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PROXIMAL POINT ALGORITHMS FOR NUMERICAL
RECKONING FIXED POINTS OF HYBRID-TYPE
MULTIVALUED MAPPINGS IN HILBERT SPACES

KRITSADA LERKCHAIYAPHUM1 and WITHUN PHUENGRATTANA1,2∗

Communicated by M. Ito

Abstract. In this paper, we propose a new iteration process to approximate
minimizers of proper convex and lower semi-continuous functions and fixed
points of λ-hybrid multivalued mappings in Hilbert spaces. We also provide
an example to illustrate the convergence behavior of the proposed iteration
process and numerically compare the convergence of the proposed iteration
scheme with the existing schemes.

1. Introduction and basic definitions

Let H be a real Hilbert space and C be a nonempty subset of H. Let CB(C)
and K(C) denote the families of nonempty closed bounded subsets and nonempty
compact subsets of C, respectively. The Pompeiu-Hausdorff metric on CB(C) is
defined by

H(A,B) = max

{
sup
x∈A

dist(x,B), sup
y∈B

dist(y, A)

}
for A,B ∈ CB(C),

where dist(x,C) = inf{‖x− y‖ : y ∈ C}. An element x ∈ C is called a fixed point
of a multivalued mapping T : C → CB(C) if x ∈ Tx. The set of fixed points of
T is denoted by F (T ).

Recall that a multivalued mapping T : C → CB(C) is said to be

• nonexpansive if

H(Tx, Ty) ≤ ‖x− y‖, ∀x, y ∈ C;
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• nonspreading [17] if

2H(Tx, Ty)2 ≤ dist(y, Tx)2 + dist(x, Ty)2, ∀x, y ∈ C;

• λ-hybrid [18] if there exists λ ∈ R such that

(1 +λ)H(Tx, Ty)2 ≤ (1−λ)‖x− y‖2 +λ dist(y, Tx)2 +λ dist(x, Ty)2, ∀x, y ∈ C.
We note that 0-hybrid is nonexpansive and 1-hybrid is nonspreading. It is known
by [18] that if T is λ-hybrid, then F (T ) is closed. In addition, if T satisfies the
condition: Tp = {p} for all p ∈ F (T ), then F (T ) is also convex.

We now give two examples for the class of λ-hybrid multivalued mappings.

Example 1.1 ([18]). Let C = [1, 7] with the usual metric and T : C → CB(C)
be the multivalued mapping defined by

Tx =


{1}, x ∈ [1, 4];[
1,

2x2 + 1

x2 + 1

]
, x ∈ (4, 7].

It is easy to show that T is λ-hybrid for λ ∈ [1
2
, 1] but it is not nonexpansive.

Example 1.2 ([7]). Let C = [−3, 0] with the usual metric and T : C → CB(C)
be the multivalued mapping defined by

Tx =

{
{0}, x ∈ [−2, 0];

[−ex+2, 0] , x ∈ [−3,−2).

It is easy to show that T is 1-hybrid but it is not nonexpansive.

Let g : H → (−∞,∞] be a proper and convex function. One of the major
problems for optimization is to find a point x ∈ H such that

g(x) = min
y∈H

g(y).

We denote the set of all minimizers of g on H by argminy∈Hg(y).
The proximal point algorithm (shortly, the PPA) is an important tool in solv-

ing optimization problem which was initiated by Martinet [14] in 1970. Later,
Rockafellar [16] studied the convergence of PPA for finding a solution of the un-
constrained convex minimization problem in H as follows. Let g be a proper,
convex and lower semi-continuous function on H. The PPA is defined by x1 ∈ H
and

xn+1 = argmin
u∈H

[
g(y) +

1

2λn
‖u− xn‖2

]
, ∀n ≥ 1,

where λn > 0 for all n ≥ 1. It was shown that if g has a minimizer and
∑∞

n=1 λn =
∞, then the sequence {xn} converges weakly to a minimizer of g. However, PPA
does not necessarily converges strongly in general (see [9]). Recently, several
authors proposed modifications of Rochafellar’s PPA to have strong convergence,
for example [11, 12].

In the recent years, the problem of finding a common element of the set of
solutions of various convex minimization problems and the set of fixed points for
a single-valued mapping in the framework of Hilbert spaces and Banach spaces
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have been intensively studied by many authors, for instance, see [3, 4, 9, 13] and
the references therein.

Recently, Chang et al. [6] combined PPA with Ishikawa iteration process (called
PPA-Ishikawa iteration process) {xn} which is given by

yn = argmin
u∈C

[
g(u) +

1

2λn
‖u− xn‖2

]
,

zn = (1− βn)xn + βnwn, wn ∈ Tyn,
xn+1 = (1− αn)xn + αnvn, vn ∈ Tzn, ∀n ≥ 1,

(1.1)

where {αn}, {βn} are sequences in [0, 1], C is a nonempty closed convex subset of a
Hilbert space H, g : C → (−∞,∞] is a proper convex and lower semi-continuous
function, and T : C → K(C) is a nonspreading multivalued mapping. By using
the iteration process (1.1), they proved weak convergence and strong convergence
theorems for minimizers of proper convex and lower semi-continuous functions
and fixed points of nonspreading multivalued mappings in Hilbert spaces.

In 2007, Agarwal et al. [1] introduced the S-iteration process for finding a fixed
point of single-valued nonlinear mappings in Banach spaces. They also showed,
theoretically as well as numerically, that the S-iteration process is faster than the
Ishikawa iteration process for some nonlinear mappings.

Motivated by the above recorded studies, in this work, we propose a new itera-
tion process called PPA-S-iteration which is a modification of PPA and S-iteration
process. We prove weak convergence theorems for the proposed iteration process
for minimizers of proper convex and lower semi-continuous functions and fixed
points of λ-hybrid multivalued mappings in Hilbert spaces. Our results are re-
finements and generalizations of many recent results from the current literature.
We also provide numerical examples to illustrate the convergence behavior of the
proposed algorithm.

2. Some useful lemmas

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. We
denote the strong convergence and the weak convergence of the sequence {xn} to
a point x ∈ H by xn → x and xn ⇀ x, respectively. It is known in [15] that a
Hilbert space H satisfies Opial’s condition, that is, for any sequence {xn} with
xn ⇀ x, the inequality

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖

holds for every y ∈ H with y 6= x.
Let g : H → (−∞,∞] be a proper convex and lower semi-continuous function.

For any λ > 0, define the Moreau-Yosida resolvent of g in a real Hilbert space H
as follows:

Jλx = argmin
u∈H

[
g(u) +

1

2λ
‖u− x‖2

]
,

for all x ∈ H. It was shown in [9] that the set of fixed points of the resolvent
associated with g coincides with the set of minimizers of g. Also, the resolvent
Jλ of g is nonexpansive for all λ > 0 (see [10]).
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Lemma 2.1 (The resolvent identity, [10]). Let H be a real Hilbert space and
g : H → (−∞,∞] be a proper convex and lower semi-continuous function. For
each x ∈ H and λ > µ > 0, the following identity holds:

Jλx = Jµ

(
λ− µ
λ

Jλx+
µ

λ
x

)
.

Lemma 2.2 (Sub-differential inequality, [2]). Let H be a real Hilbert space and
g : H → (−∞,∞] be a proper convex and lower semi-continuous function. Then,
for all x, y ∈ H and λ > 0, the following sub-differential inequality holds:

1

2λ
‖Jλx− y‖2 −

1

2λ
‖x− y‖2 +

1

2λ
‖x− Jλx‖2 ≤ g(y)− g(Jλx). (2.1)

In order to prove our main results, we need the following lemmas.

Lemma 2.3 ([5]). Let C be a nonempty closed convex subset of a real Hilbert
space H and T : C → C be a nonexpansive single-valued mapping. If {xn} is a
sequence in C such that xn ⇀ x with xn − Txn → 0, then x = Tx.

Lemma 2.4 ([18]). Let C be a nonempty closed convex subset of a real Hilbert
space H and T : C → K(C) be a λ-hybrid multivalued mapping. If {xn} is a
sequence in C such that xn ⇀ x and yn ∈ Txn with xn − yn → 0, then x ∈ Tx.

3. Weak convergence theorems

In this section, we prove some weak convergence theorem for minimizers of
proper convex and lower semi-continuous functions and fixed points of λ-hybrid
multivalued mappings in Hilbert spaces.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T : C → K(C) be a λ-hybrid multivalued mapping and g : C → (−∞,∞]
be a proper convex and lower semi-continuous function. Suppose that F = F (T )∩
argminu∈Cg(u) is nonempty and Tq = {q} for all q ∈ F (T ). For x1 ∈ C, let the
PPA-S-iteration process {xn} be defined by

yn = argmin
u∈C

[
g(u) +

1

2λn
‖u− xn‖2

]
,

zn = (1− βn)xn + βnwn, wn ∈ Tyn,
xn+1 = (1− αn)wn + αnvn, vn ∈ Tzn, ∀n ≥ 1,

(3.1)

where {αn}, {βn} are sequences in [0, 1] such that 0 < a ≤ αn, βn ≤ b < 1 for all
n ≥ 1, and {λn} is a sequence such that λn ≥ λ > 0 for all n ≥ 1 and some λ.
Then the sequence {xn} converges weakly to an element of F .

Proof. Let q ∈ F . Then we have q ∈ Tq and g(q) ≤ g(u) for all u ∈ C. It follows
that

g(q) +
1

2λn
‖q − q‖2 ≤ g(u) +

1

2λn
‖u− q‖2, ∀u ∈ C,

and hence q = Jλnq for all n ≥ 1. Since yn = Jλnxn, it implies by nonexpansive-
ness of Jλn that

‖yn − q‖ = ‖Jλnxn − Jλnq‖ ≤ ‖xn − q‖. (3.2)
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For q ∈ F , by Tq = {q}, we obtain that

‖zn − q‖ ≤ (1− βn)‖xn − q‖+ βn‖wn − q‖
= (1− βn)‖xn − q‖+ βndist(wn, T q)

≤ (1− βn)‖xn − q‖+ βnH(Tyn, T q)

≤ (1− βn)‖xn − q‖+ βn‖yn − q‖
≤ ‖xn − q‖. (3.3)

By (3.2) and (3.3), we have

‖xn+1 − q‖ ≤ (1− αn)‖wn − q‖+ αn‖vn − q‖
= (1− αn)dist(wn, T q) + αndist(vn, T q)

≤ (1− αn)H(Tyn, T q) + αnH(Tzn, T q)

≤ (1− αn)‖yn − q‖+ αn‖zn − q‖ (3.4)

≤ ‖xn − q‖.
This implies that {‖xn−q‖} is decreasing and bounded below, thus limn→∞ ‖xn−
q‖ exists for all q ∈ F . Without loss of generality, we can assume that

lim
n→∞

‖xn − q‖ = d for some d. (3.5)

It follows by (3.2) and (3.4) that

‖xn+1 − q‖ ≤ (1− αn)‖xn − q‖+ αn‖zn − q‖.
By simplifying we have

‖xn − q‖ ≤
1

αn
(‖xn − q‖ − ‖xn+1 − q‖) + ‖zn − q‖

≤ 1

a
(‖xn − q‖ − ‖xn+1 − q‖) + ‖zn − q‖.

This implies that

d = lim inf
n→∞

‖xn − q‖ ≤ lim inf
n→∞

‖zn − q‖. (3.6)

It follows from (3.3) and (3.5) that

lim sup
n→∞

‖zn − q‖ ≤ lim sup
n→∞

‖xn − q‖ = d.

This together with (3.8) shows that

lim
n→∞

‖zn − q‖ = d. (3.7)

Also, by (3.3), we get

‖zn − q‖ ≤ (1− βn)‖xn − q‖+ βn‖yn − q‖,
which can be rewritten as

‖xn − q‖ ≤
1

βn
(‖xn − q‖ − ‖zn − q‖) + ‖yn − q‖

≤ 1

a
(‖xn − q‖ − ‖zn − q‖) + ‖yn − q‖.
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This implies by (3.5) and (3.7) that

d = lim inf
n→∞

‖xn − q‖ ≤ lim inf
n→∞

‖yn − q‖. (3.8)

From (3.2) and (3.5), we have

lim sup
n→∞

‖yn − q‖ ≤ lim sup
n→∞

‖xn − q‖ = d.

This together with (3.8) shows that

lim
n→∞

‖yn − q‖ = d. (3.9)

By the sub-differential inequality (2.1), we have

1

2λn
‖yn − q‖2 −

1

2λn
‖xn − q‖2 +

1

2λn
‖xn − yn‖2 ≤ g(q)− g(yn).

Since g(q) ≤ g(yn) for all n ≥ 1, we have

‖xn − yn‖2 ≤ ‖xn − q‖2 − ‖yn − q‖2.

It implies by (3.5) and (3.9) that

lim
n→∞

‖xn − yn‖ = 0. (3.10)

Since T is λ-hybrid, q ∈ Tq, and Tq = {q}, it follows from (3.1) that

‖zn − q‖2 = (1− βn)‖xn − q‖2 + βn‖wn − q‖2 − βn(1− βn)‖xn − wn‖2

= (1− βn)‖xn − q‖2 + βndist(wn, T q)
2 − βn(1− βn)‖xn − wn‖2

≤ (1− βn)‖xn − q‖2 + βnH(Tyn, T q)
2 − βn(1− βn)‖xn − wn‖2

≤ (1− βn)‖xn − q‖2 + βn‖yn − q‖2 − βn(1− βn)‖xn − wn‖2

≤ ‖xn − q‖2 − βn(1− βn)‖xn − wn‖2.

This implies that

βn(1− βn)‖xn − wn‖2 ≤ ‖xn − q‖2 − ‖zn − q‖2.

Thus, by (3.5), (3.7), and the condition 0 < a ≤ αn, βn ≤ b < 1, we have

lim
n→∞

‖xn − wn‖ = 0. (3.11)

Since ‖yn − wn‖ ≤ ‖yn − xn‖+ ‖xn − wn‖, it implies by (3.10) and (3.11) that

lim
n→∞

‖yn − wn‖ = 0. (3.12)



PROXIMAL POINT ALGORITHMS OF HYBRID-TYPE MULTIVALUED MAPPINGS 87

It follows from Lemma 2.1, nonexpansiveness of Jλ, and λn ≥ λ > 0 that

‖xn − Jλxn‖ ≤ ‖xn − yn‖+ ‖yn − Jλxn‖
= ‖xn − yn‖+ ‖Jλnxn − Jλxn‖

= ‖xn − yn‖+

∥∥∥∥Jλ(λn − λλn
Jλnxn +

λ

λn
xn

)
− Jλxn

∥∥∥∥
≤ ‖xn − yn‖+

∥∥∥∥(λn − λλn

)
Jλnxn +

λ

λn
xn − xn

∥∥∥∥
= ‖xn − yn‖+

(
1− λ

λn

)
‖Jλnxn − xn‖

= ‖xn − yn‖+

(
1− λ

λn

)
‖yn − xn‖

=

(
2− λ

λn

)
‖xn − yn‖.

This together with (3.10) shows that

lim
n→∞

‖xn − Jλxn‖ = 0. (3.13)

Since {xn} is bounded, there exists a subsequence {xni
} of {xn} such that xni

⇀
q1 ∈ C. By (3.10), it implies that yni

⇀ q1. This implies by (3.12) and Lemma
2.4 that q1 ∈ F (T ). Since Jλ is a nonexpansive single-valued mapping, by (3.13)
and Lemma 2.3, we get q1 ∈ F (Jλ) = argminu∈Cg(u). Hence, we have q1 ∈ F . We
will show that xn ⇀ q1. To show this, suppose not. So, there exists a subsequence
{xnj
} of {xn} such that xnj

⇀ q2 ∈ C and q2 6= q1. Again, as above, we can
conclude that q2 ∈ F . Since limn→∞ ‖xn − p‖ exists for all p ∈ F , by the Opial’s
condition, we have

lim sup
i→∞

‖xni
− q1‖ < lim sup

i→∞
‖xni

− q2‖ = lim
n→∞

‖xn − q2‖

= lim sup
j→∞

‖xnj
− q2‖ < lim sup

j→∞
‖xnj

− q1‖

= lim
n→∞

‖xn − q1‖ = lim sup
i→∞

‖xni
− q1‖.

This is a contradiction. Therefore, q1 = q2 and so {xn} converges weakly to an
element of F . �

Recall that a multivalued mapping T : C ⊆ H → CB(C) is said to satisfy
Condition (A) if ‖x− p‖ = dist(x, Tp) for all x ∈ H and p ∈ F (T ) (see [17]). We
see that T satisfies Condition (A) if and only if Tp = {p} for all p ∈ F (T ). Then
the following result can be obtained from Theorem 3.1 immediately.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T : C → K(C) be a λ-hybrid multivalued mapping and g : C → (−∞,∞]
be a proper convex and lower semi-continuous function. Suppose that F = F (T )∩
argminu∈Cg(u) is nonempty and T satisfies Condition (A). For x1 ∈ C, let the
PPA-S-iteration process {xn} be defined by (3.1) where {αn}, {βn} are sequences
in [0, 1] such that 0 < a ≤ αn, βn ≤ b < 1 for all n ≥ 1, and {λn} is a sequence
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such that λn ≥ λ > 0 for all n ≥ 1 and some λ. Then the sequence {xn} converges
weakly to an element of F .

Remark 3.3. It is know that the class of λ-hybrid multivalued mappings contains
the classes of nonexpansive multivalued mappings and nonspreading multival-
ued mappings. Thus, Theorems 3.1 and 3.2 can be applied to these classes of
mappings.

4. Numerical example

In this section, using Example 4.1, we will compare the convergence of the
PPA-S-iteration process (3.1) with the PPA-Ishikawa iteration process (1.1).

Example 4.1. Let H = R and C = [1, 7]. For each x ∈ C, we define g : C →
(−∞,∞] by g(x) = 1

2
‖x− 1‖2 and define a mapping T : C → K(C) by

Tx =


{1}, x ∈ [1, 4];[
1,

2x2 + 1

x2 + 1

]
, x ∈ (4, 7].

It is easy to check that T is λ-hybrid for λ ∈ [1
2
, 1] and g is proper convex and

lower semi-continuous with F (T ) ∩ argminu∈Cg(u) = {1}. Using the proximity
operator [8], we know that

argmin
u∈C

[
g(u) +

1

2
‖u− x‖2

]
= proxgx =

x+ 1

2
.

We choose wn = 2y2n+1
y2n+1

∈ Tyn, vn = 2z2n+1
z2n+1

∈ Tzn, αn = n
2n+1

, and βn = 5n
50n+1

for all n ≥ 1. By using SciLab, we computed the iterates of (1.1) and (3.1)
for the initial point x1 = 7. The numerical experiments of all iterations for
approximating the point 1 are given in Table 1.

Table 1. Iterates of PPA-S-iteration process and PPA-Ishikawa
iteration process for x1 = 7.

Iterate The PPA-S-iteration The PPA-Ishikawa
process iteration process

x1 7.0000000 7.0000000

x2 1.3254177 5.3254177

x3 1.0000000 3.9792392

x4 1.0000000 2.7024224

x5 1.0000000 1.9457902
...

...
...

x26 1.0000000 1.0000010

x27 1.0000000 1.0000005

x28 1.0000000 1.0000003

x29 1.0000000 1.0000001

x30 1.0000000 1.0000001
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