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Abstract. A non-negative, non-increasing integrable function ω is an ad-
missible weight if ω(r)/(1 − r)1+γ is non-decreasing for some γ > 0 and
limr→1 ω(r) = 0. In this paper, we characterize boundedness and compact-
ness of composition operators on weighted Bergman-Nevanlinna spaces with
admissible weights.

1. Introduction and preliminaries

Let D be the open unit disk in the complex plane, H(D) the space of all
holomorphic functions on D. Let ω be a non-negative, non-increasing integrable
function such that ω(r)(1 − r)−(1+γ) is nondecreasing for some γ > 0 and and
limr→1 ω(r) = 0. We extend ω on D by setting ω(z) = ω(|z|), z ∈ D, and call it

a weight. We assume that our weights are normalized so that
∫
D
ω(z)dA(z) = 1,

where dA(z) =
1

π
dxdy =

1

π
rdrdθ, (z = x+ iy = reiθ) stands for normalized area

measure on D. Such a weight function is called an admissible weight. Of course
the classical weights ω(r) = (1− r2)α; α > −1 are admissible weights.
The notation a . b means that there is a positive constant C such that a ≤ Cb.
Moreover, if a . b and b . a, then we write a � b.
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For ω an admissible weight, the weighted Bergman-Nevanlinna space is the
space of functions f ∈ H(D) such that

||f ||A0
ω

=

∫
D

log+ |f(z)|ω(z)dA(z) <∞,

where

log+ x =
{

log x if x ≥ 1
0 if x < 1.

Note that despite the norm notation, ||f ||A0
ω
fails to satisfy the properties of norm.

However, (f, g) → ||f − g||A0
ω
defines a translation invariant metric on A0

ω that
turns A0

ω into a complete metric space. The space A0
ω can be viewed as the limit

as p→ 0 of the weighted Bergman space Apω, defined by

Apω =
{
f ∈ H(D) : ||f ||Ap

ω
=
(∫

D
|f(z)|pω(z)dA(z)

)1/p
<∞

}
,

in the sense that

lim
p→0

tp − 1

p
= log t, 0 < t <∞.

The Bergman-Nevanlinna space A0
ω contains all the Bergman spaces Apα for all p,

0 < p <∞. Obviously, the inequalities

log+ x ≤ log(1 + x) ≤ 1 + log+ x, x ≥ 0,

imply that

||f ||A0
ω
�
∫
D

log(1 + |f(z)|)ω(z)dA(z) <∞. (1.1)

Let ϕ be a holomorphic self-map of D. The composition operator Cϕ induced by
ϕ is defined by Cϕf = f ◦ ϕ for f ∈ H (D) . This type of operator has gained
increasing attention during the last three decades, mainly due to the fact that it
provide a link between classical function theory, functional analysis and operator
theory. For general background on composition operators, we refer to [3, 5] and
references therein. Recently, several authors have considered composition opera-
tors between different spaces of holomorphic functions, including Nevanlinna type
spaces, see for example [1, 2] and [6–12].

Let X and Y be topological vector spaces whose topologies are induced by
translation-invariant metrics dX and dY , respectively. Then a linear operator
T : X → Y is called metrically bounded if there exists a positive constant K such
that

dY (Tf, 0) ≤ KdX(f, 0),

for all f ∈ X. When X and Y are Banach spaces, the notation of metric bound-
edness co-insides with that of boundedness. An operator T : X → Y is said to
be metrically compact if it takes every metric ball in X into a relatively compact
set in Y. In this paper, we consider metric boundedness and metric compactness
of Cϕ on weighted Bergman-Nevanlinna spaces A0

ω. From now on metrically or
metric will be dropped since there is no danger of confusion.
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2. Main results

In this section, we characterize boundedness and compactness of composition
operators on weighted Bergman-Nevanlinna spaces with admissible weight.
In what follows, we make use of the Carleson measure, so we first give a short
introduction to Carleson sets and Carleson measures.

The arcs in the unit circle ∂D are sets of the form

I = {z ∈ ∂D : θ1 ≤ arg z < θ2},

where θ1, θ2 ∈ [0, 2π) and θ1 < θ2. Normalized length of an arc I will be denoted
by |I|, that is,

|I| = 1

2π

∫
I

|dz|.

Let I be an arc in ∂D and let S(I) be the Carleson sets defined by

S(I) = {z ∈ D : 1− |I| ≤ |z| < 1, z/|z| ∈ I}.

A positive Borel measure µ on D is called an ω-Carleson measure if

||µ||ω = sup
0<|I|<1

µ(S(I))

ω(1− |I|)|I|2
<∞

and a vanishing ω-Carleson measure if

lim
|I|→0

µ(S(I))

ω(1− |I|)|I|2
= 0.

Recall that for a and z in D, the pseudohyperbolic distance d between a and z is
defined by

d(a, z) = |σa(z)| =
∣∣∣∣ a− z1− az

∣∣∣∣.
For r ∈ (0, 1) and a ∈ D, denote by D(a, r), the pseudohyperbolic disk whose
pseudohyperbolic center is a and whose pseudohyperbolic radius is r, that is

D(a, r) =
{
z ∈ D : d(a, z) < r

}
.

Since σa is a linear fractional transformation, the pseudohyperbolic disk D(a, r)
is also a Euclidean disk. Except for the special case when D(a, r) = rD, the
Euclidean center and Euclidean radius of D(a, r) do not coincide with pseudohy-
perbolic center and pseudohyperbolic radius. The Euclidean center and Euclidean
radius of D(a, r) are

1− r2

1− r2|a|2
a and

1− |a|2

1− r2|a|2
r

respectively. Moreover, for 0 < r < 1/3, there exists a positive integer M and
a sequence (zn)n∈N ⊂ D such that infn6=m |σzn(zm)| > 0, ∪∞n=1D(zn, r) = D and
every point in D belongs to at most M sets in the family {D(zn, 3r)}n∈N. We
denote by A(D(a, r)) the area of D(a, r). It is well-known that

A(D(a, r)) � |1− āz|2 � (1− |a|2)2 � (1− |z|2)2 � A(D(z, r)) (2.1)
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for z ∈ D(a, r).

The next can be found in [4, Lemma 2.4].

Lemma 2.1. Let ω be an admissible weight and let a ∈ D. Then there is some
γ > 0 such that ∫

D

ω(z)

|1− az|4+2γ
dA(z) � ω(a)

(1− |a|2)2+2γ
.

Lemma 2.2. Let γ > 0. Let ω be an admissible weight and let a ∈ D. Then
there is some γ > 0 such that

fa(z) = exp
{ (1− |a|2)2+2γ

ω(a)(1− az)4+2γ

}
(2.2)

is in A0
ω for every a ∈ D. Moreover, supa∈D ||fa||A0

ω
. 1.

Proof. Let a ∈ D and fa be as in (2.2). Then by Lemma 2.1, we have that

||fa||A0
ω

=

∫
D

log+ |fa(z)|ω(z)dA(z)

=

∫
D
<
(

(1− |a|2)2+2γ

ω(a)(1− az)4+2γ

)
ω(z)dA(z)

≤
∫
D

(1− |a|2)2+2γ

ω(a)|1− az|4+2γ
ω(z)dA(z)

. 1.

Thus we have that fa ∈ A0
ω and supa∈D ||fa||A0

ω
. 1. �

Theorem 2.3. Let ω be an admissible weight. Then the following statements are
equivalent:

(a) µ is an ω-Carleson measure on D.
(b) There is a constant C(ω, µ) > 0 such that∫

D
log(1 + |f(z)|)dµ(z) ≤ C(ω, µ)||f ||A0

ω
.

Proof. Suppose that (b) holds. Let I be and arc in ∂D such that 0 < |I| < 1 and
a = (1 − |I|)eiθ. Then a ∈ D and |a| = 1 − |I|. Consider the function fa as in
(2.2), where a = (1 − |I|)eiθ. Then by Lemma 2.1, supa∈D ||fa||A0

ω
. 1. Thus by

(b), we have ∫
D

log(1 + |fa(z)|)dµ(z) . C(ω, µ).

That is,

C(ω, µ) &
∫
D

log+ |fa(z)|dµ(z) =

∫
D
<
( (1− |a|2)2+2γ

ω(a)(1− az)4+2γ

)
dµ(z).
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Now

<
(

(1− |a|2)2+2γ

ω(a)(1− az)4+2γ

)
=

(1− |a|2)2+2γ

ω(a)(1− |a|)4+2γ
<
((

1− |a|
1− az

)4+2γ)
=

(1− |a|2)2+2γ

ω(a)(1− |a|)4+2γ
<
((

1 +
|a|(1− ze−iθ)

1− |a|

)−(4+2γ))
&

(1− |a|2)2+2γ

ω(a)(1− |a|)4+2γ
, if z ∈ S(I).

So we have that

<
(

(1− |a|2)2+2γ

ω(a)(1− az)4+2γ

)
&

1

ω(1− |I|)|I|2
, z ∈ S(I).

Therefore,

C(ω, µ) &
∫
S(I)

1

ω(1− |I|)|I|2
dµ(z) =

µ(S(I))

ω(1− |I|)|I|2
.

Thus µ is an ω-Carleson measure on D.
Conversely, suppose that (a) holds, that is, µ is an ω-Carleson measure. Let {an}
be a sequence in D infn 6=m |σan(am)| > 0, ∪∞n=1D(an, r) = D and every point in D
belongs to at most M sets in the family {D(an, 3r)}n∈N. For each an ∈ D, and a
fixed r ∈ (0, 1/3) there is an arc In such that 0 < |In| < 1, D(an, r) ∈ S(In) and
|In| = 1− |an|. Using (2.2) and the fact that ω is an admissible weight, we get∫
D

log(1 + |f(z)|)dµ(z) ≤
∞∑
n=1

∫
D(an,r)

log(1 + |f(z)|)dµ(z)

≤
∞∑
n=1

µ(D(an, r)) sup
z∈D(an,r)

log(1 + |f(z)|)

≤ C
∞∑
n=1

µ(D(an, r))

w(an)(1− |an|2)

∫
D(an,3r)

log(1 + |f(z)|)ω(z)dA(z)

≤ C
∞∑
n=1

µ(S(In))

w(1− |In|)|In|2

∫
D(an,3r)

log(1 + |f(z)|)ω(z)dA(z)

≤ C||µ||ω
∫
D

log(1 + |f(z)|)ω(z)dA(z).

Thus by (2.1), (b) holds. For ω an admissible weight, let

dνω(z) = ω(z)dA(z), z ∈ D.

�

Theorem 2.4. Let ω be an admissible weight and ϕ be a holomorphic self-map
of D. Then Cϕ : A0

ω → A0
ω is bounded if and only if the pull-back measure

µω,ϕ = νω ◦ ϕ−1 of νω induced by ϕ is an ω-Carleson measure.
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Proof. Let f ∈ A0
ω. Then

||Cϕf ||A0
ω

=

∫
D

log(1 + |(f ◦ ϕ)(z)|)ω(z)dA(z) =

∫
D

log(1 + |(f(z)|)dµω,ϕ(z).

Thus in view of Theorem 2.3, we have that Cϕ is bounded on A0
ω if and only if

µω,ϕ is an ω-Carleson measure. �

To prove the main result of this section, we need the following lemma which
follows on similar lines as the proof of [6, Lemma 2.1]. We omit the details.

Lemma 2.5. Let ω be an admissible weight and ϕ be a holomorphic self-map of
D. Then Cϕ : A0

ω → A0
ω is compact if and only for every sequence {fn} which is

bounded in A0
ω and converges to zero uniformly on compact subsets of D, we have

that ||Cϕfn||A0
ω
→ 0.

Theorem 2.6. Let ω be an admissible weight and ϕ be a holomorphic self-map
of D. Then Cϕ : A0

ω → A0
ω is compact if and only if the pull-back measure

µω,ϕ = νω ◦ ϕ−1 of νω induced by ϕ is a vanishing ω-Carleson measure, where
dνω(z) = ω(z)dA(z).

Proof. First suppose that Cϕ : A0
ω → A0

ω is compact. Let {In} be a sequence of
arc in ∂D such that 0 < |In| < 1/2 for all n and |In| → 0 as n → ∞. Consider
the family of functions

fn(z) = (1− |an|)2ω(an) exp

{
(1− |an|)2+2γ

ω(an)(1− anz)4+2γ

}
,

where γ > 0 is as in Lemma 2.1 and an = (1−|In|)eiθ. Clearly, fn → 0 uniformly
on compact subsets of D as n → ∞. By Lemma 2.2, there exists a positive
constant C such that supn ‖fn‖A0

ω
. 1. Again as in the proof of Theorem 2.3, if

z ∈ S(In), then

<
(

(1− |an|)2+2γ

ω(an)(1− anz)4+2γ

)
&

1

ω(1− |In|)|In|2

and so

log+ |fn(z)| ≥ log+

{
(1− |an|)2ω(an) exp

{
<
(

(1− |an|)2+2γ

ω(an)(1− anz)4+2γ

)}}
≥ log+

{
ω(1− |In|)|In|2 exp

{
C

ω(1− |In|)|In|2

}}
.

Therefore,

log+

{
ω(1− |In|)|In|2 exp

{
C

ω(1− |In|)|In|2

}}
µω,ϕ(S(In))

≤
∫
S(In)

log+ |fn(z)|dµω,ϕ(z)

≤
∫
D

log+ |fn(ϕ(z))|ω(z)dA(z)

= ||Cϕfn||A0
ω
.
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By Lemma 2.5, the compactness of Cϕ : A0
ω → A0

ω forces ||Cϕfn||A0
ω
→ 0 as

n→∞. Thus we have that

lim
|In|→0

log+

{
ω(1− |In|)|In|2 exp

{
C

ω(1− |In|)|In|2

}}
µω,ϕ(S(In)) = 0.

But

lim
|In|→0

ω(1− |In|)|In|2 log+

{
ω(1− |In|)|In|2 exp

{
C

ω(1− |In|)|In|2

}}
= lim

t→∞

1

t
log+

{
1

t
exp{Ct}

}
= lim

t→∞

1

t

{
Ct− log t

}
= C > 0.

Therefore, it follows that

lim
|In|→0

µω,ϕ(S(In))

ω(1− |In|)|In|2
= 0.

Hence µω,ϕ is a vanishing ω-Carleson measure on D. �
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