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Abstract. In the present paper, we introduce a Stancu type generalization of
generalized Srivastava-Gupta operators based on certain parameter. We obtain
the moments of the operators and then prove the basic convergence theorem.
Next, the Voronovskaja type asymptotic formula and some direct results for
the above operators are discussed. Also, weighted approximation and rate of
convergence by these operators in terms of modulus of continuity are studied.
Then, we obtain point-wise estimates using the Lipschitz type maximal func-
tion. Lastly, we propose a King type modification of these operators to obtain
better estimates.

1. Introduction

In order to approximate Lebesgue integrable functions on [0,∞), Srivastava
and Gupta [18] introduced a general family of summation-integral type opera-
tors which includes some well-known operators as special cases. They obtained
the rate of convergence for functions of bounded variation. After that several
researchers studied different approximation properties of these operators (see [1],
[2], [14], [21], [22]).

For f ∈ Cγ[0,∞) := {f ∈ C[0,∞) : f(t) = O(tγ), γ > 0}, Verma [20] de-
fined the following generalization of Srivastava-Gupta operators based on certain
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parameter ρ > 0 in the following way:

Ln,ρ,c(f ;x) =
∞∑
k=1

pn,k(x, c)

∫ ∞
0

Θρ
n,k(t, c)f(t)dt+ pn,0(x, c)f(0), (1.1)

where

pn,k(x, c) =
(−x)k

k!
φ(k)
n,c(x), (1.2)

Θρ
n,k(t, c) =

{ nρ
Γ(kρ)

e−nρt(nρt)kρ−1, c = 0,
Γ(nρ

c
+kρ)

Γ(kρ)Γ(nρ
c

)
ckρtkρ−1

(1+ct)
nρ
c +kρ

, c ∈ N .

and

φn,c(x) =

{
e−nx, c = 0,
(1 + cx)−n/c, c ∈ N .

For the properties of φn,c(x), we refer the readers to [18]. For ρ = 1 the operators
(1.1) reduced to the Srivastava-Gupta operators [18]. In [20], Verma studied some
results in simultaneous approximation by the operators Ln,ρ,c.

In [19], Stancu introduced the positive linear operators P
(α,β)
n : C[0, 1] → C[0, 1]

by modifying the Bernstein polynomial as

P (α,β)
n (f ;x) =

n∑
k=0

bn,k(x)f

(
k + α

n+ β

)
,

where bn,k(x) =
(
n
k

)
xk(1 − x)n−k, x ∈ [0, 1] is the Bernstein basis function and

α, β are any two real numbers which satisfy the condition that 0 ≤ α ≤ β.
In the recent years, Stancu type generalization of the certain operators introduced
by several researchers and obtained different type of approximation properties of
many operators, we refer some of the important papers in this direction as [1],
[2], [9] and [10].

For f ∈ Cγ[0,∞), 0 ≤ α ≤ β we introduce the following Stancu type gener-
alization of the operators (1.1):

L(α,β)
n,ρ,c (f ;x) =

∞∑
k=1

pn,k(x, c)

∫ ∞
0

Θρ
n,k(t, c)f

(
nt+ α

n+ β

)
dt

+pn,0(x, c)f

(
α

n+ β

)
. (1.3)

For α = β = 0, we denote L
(α,β)
n,ρ,c (f ;x) by Ln,ρ,c(f ;x).

In the present paper, we study the basic convergence theorem, Voronovskaja
type asymptotic formula, local approximation, rate of convergence, weighted ap-
proximation and pointwise estimation of the operators (1.3). Further, to obtain
better approximation we also modify the operators (1.3) by using King type ap-
proach.
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2. Moment estimates

Lemma 2.1. [20] For Ln,ρ,c(t
m;x), m = 0, 1, 2, we have

(1) Ln,ρ,c(1;x) = 1;
(2) Ln,ρ,c(t;x) = nρx

(nρ−c) ;

(3) Ln,ρ,c(t
2;x) =

{
n(n+c)ρ2

(nρ−c)(nρ−2c)

}
x2 +

{
nρ(1+ρ)

(nρ−c)(nρ−2c)

}
x.

Lemma 2.2. For the operators L
(α,β)
n,ρ,c (f ;x) as defined in (1.3), the following

equalities hold:

(1) L
(α,β)
n,ρ,c (1;x) = 1;

(2) L
(α,β)
n,ρ,c (t;x) = n2ρx+α(nρ−c)

(nρ−c)(n+β)
;

(3) L
(α,β)
n,ρ,c (t2;x) =

{
n3ρ2(n+c)

(nρ−c)(nρ−2c)(n+β)2

}
x2 +

{
n3ρ(1+ρ)+2n2αρ(nρ−2c)

(nρ−c)(nρ−2c)(n+β)2

}
x+ α2

(n+β)2
.

Proof. For x ∈ [0,∞), in view of Lemma 2.1, we have

L(α,β)
n,ρ,c (1;x) = 1.

Next, for f(t) = t, again applying Lemma 2.1, we get

L(α,β)
n,ρ,c (t;x) =

∞∑
k=1

pn,k(x, c)

∫ ∞
0

Θρ
n,k(t, c)

(
nt+ α

n+ β

)
dt+ pn,0(x, c)

(
α

n+ β

)
=

n

n+ β
Ln,ρ,c(t, x) +

α

n+ β
=
n2ρx+ α(nρ− c)
(nρ− c)(n+ β)

.

Proceeding similarly, we have

L(α,β)
n,ρ,c (t2;x) =

∞∑
k=1

pn,k(x, c)

∫ ∞
0

Θρ
n,k(t, c)

(
nt+ α

n+ β

)2

dt+ pn,0(x, c)

(
α

n+ β

)2

=

(
n

n+ β

)2

Ln,ρ,c(t
2, x) +

2nα

(n+ β)2
Ln,ρ,c(t, x) +

(
α

n+ β

)2

=

{
n3ρ2(n+ c)

(nρ− c)(nρ− 2c)(n+ β)2

}
x2

+

{
n3ρ(1 + ρ) + 2n2αρ(nρ− 2c)

(nρ− c)(nρ− 2c)(n+ β)2

}
x+

α2

(n+ β)2
.

�

Lemma 2.3. For f ∈ CB[0,∞) (space of all real valued bounded and uniformly
continuous functions on [0,∞) endowed with norm ‖ f ‖CB [0,∞)= sup

x∈[0,∞)

|f(x)|),

‖ L(α,β)
n,ρ,c (f) ‖≤‖ f ‖ .

Proof. In view of (1.3) and Lemma 2.2, the proof of this lemma easily follows. �
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Remark 2.4. For every x ∈ [0,∞) and nρ > 2c we have

L(α,β)
n,ρ,c ((t− x);x) =

{
c(n+ β)− nρβ
(nρ− c)(n+ β)

}
x+

α

(n+ β)

= µ(α,β)
n,ρ,c (x)

and

L(α,β)
n,ρ,c

(
(t− x)2;x

)
=

{
n3ρ2(n+ c)− (nρ− 2c)(n+ β)(n2ρ− nρβ + nc+ cβ)

(nρ− c)(nρ− 2c)(n+ β)2

}
x2

+

{
n3ρ(1 + ρ) + 2α(nρ− 2c)(nc+ cβ − nρβ)

(nρ− c)(nρ− 2c)(n+ β)2

}
x+

α2

(n+ β)2
= γ(α,β)

n,ρ,c (x).

3. Main results

Theorem 3.1. (Voronovskaja type theorem) Let f be bounded and integrable on
[0,∞), second derivative of f exists at a fixed point x ∈ [0,∞), then

lim
n→∞

n
(
L(α,β)
n,ρ,c (f ;x)− f(x)

)
=

(
α +

(
c

ρ
− β

)
x

)
f ′(x)+

x(1 + cx)

2

(
1 +

1

ρ

)
f ′′(x).

Proof. Let x ∈ [0,∞) be fixed. From the Taylor’s theorem, we may write

f(t) = f(x) + (t− x)f ′(x) +
1

2
f ′′(x)(t− x)2 + ξ(t, x)(t− x)2, (3.1)

where ξ(t, x) is the Peano form of the remainder and lim
t→x

ξ(t, x) = 0.

Applying L
(α,β)
n,ρ,c (f, x) on both sides of (3.1), we have

n
(
L(α,β)
n,ρ,c (f ;x)− f(x)

)
= nf ′(x)L(α,β)

n,ρ,c ((t− x);x) +
1

2
nf ′′(x)L(α,β)

n,ρ,c

(
(t− x)2;x

)
+nL(α,β)

n,ρ,c

(
ξ(t, x)(t− x)2;x

)
.

In view of Remark 2.4, we have

lim
n→∞

nL(α,β)
n,ρ,c ((t− x);x) = α +

(
c

ρ
− β

)
x (3.2)

and

lim
n→∞

nL(α,β)
n,ρ,c

(
(t− x)2;x

)
= x(1 + cx)

(
1 +

1

ρ

)
. (3.3)

Now, we shall show that

lim
n→∞

nL(α,β)
n,ρ,c

(
ξ(t, x)(t− x)2;x

)
= 0.

By using Cauchy-Schwarz inequality, we have

L(α,β)
n,ρ,c

(
ξ(t, x)(t− x)2;x

)
≤
(
L(α,β)
n,ρ,c (ξ2(t, x);x)

)1/2 ×
(
L(α,β)
n,ρ,c ((t− x)4;x)

)1/2
.(3.4)

We observe that ξ2(x, x) = 0 and ξ2(., x) ∈ CB[0,∞). Then, it follows that

lim
n→∞

L(α,β)
n,ρ,c (ξ2(t, x);x) = ξ2(x, x) = 0. (3.5)
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Now, from (3.4) and (3.5) we obtain

lim
n→∞

nL(α,β)
n,ρ,c

(
ξ(t, x)(t− x)2;x

)
= 0. (3.6)

From (3.2), (3.3) and (3.6), we get the required result. �

3.1. Local approximation. For CB[0,∞), let us consider the following K-
functional:

K2(f, δ) = inf
g∈W 2
{‖ f − g ‖ +δ ‖ g′′ ‖},

where δ > 0 and W 2 = {g ∈ CB[0,∞) : g′, g
′′ ∈ CB[0,∞)}. By, p. 177, Theorem

2.4 in [3], there exists an absolute constant M > 0 such that

K2(f, δ) ≤Mω2(f,
√
δ), (3.7)

where

ω2(f,
√
δ) = sup

0<|h|≤
√
δ

sup
x∈[0,∞)

| f(x+ 2h)− 2f(x+ h) + f(x) |

is the second order modulus of smoothness of f . By

ω(f, δ) = sup
0<|h|≤δ

sup
x∈[0,∞)

| f(x+ h)− f(x) |,

we denote the usual modulus of continuity of f ∈ CB[0,∞).

Theorem 3.2. Let f ∈ CB[0,∞). Then, for every x ∈ [0,∞), we have

| L(α,β)
n,ρ,c (f ;x)− f(x) | ≤ Mω2

(
f, δ(α,β)

n,ρ,c (x)
)

+ ω
(
f, µ(α,β)

n,ρ,c (x)
)
,

where M is an absolute constant and

δ(α,β)
n,ρ,c (x) =

(
γ(α,β)
n,ρ,c (x) +

(
µ(α,β)
n,ρ,c (x)

)2)1/2

.

Proof. For x ∈ [0,∞), we consider the auxiliary operators L
(α,β)

n,ρ,c defined by

L
(α,β)

n,ρ,c (f ;x) = L(α,β)
n,ρ,c (f ;x)− f

(
n2ρx+ α(nρ− c)
(nρ− c)(n+ β)

)
+ f(x). (3.8)

From Lemma 2.2, we observe that the operators L
(α,β)

n,ρ,c are linear and reproduce
the linear functions.
Hence

L
(α,β)

n,ρ,c ((t− x);x) = 0. (3.9)

Let g ∈ W 2. By Taylor’s theorem, we have

g(t) = g(x) + (t− x)g′(x) +

∫ t

x

(t− v)g′′(v)dv, t ∈ [0,∞).

Applying L
(α,β)

n,ρ,c on both sides of the above equation and using (3.9), we have

L
(α,β)

n,ρ,c (g;x) = g(x) + L
(α,β)

n,ρ,c

(∫ t

x

(t− v)g′′(v)dv;x

)
.
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Thus, by (3.8) we get

|L(α,β)

n,ρ,c (g;x)− g(x)|

≤ L(α,β)
n,ρ,c

(∣∣∣∣ ∫ t

x

(t−v)g′′(v)dv

∣∣∣∣;x)+

∣∣∣∣ ∫ n2ρx+α(nρ−c)
(nρ−c)(n+β)

x

(
n2ρx+ α(nρ− c)
(nρ− c)(n+ β)

−v
)
g′′(v)dv

∣∣∣∣
≤ L(α,β)

n,ρ,c

(∫ t

x

|t− v||g′′(v)|dv;x

)
+

∫ n2ρx+α(nρ−c)
(nρ−c)(n+β)

x

∣∣∣∣n2ρx+ α(nρ− c)
(nρ− c)(n+ β)

− v
∣∣∣∣|g′′(v)|dv

≤
[
γ(α,β)
n,ρ,c (x) +

(
µ(α,β)
n,ρ,c (x)

)2]
‖ g′′ ‖

≤
(
δ(α,β)
n,ρ,c (x)

)2 ‖ g′′ ‖ . (3.10)

On the other hand, by (3.8) and Lemma 2.3, we have

|L(α,β)

n,ρ,c (f ;x)| ≤ ‖ f ‖ . (3.11)

Using (3.10) and (3.11) in (3.8), we obtain

|L(α,β)
n,ρ,c (f ;x)− f(x)| ≤ |L(α,β)

n,ρ,c (f − g;x)|+ |(f − g)(x)|+ |L(α,β)

n,ρ,c (g;x)− g(x)|

+

∣∣∣∣f (n2ρx+ α(nρ− c)
(nρ− c)(n+ β)

)
− f(x)

∣∣∣∣
≤ 2 ‖ f − g ‖ +

(
δ(α,β)
n,ρ,c (x)

)2 ‖ g′′ ‖

+

∣∣∣∣f (n2ρx+ α(nρ− c)
(nρ− c)(n+ β)

)
− f(x)

∣∣∣∣.
Hence, taking infimum on the right hand side over all g ∈ W 2, we get

| L(α,β)
n,ρ,c (f ;x)− f(x) | ≤ K2

(
f, (δ(α,β)

n,ρ,c (x))2
)

+ ω
(
f, µ(α,β)

n,ρ,c (x)
)
.

In view of (3.7), we get

| L(α,β)
n,ρ,c (f ;x)− f(x) | ≤ Mω2

(
f, δ(α,β)

n,ρ,c (x)
)

+ ω
(
f, µ(α,β)

n,ρ,c (x)
)
.

Hence, the proof is completed. �

3.2. Rate of convergence. Let ωa(f, δ) denote the modulus of continuity of f
on the closed interval [0, a], a > 0, and defined as

ωa(f, δ) = sup
|t−x|≤δ

sup
x,t∈[0,a]

|f(t)− f(x)|.

We observe that for a function f ∈ CB[0,∞), the modulus of continuity ωa(f, δ)
tends to zero.
Now, we give a rate of convergence theorem for the operators L

(α,β)
n,ρ,c .
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Theorem 3.3. Let f ∈ CB[0,∞) and ωa+1(f, δ) be its modulus of continuity on
the finite interval [0, a+ 1] ⊂ [0,∞), where a > 0. Then, we have

|L(α,β)
n,ρ,c (f ;x)− f(x)| ≤ 6Mf (1 + a2)γ(α,β)

n,ρ,c (a) + 2ωa+1

(
f,

√
γ

(α,β)
n,ρ,c (a)

)
,

where γ
(α,β)
n,ρ,c (a) is defined in Remark 2.4 and Mf is a constant depending only on

f .

Proof. For x ∈ [0, a] and t > a+ 1. Since t− x > 1, we have

|f(t)− f(x)| ≤ Mf (2 + x2 + t2)

≤ Mf (t− x)2(2 + 3x2 + 2(t− x)2)

≤ 6Mf (1 + a2)(t− x)2.

For x ∈ [0, a] and t ≤ a+ 1, we have

|f(t)− f(x)| ≤ ωa+1(f, |t− x|) ≤
(

1 +
|t− x|
δ

)
ωa+1(f, δ), δ > 0.

From the above, we have

|f(t)− f(x)| ≤ 6Mf (1 + a2)(t− x)2 +

(
1 +
|t− x|
δ

)
ωa+1(f, δ), δ > 0.

Thus, by applying Cauchy-Schwarz inequality, we have

|L(α,β)
n,ρ,c (f ;x)− f(x)|

≤ 6Mf (1 + a2)(L(α,β)
n,ρ,c (t− x)2;x) + ωa+1(f, δ)

(
1 +

1

δ
(L(α,β)

n,ρ,c (t− x)2;x)
1
2

)
≤ 6Mf (1 + a2)γ(α,β)

n,ρ,c (a) + 2ωa+1

(
f,

√
γ

(α,β)
n,ρ,c (a)

)
,

on choosing δ =

√
γ

(α,β)
n,ρ,c (a). This completes the proof of the theorem. �

3.3. Weighted approximation. In this section, we obtain the Korovkin type
weighted approximation by the operators defined in 1.3 . The weighted Korovkin-
type theorems were proved by Gadzhiev [4]. A real function ν(x) = 1+x2 is called
a weight function if it is continuous on R and lim

|x|→∞
ν(x) = ∞, ν(x) ≥ 1 for all

x ∈ R.
Let Bν(R) denote the weighted space of real-valued functions f defined on R with
the property |f(x)| ≤Mfν(x) for all x ∈ R, where Mf is a constant depending on
the function f . We also consider the weighted subspace Cν(R) of Bν(R) given by
Cν(R) = {f ∈ Bν(R) : f is continuous on R} and C∗ν [0,∞) denotes the subspace

of all functions f ∈ Cν [0,∞) for which lim
|x|→∞

f(x)

ν(x)
exists finitely.

The space Bν(R) is a normed linear space with the following norm:

‖ f ‖ν= sup
x∈[0,∞)

|f(x)|
ν(x)

.
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Theorem 3.4. For each f ∈ C∗ν [0,∞), we have

lim
n→∞

‖ L(α,β)
n,ρ,c (f)− f ‖ν= 0.

Proof. From [4], we know that it is sufficient to verify the following three condi-
tions

lim
n→∞

‖ L(α,β)
n,ρ,c (tk)− xk ‖ν= 0, k = 0, 1, 2. (3.12)

Since L
(α,β)
n,ρ,c (1;x) = 1, the condition in (3.12) holds for k = 0.

By Lemma 2.2, we have

‖ L(α,β)
n,ρ,c (t)− x ‖ν = sup

x∈[0,∞)

|L(α,β)
n,ρ,c (t;x)− x|

1 + x2

≤
∣∣∣∣ c(n+ β)− nρβ
(nρ− c)(n+ β)

∣∣∣∣ sup
x∈[0,∞)

x

1 + x2
+

α

n+ β
sup

x∈[0,∞)

1

1 + x2

≤
∣∣∣∣c(n+ β)− nρβ + α(nρ− c)

(nρ− c)(n+ β)

∣∣∣∣
which implies that the condition in (3.12) holds for k = 1.
Similarly, we can write for nρ > 2c

‖ L(α,β)
n,ρ,c (t2)− x2 ‖ν = sup

x∈[0,∞)

|L(α,β)
n,ρ,c (t2;x)− x2|

1 + x2

≤
∣∣∣∣ n3ρ2(n+ c)

(nρ− c)(nρ− 2c)(n+ β)2
− 1

∣∣∣∣
+

∣∣∣∣n3ρ(1 + ρ) + 2n2αρ(nρ− 2c)

(nρ− c)(nρ− 2c)(n+ β)2

∣∣∣∣+
α2

(n+ β)2
,

which implies that lim
n→∞

‖ L(α,β)
n,ρ,c (t2) − x2 ‖ν= 0, the equation (3.12) holds for

k = 2.
This completes the proof of theorem. �

3.4. Pointwise Estimates. In this section, we establish some pointwise esti-

mates of the rate of convergence of the operators L
(α,β)
n,ρ,c . First, we give the rela-

tionship between the local smoothness of f and local approximation.
We know that a function f ∈ C[0,∞) is in LipM (r) on E, r ∈ (0, 1], E⊂ [0,∞)
if it satisfies the condition

|f(t)− f(x)| ≤M |t− x|r, t ∈ [0,∞) and x ∈ E,
where M is a constant depending only on r and f .

Theorem 3.5. Let f ∈ C[0,∞)∩LipM (r), E ⊂ [0,∞) and r ∈ (0, 1]. Then, we
have

|L(α,β)
n,ρ,c (f ;x)− f(x)| ≤ M

((
γ(α,β)
n,ρ,c (x)

)r/2
+ 2dr(x,E)

)
, x ∈ [0,∞),



APPROXIMATION BY STANCU TYPE GENERALIZED SRIVASTAVA-GUPTA ... 155

where M is a constant depending on r and f and d(x,E) is the distance between
x and E defined as

d(x,E) = inf{|t− x| : t ∈ E}.

Proof. Let E be the closure of E in [0,∞). Then, there exists at least one point
t0 ∈ E such that

d(x,E) = |x− t0|.

By our hypothesis and the monotonicity of L
(α,β)
n,ρ,c , we get

|L(α,β)
n,ρ,c (f ;x)− f(x)| ≤ L(α,β)

n,ρ,c (|f(t)− f(t0)|;x) + L(α,β)
n,ρ,c (|f(x)− f(t0)|;x)

≤ M
(
L(α,β)
n,ρ,c (|t− t0|r;x) + |x− t0|r

)
≤ M

(
L(α,β)
n,ρ,c (|t− x|r;x) + 2|x− t0|r

)
.

Now, applying Hölder’s inequality with p =
2

r
and

1

q
= 1− 1

p
, we obtain

|L(α,β)
n,ρ,c ((f ;x)− f(x)| ≤M

(
(L(α,β)

n,ρ,c (|t− x|2;x))r/2 + 2dr(x,E)
)
,

from which the desired result immediate. �

Next, we obtain the local direct estimate of the operators defined in (1.3), using
the Lipschitz-type maximal function of order r introduced by B. Lenze [12] as

ω̃r(f, x) = sup
t6=x, t∈[0,∞)

|f(t)− f(x)|
|t− x|r

, x ∈ [0,∞) and r ∈ (0, 1]. (3.13)

Theorem 3.6. Let f ∈ CB[0,∞) and 0 < r ≤ 1. Then, for all x ∈ [0,∞) we
have

|L(α,β)
n,ρ,c (f ;x)− f(x)| ≤ ω̃r(f, x)

(
γ(α,β)
n,ρ,c (x)

)r/2
.

Proof. From the equation (3.13), we have

|L(α,β)
n,ρ,c (f ;x)− f(x)| ≤ ω̃r(f, x)L(α,β)

n,ρ,c (|t− x|r;x).

Applying the Hölder’s inequality with p =
2

r
and

1

q
= 1− 1

p
, we get

|L(α,β)
n,ρ,c (f ;x)− f(x)| ≤ ω̃r(f, x)L(α,β)

n,ρ,c ((t− x)2;x)
r
2 ≤ ω̃r(f, x)

(
γ(α,β)
n,ρ,c (x)

)r/2
.

Thus, the proof is completed. �

For a, b > 0, Özarslan and Aktuğlu [17] consider the Lipschitz-type space with
two parameters:

Lip
(a,b)
M (r) =

(
f ∈ C[0,∞) : |f(t)− f(x)| ≤M

|t− x|r

(t+ ax2 + bx)r/2
; x, t ∈ [0,∞)

)
,

where M is any positive constant and 0 < r ≤ 1.
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Theorem 3.7. For f ∈ Lip(a,b)
M (r). Then, for all x > 0, we have

|L(α,β)
n,ρ,c (f ;x)− f(x)| ≤M

(
γ

(α,β)
n,ρ,c (x)

ax2 + bx

)r/2

.

Proof. First we prove the theorem for r = 1. Then, for f ∈ Lip
(a,b)
M (1), and

x ∈ [0,∞), we have

|L(α,β)
n,ρ,c (f ;x)− f(x)| ≤ L(α,β)

n,ρ,c (|f(t)− f(x)|;x)

≤ ML(α,β)
n,ρ,c

(
|t− x|

(t+ ax2 + bx)1/2
;x

)
≤ M

(ax2 + bx)1/2
L(α,β)
n,ρ,c (|t− x|;x).

Applying Cauchy-Schwarz inequality, we get

|L(α,β)
n,ρ,c (f ;x)− f(x)| ≤ M

(ax2 + bx)1/2

(
L(α,β)
n,ρ,c ((t− x)2;x)

)1/2

≤ M

(
γ

(α,β)
n,ρ,c (x)

ax2 + bx

)1/2

.

Thus the result holds for r = 1.
Now, we prove that the result is true for 0 < r < 1. Then, for f ∈ Lip(a,b)

M (r),
and x ∈ [0,∞), we get

|L(α,β)
n,ρ,c (f ;x)− f(x)| ≤ M

(ax2 + bx)r/2
L(α,β)
n,ρ,c (|t− x|r;x).

Taking p = 1
r

and q = p
p−1

, applying the Hölders inequality, we have

|L(α,β)
n,ρ,c (f ;x)− f(x)| ≤ M

(ax2 + bx)r/2
(
L(α,β)
n,ρ,c (|t− x|;x)

)r
.

Finally by Cauchy-Schwarz inequality, we get

|L(α,β)
n,ρ,c (f ;x)− f(x)| ≤ M

(
γ

(α,β)
n,ρ,c (x)

ax2 + bx

)r/2

.

Thus, the proof is completed. �

4. Better Estimates

It is well known that the classical Bernstein polynomial preserve constant as
well as linear functions. To make the convergence faster, King [11] proposed an
approach to modify the Bernstein polynomial, so that the sequence preserve test

functions e0 and e2, where ei(t) = ti, i = 0, 1, 2. As the operator L
(α,β)
n,ρ,c (f ;x)

defined in (1.3) preserve only the constant functions so further modification of
these operators is proposed to be made so that the modified operators preserve
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the constant as well as linear functions.
For this purpose the modification of (1.3) is defined as

L̂(α,β)
n,ρ,c (f ;x) =

∞∑
k=1

pn,k(rn(x), c)

∫ ∞
0

Θρ
n,k(t, c)f

(
nt+ α

n+ β

)
dt

+pn,0(rn(x), c)f

(
α

n+ β

)
, (4.1)

where rn(x) = (nρ−c)[(n+β)x−α]
n2ρ

for x ∈ In = [ α
n+β

,∞) and nρ > 2c.

Lemma 4.1. For each x ∈ In, by simple computations, we have

(1) L̂
(α,β)
n,ρ,c (1;x) = 1;

(2) L̂
(α,β)
n,ρ,c (t;x) = x;

(3) L̂
(α,β)
n,ρ,c (t2;x) =

{
(nρ− c)(n+ c)

n(nρ− 2c)

}
x2+

{
n2(1 + ρ) + 2α(c2 − nρc− nc)

n(nρ− 2c)(n+ β)

}
x

+
α2(nρc+ nc− c2)− n2α(1 + ρ)

n(nρ− 2c)(n+ β)2
.

Consequently, for each x ∈ In , we have the following equalities

L̂(α,β)
n,ρ,c (t− x;x) = 0

L̂(α,β)
n,ρ,c ((t− x)2;x) =

{
nρc+ nc− c2

n(nρ− 2c)

}
x2 +

{
n2(1 + ρ) + 2α(c2 − nρc− nc)

n(nρ− 2c)(n+ β)

}
x

+
α2(nρc+ nc− c2)− n2α(1 + ρ)

n(nρ− 2c)(n+ β)2

= ζ(α,β)
n,ρ,c (x). (4.2)

Theorem 4.2. Let f ∈ CB(In) and x ∈ In. Then for nρ > 2c, there exists a
positive constant M ′ such that

|L̂(α,β)
n,ρ,c (f ;x)− f(x)| ≤M ′ω2

(
f,

√
ζ

(α,β)
n,ρ,c (x)

)
,

where ζ
(α,β)
n,ρ,c (x) is given by (4.2).

Proof. Let g ∈ W 2 and x, t ∈ In. Using the Taylor’s expansion we have

g(t) = g(x) + (t− x)g′(x) +

∫ t

x

(t− v)g′′(v)dv.

Applying L̂
(α,β)
n,ρ,c on both sides and using Lemma 4.1, we get

L̂(α,β)
n,ρ,c (g;x)− g(x) = L̂(α,β)

n,ρ,c

(∫ t

x

(t− v)g′′(v)dv;x

)
.

Obviously, we have ∣∣∣∣∫ t

x

(t− v)g′′(v)dv

∣∣∣∣ ≤ (t− x)2‖g′′‖.
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Therefore

| L̂(α,β)
n,ρ,c (g;x)− g(x) |≤ L̂(α,β)

n,ρ,c ((t− x)2;x) ‖ g′′ ‖= ζ(α,β)
n,ρ,c (x) ‖ g′′ ‖ .

Since | L̂(α,β)
n,ρ,c (f ;x) |≤ ‖f‖, we get

| L̂(α,β)
n,ρ,c (f ;x)− f(x) |

≤ | L̂(α,β)
n,ρ,c (f − g;x) | + | (f − g)(x) | + | L̂(α,β)

n,ρ,c (g;x)− g(x) |
≤ 2‖f − g‖+ ζ(α,β)

n,ρ,c (x)‖g′′‖.
Finally, taking the infimum over all g ∈ W 2 and using (3.7) we obtain

| L̂(α,β)
n,ρ,c (f ;x)− f(x) |≤M ′ω2

(
f,

√
ζ

(α,β)
n,ρ,c (x)

)
,

which proves the theorem. �

Theorem 4.3. Let f ∈ CB(In). If f ′, f ′′ exists at a fixed point x ∈ In, then we
have

lim
n→∞

n
(
L̂(α,β)
n,ρ,c (f ;x)− f(x)

)
=
x(1 + cx)

2

(
1 +

1

ρ

)
f ′′(x).

The proof follows along the lines of Theorem 3.1.
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