Khayyam J. Math. 2 (2016), no. 2, 201–208

DOI: 10.22034/kjm.2017.43830



# COMPOSITION OPERATORS ON WEIGHTED BERGMAN-NEVANLINNA SPACES WITH ADMISSIBLE WEIGHTS

# A.K. SHARMA<sup>1</sup> \* AND E. SUBHADARSINI<sup>1</sup>

Communicated by A.K. Mirmostafaee

ABSTRACT. A non-negative, non-increasing integrable function  $\omega$  is an admissible weight if  $\omega(r)/(1-r)^{1+\gamma}$  is non-decreasing for some  $\gamma > 0$  and  $\lim_{r\to 1} \omega(r) = 0$ . In this paper, we characterize boundedness and compactness of composition operators on weighted Bergman-Nevanlinna spaces with admissible weights.

### 1. INTRODUCTION AND PRELIMINARIES

Let  $\mathbb{D}$  be the open unit disk in the complex plane,  $H(\mathbb{D})$  the space of all holomorphic functions on  $\mathbb{D}$ . Let  $\omega$  be a non-negative, non-increasing integrable function such that  $\omega(r)(1-r)^{-(1+\gamma)}$  is nondecreasing for some  $\gamma > 0$  and and  $\lim_{r\to 1} \omega(r) = 0$ . We extend  $\omega$  on  $\mathbb{D}$  by setting  $\omega(z) = \omega(|z|), z \in \mathbb{D}$ , and call it a weight. We assume that our weights are normalized so that  $\int_{\mathbb{D}} \omega(z) dA(z) = 1$ , where  $dA(z) = \frac{1}{\pi} dx dy = \frac{1}{\pi} r dr d\theta$ ,  $(z = x + iy = re^{i\theta})$  stands for normalized area measure on  $\mathbb{D}$ . Such a weight function is called an *admissible weight*. Of course the classical weights  $\omega(r) = (1 - r^2)^{\alpha}$ ;  $\alpha > -1$  are admissible weights. The notation  $a \leq b$  means that there is a positive constant C such that  $a \leq Cb$ .

Moreover, if  $a \leq b$  and  $b \leq a$ , then we write  $a \approx b$ .

*Date*: Received: 29 January 2016; Revised: 29 November 2016; Accepted: 08 February 2017. \* Corresponding author.

<sup>2010</sup> Mathematics Subject Classification. Primary 47B38; Secondary 30H05, 46E15.

Key words and phrases. Composition operator, weighted Bergman Nevanlinna space, Carleson measure, vanishing Carleson measure.

For  $\omega$  an admissible weight, the weighted *Bergman-Nevanlinna* space is the space of functions  $f \in H(\mathbb{D})$  such that

$$||f||_{\mathcal{A}^0_{\omega}} = \int_{\mathbb{D}} \log^+ |f(z)|\omega(z)dA(z) < \infty,$$

where

$$\log^+ x = \begin{cases} \log x & \text{if } x \ge 1\\ 0 & \text{if } x < 1. \end{cases}$$

Note that despite the norm notation,  $||f||_{\mathcal{A}^0_{\omega}}$  fails to satisfy the properties of norm. However,  $(f,g) \to ||f-g||_{\mathcal{A}^0_{\omega}}$  defines a translation invariant metric on  $\mathcal{A}^0_{\omega}$  that turns  $\mathcal{A}^0_{\omega}$  into a complete metric space. The space  $\mathcal{A}^0_{\omega}$  can be viewed as the limit as  $p \to 0$  of the weighted Bergman space  $\mathcal{A}^p_{\omega}$ , defined by

$$\mathcal{A}^p_{\omega} = \Big\{ f \in H(\mathbb{D}) : ||f||_{\mathcal{A}^p_{\omega}} = \Big( \int_{\mathbb{D}} |f(z)|^p \omega(z) dA(z) \Big)^{1/p} < \infty \Big\},$$

in the sense that

$$\lim_{p \to 0} \frac{t^p - 1}{p} = \log t, \qquad 0 < t < \infty.$$

The Bergman-Nevanlinna space  $\mathcal{A}^0_{\omega}$  contains all the Bergman spaces  $\mathcal{A}^p_{\alpha}$  for all p, 0 . Obviously, the inequalities

$$\log^+ x \le \log(1+x) \le 1 + \log^+ x, \quad x \ge 0,$$

imply that

$$||f||_{\mathcal{A}^0_{\omega}} \asymp \int_{\mathbb{D}} \log(1 + |f(z)|)\omega(z)dA(z) < \infty.$$
(1.1)

Let  $\varphi$  be a holomorphic self-map of  $\mathbb{D}$ . The composition operator  $C_{\varphi}$  induced by  $\varphi$  is defined by  $C_{\varphi}f = f \circ \varphi$  for  $f \in H(\mathbb{D})$ . This type of operator has gained increasing attention during the last three decades, mainly due to the fact that it provide a link between classical function theory, functional analysis and operator theory. For general background on composition operators, we refer to [3, 5] and references therein. Recently, several authors have considered composition operators between different spaces of holomorphic functions, including Nevanlinna type spaces, see for example [1, 2] and [6–12].

Let X and Y be topological vector spaces whose topologies are induced by translation-invariant metrics  $d_X$  and  $d_Y$ , respectively. Then a linear operator  $T: X \to Y$  is called *metrically bounded* if there exists a positive constant K such that

$$d_Y(Tf,0) \le Kd_X(f,0),$$

for all  $f \in X$ . When X and Y are Banach spaces, the notation of metric boundedness co-insides with that of boundedness. An operator  $T: X \to Y$  is said to be *metrically compact* if it takes every metric ball in X into a relatively compact set in Y. In this paper, we consider metric boundedness and metric compactness of  $C_{\varphi}$  on weighted Bergman-Nevanlinna spaces  $\mathcal{A}^0_{\omega}$ . From now on metrically or metric will be dropped since there is no danger of confusion.

#### COMPOSITION OPERATORS

#### 2. Main results

In this section, we characterize boundedness and compactness of composition operators on weighted Bergman-Nevanlinna spaces with admissible weight. In what follows, we make use of the Carleson measure, so we first give a short

introduction to Carleson sets and Carleson measures.

The *arcs* in the unit circle  $\partial \mathbb{D}$  are sets of the form

$$I = \{ z \in \partial \mathbb{D} : \theta_1 \le \arg z < \theta_2 \}$$

where  $\theta_1, \theta_2 \in [0, 2\pi)$  and  $\theta_1 < \theta_2$ . Normalized length of an arc I will be denoted by |I|, that is,

$$|I| = \frac{1}{2\pi} \int_{I} |dz|.$$

Let I be an arc in  $\partial \mathbb{D}$  and let S(I) be the Carleson sets defined by

$$S(I) = \{ z \in \mathbb{D} : 1 - |I| \le |z| < 1, z/|z| \in I \}.$$

A positive Borel measure  $\mu$  on  $\mathbb{D}$  is called an  $\omega$ -Carleson measure if

$$||\mu||_{\omega} = \sup_{0 < |I| < 1} \frac{\mu(S(I))}{\omega(1 - |I|)|I|^2} < \infty$$

and a vanishing  $\omega$ -Carleson measure if

$$\lim_{|I| \to 0} \frac{\mu(S(I))}{\omega(1 - |I|)|I|^2} = 0.$$

Recall that for a and z in  $\mathbb{D}$ , the pseudohyperbolic distance d between a and z is defined by

$$d(a,z) = |\sigma_a(z)| = \left|\frac{a-z}{1-\overline{a}z}\right|.$$

For  $r \in (0, 1)$  and  $a \in \mathbb{D}$ , denote by D(a, r), the pseudohyperbolic disk whose pseudohyperbolic center is a and whose pseudohyperbolic radius is r, that is

$$D(a,r) = \Big\{ z \in \mathbb{D} : d(a,z) < r \Big\}.$$

Since  $\sigma_a$  is a linear fractional transformation, the pseudohyperbolic disk D(a, r) is also a Euclidean disk. Except for the special case when  $D(a, r) = r\mathbb{D}$ , the Euclidean center and Euclidean radius of D(a, r) do not coincide with pseudohyperbolic center and pseudohyperbolic radius. The Euclidean center and Euclidean radius of D(a, r) are

$$\frac{1-r^2}{1-r^2|a|^2}a \quad \text{and} \quad \frac{1-|a|^2}{1-r^2|a|^2}r$$

respectively. Moreover, for 0 < r < 1/3, there exists a positive integer M and a sequence  $(z_n)_{n \in \mathbb{N}} \subset \mathbb{D}$  such that  $\inf_{n \neq m} |\sigma_{z_n}(z_m)| > 0$ ,  $\bigcup_{n=1}^{\infty} D(z_n, r) = \mathbb{D}$  and every point in  $\mathbb{D}$  belongs to at most M sets in the family  $\{D(z_n, 3r)\}_{n \in \mathbb{N}}$ . We denote by A(D(a, r)) the area of D(a, r). It is well-known that

$$A(D(a,r)) \approx |1 - \bar{a}z|^2 \approx (1 - |a|^2)^2 \approx (1 - |z|^2)^2 \approx A(D(z,r))$$
(2.1)

for  $z \in D(a, r)$ .

The next can be found in [4, Lemma 2.4].

**Lemma 2.1.** Let  $\omega$  be an admissible weight and let  $a \in \mathbb{D}$ . Then there is some  $\gamma > 0$  such that

$$\int_{\mathbb{D}} \frac{\omega(z)}{|1 - \overline{a}z|^{4+2\gamma}} dA(z) \asymp \frac{\omega(a)}{(1 - |a|^2)^{2+2\gamma}} dA(z)$$

**Lemma 2.2.** Let  $\gamma > 0$ . Let  $\omega$  be an admissible weight and let  $a \in \mathbb{D}$ . Then there is some  $\gamma > 0$  such that

$$f_a(z) = \exp\left\{\frac{(1-|a|^2)^{2+2\gamma}}{\omega(a)(1-\overline{a}z)^{4+2\gamma}}\right\}$$
(2.2)

is in  $\mathcal{A}^0_{\omega}$  for every  $a \in \mathbb{D}$ . Moreover,  $\sup_{a \in \mathbb{D}} ||f_a||_{\mathcal{A}^0_{\omega}} \lesssim 1$ .

*Proof.* Let  $a \in \mathbb{D}$  and  $f_a$  be as in (2.2). Then by Lemma 2.1, we have that

$$\begin{split} ||f_a||_{\mathcal{A}^0_{\omega}} &= \int_{\mathbb{D}} \log^+ |f_a(z)|\omega(z)dA(z) \\ &= \int_{\mathbb{D}} \Re\left(\frac{(1-|a|^2)^{2+2\gamma}}{\omega(a)(1-\overline{a}z)^{4+2\gamma}}\right)\omega(z)dA(z) \\ &\leq \int_{\mathbb{D}} \frac{(1-|a|^2)^{2+2\gamma}}{\omega(a)|1-\overline{a}z|^{4+2\gamma}}\omega(z)dA(z) \\ &\lesssim 1. \end{split}$$

Thus we have that  $f_a \in \mathcal{A}^0_{\omega}$  and  $\sup_{a \in \mathbb{D}} ||f_a||_{\mathcal{A}^0_{\omega}} \lesssim 1$ .

**Theorem 2.3.** Let  $\omega$  be an admissible weight. Then the following statements are equivalent:

- (a)  $\mu$  is an  $\omega$ -Carleson measure on  $\mathbb{D}$ .
- (b) There is a constant  $C(\omega, \mu) > 0$  such that

$$\int_{\mathbb{D}} \log(1+|f(z)|)d\mu(z) \le C(\omega,\mu)||f||_{\mathcal{A}^0_\omega}.$$

*Proof.* Suppose that (b) holds. Let I be and arc in  $\partial \mathbb{D}$  such that 0 < |I| < 1 and  $a = (1 - |I|)e^{i\theta}$ . Then  $a \in \mathbb{D}$  and |a| = 1 - |I|. Consider the function  $f_a$  as in (2.2), where  $a = (1 - |I|)e^{i\theta}$ . Then by Lemma 2.1,  $\sup_{a \in \mathbb{D}} ||f_a||_{\mathcal{A}^0_{\omega}} \leq 1$ . Thus by (b), we have

$$\int_{\mathbb{D}} \log(1 + |f_a(z)|) d\mu(z) \lesssim C(\omega, \mu).$$

That is,

$$C(\omega,\mu) \gtrsim \int_{\mathbb{D}} \log^+ |f_a(z)| d\mu(z) = \int_{\mathbb{D}} \Re\Big(\frac{(1-|a|^2)^{2+2\gamma}}{\omega(a)(1-\overline{a}z)^{4+2\gamma}}\Big) d\mu(z).$$

Now

$$\begin{aligned} \Re\left(\frac{(1-|a|^2)^{2+2\gamma}}{\omega(a)(1-\overline{a}z)^{4+2\gamma}}\right) &= \frac{(1-|a|^2)^{2+2\gamma}}{\omega(a)(1-|a|)^{4+2\gamma}} \Re\left(\left(\frac{1-|a|}{1-\overline{a}z}\right)^{4+2\gamma}\right) \\ &= \frac{(1-|a|^2)^{2+2\gamma}}{\omega(a)(1-|a|)^{4+2\gamma}} \Re\left(\left(1+\frac{|a|(1-ze^{-i\theta})}{1-|a|}\right)^{-(4+2\gamma)}\right) \\ &\gtrsim \frac{(1-|a|^2)^{2+2\gamma}}{\omega(a)(1-|a|)^{4+2\gamma}}, \quad \text{if} \quad z \in S(I). \end{aligned}$$

So we have that

$$\Re\left(\frac{(1-|a|^2)^{2+2\gamma}}{\omega(a)(1-\overline{a}z)^{4+2\gamma}}\right) \gtrsim \frac{1}{\omega(1-|I|)|I|^2}, \quad z \in S(I).$$

Therefore,

$$C(\omega,\mu)\gtrsim \int_{S(I)}\frac{1}{\omega(1-|I|)|I|^2}d\mu(z)=\frac{\mu(S(I))}{\omega(1-|I|)|I|^2}.$$

Thus  $\mu$  is an  $\omega$ -Carleson measure on  $\mathbb{D}$ .

Conversely, suppose that (a) holds, that is,  $\mu$  is an  $\omega$ -Carleson measure. Let  $\{a_n\}$  be a sequence in  $\mathbb{D} \inf_{n \neq m} |\sigma_{a_n}(a_m)| > 0$ ,  $\bigcup_{n=1}^{\infty} D(a_n, r) = \mathbb{D}$  and every point in  $\mathbb{D}$  belongs to at most M sets in the family  $\{D(a_n, 3r)\}_{n \in \mathbb{N}}$ . For each  $a_n \in \mathbb{D}$ , and a fixed  $r \in (0, 1/3)$  there is an arc  $I_n$  such that  $0 < |I_n| < 1$ ,  $D(a_n, r) \in S(I_n)$  and  $|I_n| = 1 - |a_n|$ . Using (2.2) and the fact that  $\omega$  is an admissible weight, we get

$$\begin{split} \int_{\mathbb{D}} \log(1+|f(z)|) d\mu(z) &\leq \sum_{n=1}^{\infty} \int_{D(a_n,r)} \log(1+|f(z)|) d\mu(z) \\ &\leq \sum_{n=1}^{\infty} \mu(D(a_n,r)) \sup_{z \in D(a_n,r)} \log(1+|f(z)|) \\ &\leq C \sum_{n=1}^{\infty} \frac{\mu(D(a_n,r))}{w(a_n)(1-|a_n|^2)} \int_{D(a_n,3r)} \log(1+|f(z)|) \omega(z) dA(z) \\ &\leq C \sum_{n=1}^{\infty} \frac{\mu(S(I_n))}{w(1-|I_n|)|I_n|^2} \int_{D(a_n,3r)} \log(1+|f(z)|) \omega(z) dA(z) \\ &\leq C ||\mu||_{\omega} \int_{\mathbb{D}} \log(1+|f(z)|) \omega(z) dA(z). \end{split}$$

Thus by (2.1), (b) holds. For  $\omega$  an admissible weight, let

$$d\nu_{\omega}(z) = \omega(z)dA(z), \ z \in \mathbb{D}.$$

**Theorem 2.4.** Let  $\omega$  be an admissible weight and  $\varphi$  be a holomorphic self-map of  $\mathbb{D}$ . Then  $C_{\varphi} : \mathcal{A}^0_{\omega} \to \mathcal{A}^0_{\omega}$  is bounded if and only if the pull-back measure  $\mu_{\omega,\varphi} = \nu_{\omega} \circ \varphi^{-1}$  of  $\nu_{\omega}$  induced by  $\varphi$  is an  $\omega$ -Carleson measure.

*Proof.* Let  $f \in \mathcal{A}^0_{\omega}$ . Then

$$||C_{\varphi}f||_{\mathcal{A}^0_{\omega}} = \int_{\mathbb{D}} \log(1 + |(f \circ \varphi)(z)|)\omega(z)dA(z) = \int_{\mathbb{D}} \log(1 + |(f(z)|)d\mu_{\omega,\varphi}(z).$$

Thus in view of Theorem 2.3, we have that  $C_{\varphi}$  is bounded on  $\mathcal{A}^0_{\omega}$  if and only if  $\mu_{\omega,\varphi}$  is an  $\omega$ -Carleson measure.

To prove the main result of this section, we need the following lemma which follows on similar lines as the proof of [6, Lemma 2.1]. We omit the details.

**Lemma 2.5.** Let  $\omega$  be an admissible weight and  $\varphi$  be a holomorphic self-map of  $\mathbb{D}$ . Then  $C_{\varphi} : \mathcal{A}^{0}_{\omega} \to \mathcal{A}^{0}_{\omega}$  is compact if and only for every sequence  $\{f_{n}\}$  which is bounded in  $\mathcal{A}^{0}_{\omega}$  and converges to zero uniformly on compact subsets of  $\mathbb{D}$ , we have that  $||C_{\varphi}f_{n}||_{\mathcal{A}^{0}_{\omega}} \to 0$ .

**Theorem 2.6.** Let  $\omega$  be an admissible weight and  $\varphi$  be a holomorphic self-map of  $\mathbb{D}$ . Then  $C_{\varphi} : \mathcal{A}^0_{\omega} \to \mathcal{A}^0_{\omega}$  is compact if and only if the pull-back measure  $\mu_{\omega,\varphi} = \nu_{\omega} \circ \varphi^{-1}$  of  $\nu_{\omega}$  induced by  $\varphi$  is a vanishing  $\omega$ -Carleson measure, where  $d\nu_{\omega}(z) = \omega(z) dA(z)$ .

*Proof.* First suppose that  $C_{\varphi} : \mathcal{A}^0_{\omega} \to \mathcal{A}^0_{\omega}$  is compact. Let  $\{I_n\}$  be a sequence of arc in  $\partial \mathbb{D}$  such that  $0 < |I_n| < 1/2$  for all n and  $|I_n| \to 0$  as  $n \to \infty$ . Consider the family of functions

$$f_n(z) = (1 - |a_n|)^2 \omega(a_n) \exp\left\{\frac{(1 - |a_n|)^{2+2\gamma}}{\omega(a_n)(1 - \overline{a_n}z)^{4+2\gamma}}\right\},\$$

where  $\gamma > 0$  is as in Lemma 2.1 and  $a_n = (1 - |I_n|)e^{i\theta}$ . Clearly,  $f_n \to 0$  uniformly on compact subsets of  $\mathbb{D}$  as  $n \to \infty$ . By Lemma 2.2, there exists a positive constant C such that  $\sup_n ||f_n||_{\mathcal{A}^0_{\omega}} \leq 1$ . Again as in the proof of Theorem 2.3, if  $z \in S(I_n)$ , then

$$\Re\left(\frac{(1-|a_n|)^{2+2\gamma}}{\omega(a_n)(1-\overline{a_n}z)^{4+2\gamma}}\right) \gtrsim \frac{1}{\omega(1-|I_n|)|I_n|^2}$$

and so

$$\log^{+} |f_{n}(z)| \geq \log^{+} \left\{ (1 - |a_{n}|)^{2} \omega(a_{n}) \exp \left\{ \Re \left( \frac{(1 - |a_{n}|)^{2 + 2\gamma}}{\omega(a_{n})(1 - \overline{a_{n}}z)^{4 + 2\gamma}} \right) \right\} \right\}$$
$$\geq \log^{+} \left\{ \omega(1 - |I_{n}|) |I_{n}|^{2} \exp \left\{ \frac{C}{\omega(1 - |I_{n}|)|I_{n}|^{2}} \right\} \right\}.$$

Therefore,

$$\begin{split} \log^{+} \left\{ \omega(1 - |I_{n}|) |I_{n}|^{2} \exp\left\{\frac{C}{\omega(1 - |I_{n}|) |I_{n}|^{2}}\right\} \right\} \mu_{\omega,\varphi}(S(I_{n})) \\ &\leq \int_{S(I_{n})} \log^{+} |f_{n}(z)| d\mu_{\omega,\varphi}(z) \\ &\leq \int_{\mathbb{D}} \log^{+} |f_{n}(\varphi(z))| \omega(z) dA(z) \\ &= ||C_{\varphi}f_{n}||_{\mathcal{A}_{\omega}^{0}}. \end{split}$$

By Lemma 2.5, the compactness of  $C_{\varphi} : \mathcal{A}^0_{\omega} \to \mathcal{A}^0_{\omega}$  forces  $||C_{\varphi}f_n||_{\mathcal{A}^0_{\omega}} \to 0$  as  $n \to \infty$ . Thus we have that

$$\lim_{|I_n|\to 0} \log^+ \left\{ \omega(1-|I_n|) |I_n|^2 \exp\left\{\frac{C}{\omega(1-|I_n|)|I_n|^2}\right\} \right\} \mu_{\omega,\varphi}(S(I_n)) = 0.$$

But

$$\lim_{I_n \to 0} \omega(1 - |I_n|) |I_n|^2 \log^+ \left\{ \omega(1 - |I_n|) |I_n|^2 \exp\left\{\frac{C}{\omega(1 - |I_n|)|I_n|^2}\right\} \right\}$$
  
=  $\lim_{t \to \infty} \frac{1}{t} \log^+ \left\{\frac{1}{t} \exp\{Ct\}\right\}$   
=  $\lim_{t \to \infty} \frac{1}{t} \left\{Ct - \log t\right\}$   
=  $C > 0.$ 

Therefore, it follows that

$$\lim_{I_n \to 0} \frac{\mu_{\omega,\varphi}(S(I_n))}{\omega(1-|I_n|)|I_n|^2} = 0.$$

Hence  $\mu_{\omega,\varphi}$  is a vanishing  $\omega$ -Carleson measure on  $\mathbb{D}$ .

Acknowledgement. The authors would like to thank the referee for useful comments and suggestions which helped us to improve this paper.

## References

- J.S. Choa and H.O. Kim, Compact composition operators on the Nevanlinna class, Proc. Amer. Math. Soc., 125 (1997), 145–151.
- B.R. Choe, H. Koo and W. Smith, Carleson measures for the area Nevanlinna spaces and applications, J. Anal. Math., 104 (2008), 207–233.
- C.C. Cowen and B.D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC press, Boca Raton, New York, 1995.
- K. Kellay and P. Lefevre, Compact composition operators on weighted Hilbert spaces of analytic functions, J. Math. Anal. Appl., 386 (2012), 718–727.
- J.H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New York. 1993.
- A.K. Sharma, Volterra composition operators between Bergman-Nevanlinna and Bloch-type spaces, Demonstratio Math., 42 (2009), 607–618.
- A.K. Sharma, Products of multiplication, composition and differentiation between weighted Bergman-Nevanlinna and Bloch-type spaces, Turk. J. Math. 35 (2011), 275–291.
- A.K. Sharma and S. Ueki, Composition operators from Nevanlinna type spaces to Bloch type spaces, Banach J. Math. Anal., 6 (2012), 112–123.
- 9. S. Stević, On generalised weighted Bergman spaces, Complex Variables, 49 (1993), 109–124.
- S. Stević and A.K. Sharma, Essential norm of composition operators between weighted Hardy spaces, Appl. Math. Comput., 217 (2011), 6192–6197.
- S. Stević and A.K. Sharma, Composition operators from Bergman Privalov spaces to Zygmund spaces, Ann. Polon. Math., 105 (2012), no. 1, 77–86.
- J. Xiao, Compact composition operators on the area-Nevanlinna class, Expo. Math., 17 (1999), 255-264.

 $^1$  Department of Mathematics, Shri Mata Vaishno Devi University, Kakryal, Katra-182320, J&K, India.

*E-mail address*: aksju\_76@yahoo.com *E-mail address*: elinamaths@gmail.com