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Abstract. Necessary and sufficient conditions for the zero solution of the
nonlinear neutral integro-differential equation

d

dt

(
r(t)

[
x(t) +Q(t, x(t− g1(t)), ..., x(t− gN (t)))

])
= −a(t)x(t) +

N∑
i=1

∫ t

t−gi(t)

ki(t, s)fi(x(s))ds

to be asymptotically stable are obtained. In the process we invert the integro-
differential equation and obtain an equivalent integral equation. The contrac-
tion mapping principle is used as the main mathematical tool for establishing
the necessary and sufficient conditions.

1. Introduction and preliminaries

Liapunov’s method is normally used to study the stability properties of the
zero solution of differential equations. Certain difficulties arise when Liapunov’s
method is applied to equations with unbounded delay or equations containing
unbounded terms [11], [15]. In [6], Burton and Furumochi began a study of
stability for ordinary and functional differential equations by means of fixed point
theory. They pointed out a number of difficulties encountered in the study of
stability by means of Liapunov’s direct method. They however noticed that
these difficulties frequently vanished when fixed point theory is used instead. In
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the paper they obtained sufficient conditions for the zero solution of the equation

x′(t) = −a(t)x(t) +
∫ t

t−r(t)
b(t, s)g(x(s))ds

to be asymptotically stable.
Raffoul in [15] however obtained sufficient conditions for the asymptotic stability
of the zero solution of the neutral delay equation

d

dt
x(t) = −a(t)x(t) + c(t)

d

dt
x(t− g(t)) +

∫ t

t−τ(t)
k(t, s)f(x(s))ds

using fixed point theory.
In the current paper, we obtain necessary and sufficient conditions for the

asymptotic stability of the zero solution of the multiple variable delay neutral
integro-differential equation

d

dt

(
r(t)

[
x(t) +Q(t, x(t− g1(t)), ..., x(t− gN(t)))

])
= −a(t)x(t) +

N∑
i=1

∫ t

t−gi(t)
ki(t, s)fi(x(s))ds, (1.1)

with the initial condition

x(t) = ψ(t) for t ∈ [m(t0), t0],

where ψ ∈ C([m(t0), t0],R) and for each t0 ≥ 0,

mj(t0) = inf{t− gj(t), t ≥ t0}, m(t0) = min{mj(t0), 1 ≤ j ≤ N}.
Neutral differential equations have many applications. For example, they arise in
the study of two or more simple oscillatory systems with some interconnections
between them [9] and in modeling physical problems such as vibration of masses
attached to an elastic bar [17]. Neutral equations also arises in food-limited
population models [8] and blood cell models [2]. We refer to [1–10], [12], [13],
[15], [18] and [19] for results on stability by fixed piont theory.

The notation C(S1, S2) denotes the set of all continuous functions ϕ : S1 → S2

with the supremum norm ||.||. We assume throughout this paper that a, r ∈
C(R+,R), Q ∈ C(R+ × R × ... × R,R), kj ∈ C(R+ × R+,R) gj ∈ C(R+,R+)
with t − gj(t) → ∞ as t → ∞. The function Q is globally Lipschitz continuous
in x1, x2, ..., xN and fj is also globally Lipschitz continuous in x. That is, there
are positive constants L1, L2, ..., LN and ρ1, ρ2, ..., ρN such that

|Q(t, x1, x2, ..., xN)−Q(t, y1, y2..., yN)| ≤
N∑
j=1

Lj||xj − yj|| (1.2)

and

|fi(x)− fi(y)| ≤ ρj||x− y||. (1.3)

Moreover, we assume that

fj(0) = 0, and Q(t, 0, 0, ..., 0) = 0. (1.4)
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The rest of the paper is organized as follows. In the next section we state and
prove our main result. An example is provided in the last section to illustrate
our result.

2. Main results

In this section, we state and prove our main results.

Theorem 2.1. Suppose (1.2), (1.3) and (1.4) hold. Suppose further that r(t) 6= 0
and there exists a constant α ∈ (0, 1) such that for t ≥ 0

lim
t→∞

inf

∫ t

0

r′(s) + a(s)

r(s)
ds > −∞, (2.1)

and
N∑
j=1

Lj +

∫ t

t0

(∣∣∣a(s)
r(s)

∣∣∣( N∑
j=1

Lj)

+
N∑
i=1

ρi

∫ s

s−gi(s)

∣∣∣ki(s, u)
r(s)

∣∣∣du)e− ∫ t
s

(
r′(u)+a(u)

r(u)
du

)
ds ≤ α. (2.2)

Then the zero solution of (1.1) is asymptotically stable if and only if∫ t

0

r′(s) + a(s)

r(s)
ds→∞ as t→∞. (2.3)

Proof. Suppose first that condition (2.3) hold. Set

K = sup
t≥0

{
e−

∫ t
s (

r′(u)+a(u)
r(u)

du)
}
, for t0 ≥ 0. (2.4)

Let the initial function ψ ∈ C([m(t0), t0],R) be fixed and define

S =
{
ϕ ∈ C([m(t0),∞),R) : ϕ(t)→ 0 as t→∞, ϕ(t) = ψ(t) for t ∈ [m(t0), t0]

}
.

We will first show that the set S endowed with the metric d(x, y) = supt≥t0{|x(t)−
y(t)|} is a complete metric space. In view of the fact that for every ϕ ∈ S we
have that ϕ → 0 as t → ∞, the functions in S are bounded. Thus, S is a set
of bounded functions. We need to show that every Cauchy sequence {xn} of S
converges to a bounded function in S.

Given a Cauchy sequence of bounded continuous functions {xn} in S, take
some τ ∈ [m(t0),∞) and consider the sequence of real numbers {xn(τ)}. Given
any positive integers m and n, we have

|xm(τ)− xn(τ)| ≤ sup{|xm(t)− xn(t)|; t ∈ [m(t0),∞)} ≡ d(xm, xn). (2.5)

Due to the fact that {xn} is a Cauchy sequence, by choosing m and n high
enough we can make |xm(τ)− xn(τ)| arbitrarily small for any τ . Hence, {xn(τ)}
is a Cauchy sequence of real numbers for any τ and because R is complete with
the usual metric, {xn(τ)} converges to some (finite) real limit, say x(τ). Next,
we establish that the function x is bounded and continuous. To this end we fix
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an arbitrary point τ in [m(t0),∞) and some ε > 0. Because {xn} → x, there
exists a positive integer N1 such that d(x, xn) < ε

3
for all n > N1. Hence,

|xn(τ)− x(τ)| ≤ sup
t
{|x(t)− xn(t)|} ≡ d(x, xn) <

ε

3
(2.6)

for any t and all n > N1. Moreover, because xn is continuous, there is some
δ1 > 0 such that for the given τ ,

|xn(τ)− xn(t)| <
ε

3
for all t such that |τ − t| < δ1. (2.7)

Thus, choosing n > N1, we have

|x(τ)− x(t)| ≤ |x(τ)− xn(τ)|+ |xn(τ)− xn(t)|+ |xn(t)− x(t)|
≤ d(x, xn) + |xn(τ)− xn(t)|+ d(x, xn) < ε. (2.8)

Finally, we show that d(x, xn)→ 0 as n→∞. Now we fix some ε > 0 and observe
that because {xn} is Cauchy, there is some N2 such that

d(xn, xm) <
ε

2
for all m,n > N2. (2.9)

It follows from (2.9) and the triangle inequality that given any t in [m(t0),∞) we
have

|xn(τ)− x(τ)| ≤ |xn(τ)− xm(τ)|+ |xm(τ)− x(τ)|
≤ d(xn, xm) + |xm(τ)− x(τ)|

<
ε

2
+ |xm(τ)− x(τ)|, (2.10)

for all m,n > N2. Moreover, because {xm(τ)} → x(τ), we can choose m so that
|xm(τ)− x(τ)| < ε

2
. Hence, N2 is such that given any n > N2,

|xn(τ)− x(τ)| < ε for all τ in [m(t0),∞).

Thus, for n sufficiently high, ε is an upper bound for {|xn(τ) − x(τ)|; τ ∈
[m(t0),∞)}, and because d(xn, x) is the smallest such upper bound, we con-
clude that d(xn, x) ≤ ε for all n > N2, that is, {xn} → x. Thus, showing that
(S, d) is a complete metric space.

To obtain an appropriate map, we proceed as follows. Rewrite (1.1) as

d

dt

(
x(t) +Q(t, x(t− g1(t)), ..., x(t− gN(t))))

)
= −r

′(t) + a(t)

r(t)
(x(t) +Q(t, x(t− g1(t)), ..., x(t− gN(t)))) (2.11)

+
1

r(t)

[
a(t)Q(t, x(t− g1(t)), ..., x(t− gN(t)))

+
N∑
i=1

∫ t

t−gi(t)
ki(t, s)fi(x(s))ds

]
.
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Multiplying through (2.11) by exp(
∫ t
0

(
r′(s)+a(s)

r(s)
ds
)
gives

[(
x(t) +Q(t, x(t− g1(t)), ..., x(t− gN(t))))

)
e

∫ t
0

(
r′(s)+a(s)

r(s)
ds

)]′
=

1

r(t)

[
a(t)Q(t, x(t− g1(t)), ..., x(t− gN(t))))

+
N∑
i=1

∫ t

t−gi(t)
ki(t, s)fi(x(s))ds

]
e

∫ t
0

(
r′(s)+a(s)

r(s)
ds

)
.

(2.12)

Integrating (2.12) from t0 to t gives

x(t) = [x(t0)−Q(t0, x(t0 − g1(t0)), ..., x(t0 − gN(t0)))]e
−

∫ t
0

(
r′(s)+a(s)

r(s)
ds

)
− Q(t, x(t− g1(t)), ..., x(t− gN(t))))

+

∫ t

t0

1

r(s)

[
a(s)Q(s, x(s− g1(s)), ..., x(s− gN(s))))

+
N∑
i=1

∫ s

s−gi(s)
ki(s, u)fi(x(u))du

]
e
−

∫ t
s

(
r′(u)+a(u)

r(u)
ds

)
ds. (2.13)

Thus, we define the operator P : S → S by (Pϕ)(t) = ψ(t) for t ∈ [m(t0), t0] and

(Pϕ)(t) = [ψ(t0)−Q(t0, x(t0 − g1(t0)), ..., x(t0 − gN(t0)))]e
−

∫ t
0

(
r′(s)+a(s)

r(s)
ds

)
− Q(t, x(t− g1(t)), ..., x(t− gN(t)))) (2.14)

+

∫ t

t0

1

r(s)

[
a(s)Q(s, x(s− g1(s)), ..., x(s− gN(s))))

+
N∑
i=1

∫ s

s−gi(s)
ki(s, u)fi(x(u))du

]
e
−

∫ t
s

(
r′(u)+a(u)

r(u)
ds

)
ds for t ≥ t0.

It is not difficult to see that (Pϕ)(t) is continuous. We next show that (Pϕ)(t)→
0 as t→∞. The first term on the right hand side of (2.14) goes to zero because
of condition (2.1). Since t− gj(t) → ∞, j = 1, 2, ..., N , as t → ∞ , and the fact
that ϕ ∈ S, Q(t, ϕ(t − g1(t)), ..., ϕ(t − gN(t))) → Q(t, 0, ..., 0) as t → ∞. Thus,
showing that the second term on the right hand side of (2.14) goes to zero as
t→∞.

Now we show that the last term on the right hand side of (2.14) goes to zero
as t→∞. Since ϕ(t)→ 0 and t−gj(t), j = 1, 2, ..., N , as t→∞, for each ε1 > 0,
there exists a T1 > t0 such that s ≥ T1 implies |ϕ(s− gj(t))| < ε1 for j = 1, ..., N.
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Thus for t ≥ T1, the last term, I3 in (2.14) satisfies

|I3| =
∣∣∣ ∫ t

t0

1

r(s)

[
a(s)Q(s, x(s− g1(s)), ..., x(s− gN(s))))

+
N∑
i=1

∫ s

s−gi(s)
ki(s, u)fi(x(u))du

]
e
−

∫ t
s

(
r′(u)+a(u)

r(u)
ds

)
ds
∣∣∣

≤
∫ T1

t0

| 1

r(s)
|
[
|a(s)||Q(s, x(s− g1(s)), ..., x(s− gN(s))))|

+ |
N∑
i=1

∫ s

s−gi(s)
ki(s, u)fi(x(u))du|

]
e
−

∫ t
s

(
r′(u)+a(u)

r(u)
ds

)
ds

+

∫ t

T1

| 1

r(s)
|
[
|a(s)||Q(s, x(s− g1(s)), ..., x(s− gN(s))))|

+ |
N∑
i=1

∫ s

s−gi(s)
ki(s, u)fi(x(u))du|

]
e
−

∫ t
s

(
r′(u)+a(u)

r(u)
ds

)
ds ≤

sup
σ≥m(t0)

|ϕ(σ)|

×
∫ T1

t0

1

|r(s)|

(
|a(s)|(

N∑
j=1

Lj) +
N∑
i=1

ρi

∫ s

s−gi(s)
|ki(s, u)|du

)
e
−

∫ t
s

(
r′(u)+a(u)

r(u)
du

)
ds

+ε1

∫ t

T1

1

|r(s)|

(
|a(s)|(

N∑
j=1

Lj) +
N∑
i=1

ρi

∫ s

s−gi(s)
|ki(s, u)|du

)
e
−

∫ t
s

(
r′(u)+a(u)

r(u)
du

)
ds

≤ ε1 + αε1 < 2ε1.

Thus, showing that I3 → 0 as t→∞. This yields (Pϕ)(t)→ 0 as t→∞, and
hence Pϕ ∈ S. We next show that P is a contraction. To this end, let ϕ, η ∈ S.
Then

|(Pϕ)(t)− (Pη)(t)| ≤
( N∑
j=1

Lj +

∫ t

t0

1

|r(s)|

(
|a(s)|(

N∑
j=1

Lj)

+
N∑
i=1

ρi

∫ s

s−gi(s)
|ki(s, u)|du

)
e
−

∫ t
s

(
r′(u)+a(u)

r(u)
du

)
ds
)

×‖ϕ− η‖
≤ α‖ϕ− η‖.

Thus, by the contraction mapping principle, P has a unique fixed point x in S
which is a solution of (1.1) with x(t) = ψ(t) on [m(t0), t0] and x(t) = x(t, t0, ψ)→
0 as t→∞.

For the zero solution of (1.1) to be asymptotically stable, we need to show that
the zero solution of (1.1) is stable. To accomplish this, let ε > 0 be given and
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choose δ > 0 (δ < ε) satisfying 2δKe

∫ t0
0

(
r′(u)+a(u)

r(u)
ds

)
+ αε < ε. If x(t) = x(t, t0, ψ)

is a solution of (1.1) with ||ψ|| < δ, then x(t) = (Px)(t) defined by (2.14). We
claim that |x(t)| < ε for all t > t0. Observe that |x(s)| < ε on [m(t0), t0]. If there
exists t∗ > t0 such that |x(t∗)| = ε and |x(s)| < ε for m(t0) ≤ s < t∗, then it
follows from (2.14) that

|x(t∗)| ≤ ||ψ||[1 +
N∑
j=1

Lj]e
−

∫ t∗
0

(
r′(s)+a(s)

r(s)
ds

)
+ ε

N∑
j=1

Lj

+ ε

∫ t∗

t0

| 1

|r(s)|

(
|a(s)|(

N∑
j=1

Lj) +
N∑
i=1

ρi

∫ s

s−gi(s)
|ki(s, u)|du

)

× e
−

∫ t
s

(
r′(u)+a(u)

r(u)
ds

)
ds

≤ 2δKe

∫ t0
0

(
r′(u)+a(u)

r(u)
ds

)
+ αε < ε, (2.15)

which contradicts the definition of t∗. Thus, |x(t)| < ε for all t ≥ t0, and the
zero solution of (1.1) is stable. This shows that the zero solution of (1.1) is
asymptotically stable if (2.3) holds.

Conversely, suppose (2.3) fails. Then by (2.1) there exists a sequence {tn},
tn →∞ as n→∞ such that limn→∞

∫ tn
0

r′(s)+a(s)
r(s)

ds = l for some l ∈ R. We may
also choose a positive constant J satisfying

−J ≤
∫ tn

0

r′(s) + a(s)

r(s)
ds ≤ J,

for all n ≥ 1. But, in view of condition (2.2) we have∫ tn

0

1

|r(s)|

(
|a(s)|(

N∑
j=1

Lj)

+
N∑
i=1

ρi

∫ s

s−gi(s)
|ki(s, u)|du

)
e
−

∫ t
s

(
r′(u)+a(u)

r(u)
du

)
ds ≤ α.

This yields∫ tn

0

1

|r(s)|

(
|a(s)|(

N∑
j=1

Lj)

+
N∑
i=1

ρi

∫ s

s−gi(s)
|ki(s, u)|du

)
e

∫ s
0

(
r′(u)+a(u)

r(u)
du

)
ds ≤ αe

∫ tn
0

(
r′(u)+a(u)

r(u)
du
)
≤ eJ .

Thus, the sequence{∫ tn

0

1

|r(s)|

(
|a(s)|(

N∑
j=1

Lj) +
N∑
i=1

ρi

∫ s

s−gi(s)
|ki(s, u)|du

)
e

∫ s
0

(
r′(u)+a(u)

r(u)
du

)
ds
}
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is bounded, so there exists a convergent subsequence. Suppose

lim
n→∞

∫ tn

0

1

|r(s)|

(
|a(s)|(

N∑
j=1

Lj)

+
N∑
i=1

ρi

∫ s

s−gi(s)
|ki(s, u)|du

)
e

∫ s
0

(
r′(u)+a(u)

r(u)
du

)
ds = µ,

for some µ ∈ R+ and choose a positive integer i so large that∫ tn

ti

1

|r(s)|

(
|a(s)|(

N∑
j=1

Lj)

+
N∑
i=1

ρi

∫ s

s−gi(s)
|ki(s, u)|du

)
e

∫ s
0

(
r′(u)+a(u)

r(u)
du

)
ds < δ0/4K

for all n ≥ i, where δ0 > 0 satisfies 4δ0KeJ + α < 1. Now, consider the solution
x(t) = x(t, ti, ψ) of (1.1) with ψ(ti) = δ0 and |ψ(s)| ≤ δ0 for s ≤ ti. A reasoning
similar to that in (2.15) gives |x(t)| ≤ 1 for t ≥ ti. We may choose ψ so that

ψ(ti)−Q(ti, ψ(ti − g1(ti)), ..., ψ(ti − gN(ti))) ≥
1

2
δ0. (2.16)

It follows from (2.14) with x(t) = (Px)(t) that for n ≥ ti,∣∣∣x(tn)−Q(tn, x(tn − g1(tn)), ..., x(tn − gN(tn)))∣∣∣
≥ 1

2
δ0e
−

∫ tn
ti

(
r′(u)+a(u)

r(u)
du

)
ds

−
∫ tn

ti

1

|r(s)|

(
|a(s)|(

N∑
j=1

Lj) +
N∑
i=1

ρi

∫ s

s−gi(s)
|ki(s, u)|du

)
e
−

∫ tn
s

(
r′(u)+a(u)

r(u)
du

)
ds

=
1

2
δ0e
−

∫ tn
ti

(
r′(u)+a(u)

r(u)
du

)

− e
−

∫ tn
0

(
r′(u)+a(u)

r(u)
du

) ∫ tn

ti

1

|r(s)|

(
|a(s)|(

N∑
j=1

Lj) +
N∑
i=1

ρi

∫ s

s−gi(s)
|ki(s, u)|du

)

× e

∫ s
0

(
r′(u)+a(u)

r(u)
du

)
ds

= e
−

∫ tn
ti

(
r′(u)+a(u)

r(u)
du

)[1
2
δ0 − e

−
∫ ti
0

(
r′(u)+a(u)

r(u)
du

)

×
∫ tn

ti

1

|r(s)|

(
|a(s)|(

N∑
j=1

Lj) +
N∑
i=1

ρi

∫ s

s−gi(s)
|ki(s, u)|du

)
e

∫ s
0

(
r′(u)+a(u)

r(u)
du

)
ds
]

≥ e
−

∫ tn
ti

(
r′(u)+a(u)

r(u)
du

)[1
2
δ0
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−K
∫ tn

ti

1

|r(s)|

(
|a(s)|(

N∑
j=1

Lj) +
N∑
i=1

ρi

∫ s

s−gi(s)
|ki(s, u)|du

)
e

∫ s
0

(
r′(u)+a(u)

r(u)
du

)
ds
]

≥ 1

4
δ0e
−

∫ tn
ti

(
r′(u)+a(u)

r(u)
du

)
≥ 1

4
δ0e
−2J > 0. (2.17)

On the other hand, if the zero solution of (1.1) is asymptotically stable, then
x(t) = x(t, ti, ψ)→ 0 as t→∞. Since tn − g(t)→∞ as n→∞ and (2.2) holds,
we have

x(tn)−Q(tn, x(tn − g1(tn)), ..., x(tn − gN(tn)))→ 0 as t→∞,

which contradicts (2.17). Hence, condition (2.3) is necessary for the asymptotic
stability of the zero solution of (1.1). �

3. Example

In this section we provide an example to illustrate our main result. Consider
the equation

d

dt

(
(t2 + t+ 1)

[
x(t) +

1

200
x(t− t

3
) +

1

400
x(t− t

2
)
])

(3.1)

= −(2t+ 1)x(t) +

∫ t

t− t
2

2

(t2 + t+ 1)2
f1(x(s))ds

+

∫ t

t− t
3

1 + 2s

( t
3
+ 5t2

9
)(t2 + t+ 1)

f2(x(s))ds

where

f1(x(t)) =
1

50
x(t) and f2(x(t)) =

1

100
x(t).

Thus, ∫ t

0

r′(s) + a(s)

r(s)
ds =

∫ t

0

2(2s+ 1)

s2 + s+ 1
ds

= 2 ln(t2 + t+ 1)→∞ as t→∞.

Also,

lim
t→∞

inf
(
2 ln(t2 + t+ 1)

)
> −∞,

Moreover,

e
−

∫ t
s

(
r′(u)+a(u)

r(u)
du

)
=

(s2 + s+ 1)2

(t2 + t+ 1)2
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Thus, ∫ t

t0

∣∣∣a(s)
r(s)

∣∣∣( N∑
j=1

Lj)e
−

∫ t
s

(
r′(u)+a(u)

r(u)
du

)
ds

=
3

400(t2 + t+ 1)2

∫ t

0

(2s+ 1)(s2 + s+ 1)ds ≤ 3

400

ρ1

∫ t

t0

(∫ s

s−g1(s)

∣∣∣k1(s, u)
r(s)

∣∣∣du)e− ∫ t
s

(
r′(u)+a(u)

r(u)
du

)
ds

≤ 2

50(t2 + t+ 1)2

∫ t

0

∫ s

s− s
2

duds ≤ 2

50

and

ρ2

∫ t

t0

(∫ s

s−g1(s)

∣∣∣k2(s, u)
r(s)

∣∣∣du)e− ∫ t
s

(
r′(u)+a(u)

r(u)
du

)
ds

≤ 1

100(t2 + t+ 1)2

∫ t

0

∫ s

s− s
3

1 + 2u

( s
3
+ 5s2

9
)
duds ≤ 1

100
.

It therefore follows that
N∑
j=1

Lj +

∫ t

t0

(∣∣∣a(s)
r(s)

∣∣∣( N∑
j=1

Lj)

+
N∑
i=1

ρi

∫ s

s−gi(s)

∣∣∣ki(s, u)
r(s)

∣∣∣du)e− ∫ t
s

(
r′(u)+a(u)

r(u)
du

)
ds

≤ 26

400
< 1.

Hence, all the conditions in Theorem 2.1 are satisfied. Therefore, the zero solution
of equation (3.1) is asymptotically stable.
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