linear codes that detect e1 or fewer errors within a sub-
block of length t and locate any e2 or fewer such corrupted sub-blocks (or any
adjacent b or fewer such corrupted sub-blocks) whereas in Theorem 5.3, there
exists linear codes that can detect e1 or fewer errors within a sub-block of length
n1 and locate any e2 or fewer such corrupted sub-blocks (or any adjacent b or
fewer such corrupted sub-blocks). In Theorem 5.3, the identified sub-blocks are
of length n1 whereas in our results (Theorem 4.4 and Theorem 4.5), the identified
sub-blocks are of length t which may be made much smaller that n1.

Outcome: The sender needs to retransmit smaller sub-block(s) instead of
bigger sub-block(s) of length n1. In addition, the rate of transmission in our
results is also improved, this is because

1− kρ

m2ts
> 1− kρ

mts
for m 6= 1,

i.e., rate of transmission of the codes obtained in Theorem 4.4 and Theorem 4.5
is better than rate of transmission of the codes given in Theorem 5.3.
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