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Abstract. The aim of this contribution is to establish some common fixed
point theorems for single and set-valued maps under contractive conditions of
integral type on a symmetric space. These maps are assumed to satisfy new
properties which extend the results of Aliouche [3], Aamri and El Moutawakil
[2] and references therein, also they generalize the notion of non-compatible
and non-δ-compatible maps in the setting of symmetric spaces.

1. Introduction and preliminaries

In 1982, Sessa [8] generalized the concept of commuting maps by giving the
notion of weakly commuting maps. Two self-maps f and g of a metric space
(X , d) are said to be weakly commuting if, for all x ∈ X we have

d(fgx, gfx) ≤ d(gx, fx).

Further, in 1986, Jungck [5] gave a generalization of commuting and weakly
commuting maps by introducing the concept of compatible maps. Self-maps f
and g of a metric space (X , d) are compatible if and only if whenever {xn} is a
sequence in X such that fxn, gxn → t ∈ X , then d(fxn, gxn)→ 0.

Later, the same author with Rhoades [6] extended the concept of compatible
maps to maps f : X → X and F : X → B(X ) by requiring that fFx ∈ B(X )
for x ∈ X and δ(fFxn, Ffxn) → 0 whenever {xn} is a sequence in X such that
Fxn → {t} (δ(Fxn, t)→ 0) and fxn → t for some t ∈ X .

This last definition motivated the definition of weakly compatible maps [7]
mentioned below.
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On the other hand, Aamri and El Moutawakil [1] have established the notion
of property (E.A) for single valued maps.

To generalize this property, Djoudi and Khemis [4] introduced the definition
of the so-called D-maps as follows: maps f : X → X and F : X → B(X ) are
said to be D-maps if and only if there exists a sequence {xn} in X such that,
lim
n→∞

fxn = t and lim
n→∞

Fxn = {t} for some t ∈ X .

Let X be a set. Recall that a symmetric on X is a nonnegative real function d
on X × X into [0,∞) such that

(1) d(x, y) = 0 if and only if x = y, and
(2) d(x, y) = d(y, x) for all x, y in X .

Let d be a symmetric on a set X and for r > 0 and any x ∈ X , let B(x, r) =
{y ∈ X : d(x, y) < r}. A topology t(d) on X is given by U ∈ t(d) if and only if,
for each x ∈ U , B(x, r) ⊂ U for some r > 0. A symmetric d is a semi-metric if
for each x ∈ X and each r > 0, B(x, r) is a neighborhood of x in the topology
t(d). Note that lim

n→∞
d(xn, x) = 0 if and only if xn → x in the topology t(d) [2].

Definition 1.1. [7] let (X , d) be a metric space, and let f : X → X and F :
X → B(X ). The pair {F, f} is a weakly compatible pair if and only if Fx = {fx}
implies that fFx = Ffx.

Definition 1.2. [1] Let f and g be two self-maps of a metric space (X , d). We
say that f and g satisfy the property (E.A) if there exists a sequence {xn} such
that lim

n→∞
fxn = lim

n→∞
gxn = t for some t ∈ X .

In 2003, Aamri and El Moutawakil [2] introduced the notion of compatible and
weakly compatible maps in a symmetric space, also, they gave new definitions of
properties (E.A) and (HE) in the same space.

Definition 1.3. [2] Let f and g be two self-maps of a symmetric space (X , d).
f and g are said to be compatible if lim

n→∞
d(fgxn, gfxn) = 0 whenever {xn} is a

sequence in X such that lim
n→∞

d(fxn, t) = lim
n→∞

d(gxn, t) = 0 for some t ∈ X .

Definition 1.4. [2] Two self-maps f and g of a symmetric space (X , d) are said
to be weakly compatible if they commute at their coincidence points.

Definition 1.5. [2] Let f and g be two self-maps of a symmetric space (X , d).
We say that f and g satisfy the property (E.A) if there exists a sequence {xn}
such that lim

n→∞
d(fxn, t) = 0 and lim

n→∞
d(gxn, t) = 0 for some t ∈ X .

Definition 1.6. [2] Let (X , d) be a symmetric space. We say that (X , d) sat-
isfies the property (HE) if given {xn}, {yn} and x in X , lim

n→∞
d(xn, x) = 0 and

lim
n→∞

d(yn, x) = 0 imply lim
n→∞

d(yn, xn) = 0.

In their paper [2], Aamri and El Moutawakil gave some common fixed point
theorems for self-maps of a symmetric space under a generalized contractive con-
dition. Their self-maps were assumed to satisfy properties (E.A), (HE) and
axioms (W.3), (W.4) of Wilson [10].
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In 2006, Aliouche [3] generalized the results of [2] by using a contractive con-
dition of integral type.

The main purpose of the present paper is to establish some common fixed point
theorems for single and set-valued maps under a generalized contractive condition
of integral type. These maps are assumed to satisfy new properties introduced on
a symmetric space. Our results extend the results of Aamri and El Moutawakil
[2], Aliouche [3] and others to the setting of single and set-valued maps.

2. Common fixed point theorems under a generalized contractive
condition

Following the established symbology of the literature, X stands for a symmetric
space and B(X ) denotes the family of all nonempty, bounded subsets of X . Define

δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B},

for all A, B in B(X ). When A consists of a single point a, we write δ(A,B) =
δ(a,B) and δ(A,B) = d(a, b) if B also consists of a single point b. The definition
of the function δ yields the next properties:

δ(A,B) = δ(B,A) ≥ 0,

δ(A,A) = diamA,

δ(A,B) = 0 if and only if A = B = {a},
δ(A,B) ≤ δ(A,C) + δ(C,B),

for all A, B and C in B(X ).
A subset A of X is the limit of a sequence {An} of non-empty subsets of X if

each point a in A is the limit of a convergent sequence {an}, where an is in An
for n = 1, 2, . . ., and if for arbitrary ε > 0, there exists an integer N such that
An ⊆ Aε for n > N , where Aε is the union of all open spheres with centers in A
and radius ε [9].

Lemma 2.1. [9] If {An} and {Bn} are sequences of bounded subsets of (X , d)
which converge to the bounded sets A and B respectively, then the sequence
{δ(An, Bn)} converges to δ(A,B).

Let F be a map of X into B(X ). F is continuous at the point x in X if
whenever {xn} is a sequence of points in X converging to x, the sequence {Fxn}
in B(X ) converges to Fx in B(X ) [9].

Definition 2.2. Let (X , d) be a symmetric space and let B(X ) be the family of
all nonempty bounded subsets of X . Maps f : X → X and F : X → B(X ) are
δ-compatible if and only if

lim
n→∞

δ(Ffxn, fFxn) = 0,

whenever {xn} is a sequence in X such that fFx ∈ B(X ) and lim
n→∞

d(fxn, t) =

lim
n→∞

δ(Fxn, t) = 0 for some t ∈ X .
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Definition 2.3. Let (X , d) be a symmetric space and let B(X ) be the family of
all nonempty bounded subsets of X . Maps f : X → X and F : X → B(X ) are
weakly compatible if and only if they commute at coincidence points; that is,

{t ∈ X/Ft = {ft}} ⊆ {t ∈ X/Fft = fFt}.

Definition 2.4. Let (X , d) be a symmetric space and let B(X ) be the family
of all nonempty bounded subsets of X . Maps f : X → X and F : X → B(X )
satisfy property (E.A) if and only if there exists a sequence {xn} in X such that

lim
n→∞

d(fxn, t) = 0 and lim
n→∞

δ(Fxn, t) = 0,

for some t ∈ X .

Example 2.5. Let X = [0, 1]. Let d be a symmetric on X defined by

d(x, y) = log[|x− y|+ 1], for all x, y in X .
First, note that the function d is not a metric.

Define f : X → X and F : X → B(X ) as follows:

fx =
x

2
and Fx = [0, x] for all x ∈ X .

Let us consider the sequence xn =
1

n
for n = 1, 2, 3, . . . . Obviously

lim
n→∞

d(fxn, 0) = lim
n→∞

δ(Fxn, 0) = 0 ∈ X .

Then f and F satisfy property (E.A).

Definition 2.6. Let (X , d) be a symmetric space and let B(X ) be the family of
all nonempty bounded subsets of X . (X , d) satisfies property (HE) if and only
if given {An} in B(X ) and {xn}, x in X , lim

n→∞
δ(An, x) = 0 and lim

n→∞
d(xn, x) = 0

imply lim
n→∞

δ(An, xn) = 0.

Example 2.7. (1) Every metric space (X , d) satisfies property (HE).
(2) Let X = [0, 1] with the symmetric function d defined by

d(x, y) = log[|x− y|+ 1], for all x, y in X .
It is easy to check that the symmetric space (X , d) satisfies property (HE).

Encouraged by the Wilson’s definition [10] we introduce the following notion:

Definition 2.8. Let (X , d) be a symmetric space.
(HB.1) Given A, {An} in B(X ) and x in X , lim

n→∞
δ(An, x) = 0 and

lim
n→∞

δ(An, A) = 0 imply A = {x}.
(HB.2) Given {An}, {Bn} inB(X ) and x in X , lim

n→∞
δ(An, x) = 0 and lim

n→∞
δ(An, Bn) =

0 imply that lim
n→∞

δ(Bn, x) = 0.

Before giving our main results, we introduce the definition of non-δ-compatible
maps as follows:
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Definition 2.9. Let (X , d) be a symmetric space and let B(X ) be the family of
all nonempty bounded subsets of X . Maps f : X → X and F : X → B(X ) are
said to be non-δ-compatible if and only if there exists at least one sequence
{xn} in X such that fFx ∈ B(X ) and lim

n→∞
d(fxn, t) = lim

n→∞
δ(Fxn, t) = 0 for

some t ∈ X but lim
n→∞

δ(Ffxn, fFxn) is either non zero or does not exist.

Therefore, two non-δ-compatible maps satisfy property (E.A).
Let Φ : R+ → R+ satisfying the condition 0 < Φ(t) < t for each t > 0.

2.1. A common fixed point theorem for two maps.

Theorem 2.10. Let d be a symmetric for X that satisfies (HB.1) and (HE). Let
f : X → X and F : X → B(X ) be a single and a set-valued map, respectively
such that∫ δ(Fx,Fy)

0

ϕ(t)dt ≤ Φ

(∫ max{d(fx,fy),δ(fx,Fy),δ(Fy,fy)}

0

ϕ(t)dt

)
, (2.1)

for all (x, y) ∈ X 2, where ϕ : R+ → R+ be a Lebesgue-integrable map which is
summable and such that

∫ ε
0
ϕ(t)dt > 0 for all ε > 0,

(1) f and F satisfy property (E.A),
(2) FX ⊂ fX ,
(3) F and f are weakly compatible.

If the range of F or f is a complete subspace of X , then F and f have a unique
common fixed point in X .

Proof. Since F and f satisfy property (E.A), there exists a sequence {xn} in X
such that lim

n→∞
δ(Fxn, t) = lim

n→∞
d(fxn, t) = 0 for some t ∈ X . Therefore, by (HE),

we have lim
n→∞

δ(Fxn, fxn) = 0.

Suppose that fX is a complete subspace of X . Then t = fu for some u ∈ X .
We claim that Fu = {fu}. Indeed, by (2.1), we have

∫ δ(Fu,Fxn)

0

ϕ(t)dt ≤ Φ

(∫ max{d(fu,fxn),δ(fu,Fxn),δ(Fxn,fxn)}

0

ϕ(t)dt

)

<

∫ max{d(fu,fxn),δ(fu,Fxn),δ(Fxn,fxn)}

0

ϕ(t)dt.

Letting n → ∞, we have lim
n→∞

δ(Fu, Fxn) = 0. Hence, by (HB.1), we have

Fu = {t} = {fu}. The weak compatibility of F and f implies that Ffu = fFu
and then FFu = Ffu = fFu = {ffu}.
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Let us show that fu is a common fixed point of F and f . Suppose that
ffu 6= fu. In view of (2.1), it follows∫ d(fu,ffu)

0

ϕ(t)dt =

∫ δ(Fu,Ffu)

0

ϕ(t)dt

≤ Φ

(∫ max{d(fu,ffu),δ(fu,Ffu),δ(Ffu,ffu)}

0

ϕ(t)dt

)

≤ Φ

(∫ d(fu,ffu)

0

ϕ(t)dt

)

<

∫ d(fu,ffu)

0

ϕ(t)dt,

which is a contradiction. Therefore Ffu = {ffu} = {fu} and fu is a common
fixed point of F and f . The proof is similar when FX is assumed to be a complete
subspace of X since FX ⊂ fX . If Fu = {fu} = {u}, Fv = {fv} = {v} and
u 6= v, then (2.1) gives∫ d(u,v)

0

ϕ(t)dt =

∫ δ(Fu,Fv)

0

ϕ(t)dt

≤ Φ

(∫ max{d(fu,fv),δ(fu,Fv),δ(Fv,fv)}

0

ϕ(t)dt

)

≤ Φ

(∫ d(fu,fv)

0

ϕ(t)dt

)

<

∫ d(u,v)

0

ϕ(t)dt,

which is a contradiction. Therefore u = v and the common fixed point is unique.
�

Since two non-δ-compatible maps of a symmetric space (X , d) satisfy property
(E.A), we get the following result.

Corollary 2.11. Let d be a symmetric for X that satisfies (HB.1) and (HE).
Let f : X → X ; F : X → B(X ) be two non-δ-compatible maps such that∫ δ(Fx,Fy)

0

ϕ(t)dt ≤ Φ

(∫ max{d(fx,fy),δ(fx,Fy),δ(Fy,fy)}

0

ϕ(t)dt

)
, (2.2)

for all (x, y) ∈ X 2, where ϕ is as in Theorem 2.10, and FX ⊂ fX . If the range
of F or f is a complete subspace of X , then F and f have a unique common fixed
point.
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2.2. A common fixed point theorem for four maps.

Theorem 2.12. Let d be a symmetric for X that satisfies (HB.1), (HB.2) and
(HE). Let f , g : X → X ; F , G : X → B(X ) be maps such that∫ δ(Fx,Gy)

0

ϕ(t)dt ≤ Φ

(∫ max{d(fx,gy),δ(fx,Gy),δ(gy,Gy)}

0

ϕ(t)dt

)
, (2.3)

for all (x, y) ∈ X 2, where ϕ is as in Theorem 2.10,

(1) (F, f) and (G, g) are weakly compatible,
(2) (F, f) or (G, g) satisfies property (E.A), and
(3) FX ⊂ gX and GX ⊂ fX .

If the range of one of maps F , G, f or g is a complete subspace of X , then F ,
G, f and g have a unique common fixed point.

Proof. Suppose that (G, g) satisfies property (E.A). Then there exists a sequence
{xn} in X such that lim

n→∞
δ(Gxn, t) = lim

n→∞
d(gxn, t) = 0, for some t ∈ X . Since

GX ⊂ fX , there exists in X a sequence {yn} such that Gxn = {fyn}. Hence
lim
n→∞

d(fxn, t) = 0. Let us show that lim
n→∞

δ(Fyn, t) = 0. Indeed, in view of (2.3),

we have∫ δ(Fyn,Gxn)

0

ϕ(t)dt ≤ Φ

(∫ max{d(fyn,gxn),δ(fyn,Gxn),δ(gxn,Gxn)}

0

ϕ(t)dt

)

≤ Φ

(∫ max{δ(Gxn,gxn),0,δ(gxn,Gxn)}

0

ϕ(t)dt

)

≤ Φ

(∫ δ(Gxn,gxn)

0

ϕ(t)dt

)
.

Therefore, by (HE), one has lim
n→∞

δ(Fyn, Gxn) = 0. By (HB.2), we deduce that

lim
n→∞

δ(Fyn, t) = 0. Suppose that fX is a complete subspace of X . Then t = fu

for some u ∈ X . Subsequently, we have

lim
n→∞

δ(Fyn, fu) = lim
n→∞

δ(Gxn, fu) = lim
n→∞

d(gxn, fu) = lim
n→∞

d(fyn, fu) = 0.

Using (2.3), it follows∫ δ(Fu,Gxn)

0

ϕ(t)dt ≤ Φ

(∫ max{d(fu,gxn),δ(fu,Gxn),δ(gxn,Gxn)}

0

ϕ(t)dt

)
.

Letting n→∞, we have lim
n→∞

δ(Fu,Gxn) = 0. By (HB.1), we have Fu = {fu}.
The weak compatibility of F and f implies that Ffu = fFu and then FFu =
Ffu = fFu = {ffu}.
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On the other hand, since FX ⊂ gX , there exists v ∈ X such that Fu = {gv}.
We claim that {gv} = Gv. If not, condition (2.3) gives∫ δ(Fu,Gv)

0

ϕ(t)dt ≤ Φ

(∫ max{d(fu,gv),δ(fu,Gv),δ(gv,Gv)}

0

ϕ(t)dt

)

≤ Φ

(∫ δ(Fu,Gv)

0

ϕ(t)dt

)

<

∫ δ(Fu,Gv)

0

ϕ(t)dt,

which is a contradiction. Hence Fu = Gv = {gv} = {fu}. The weak compati-
bility of G and g implies that Ggv = gGv and GGv = Ggv = gGv = {ggv}.

Let us show that fu is a common fixed point of F , G, f and g. Suppose that
ffu 6= fu. We have∫ d(ffu,fu)

0

ϕ(t)dt =

∫ δ(Ffu,Gv)

0

ϕ(t)dt

≤ Φ

(∫ max{d(ffu,gv),δ(ffu,Gv),δ(gv,Gv)}

0

ϕ(t)dt

)

≤ Φ

(∫ d(ffu,fu)

0

ϕ(t)dt

)

<

∫ d(ffu,fu)

0

ϕ(t)dt,

which is a contradiction. Therefore Ffu = {ffu} = {fu} and fu is a common
fixed point of F and f . Similarly, we prove that gv is a common fixed point of G
and g. Since fu = gv, we conclude that fu is a common fixed point of F , G, f
and g. The proof is similar when gX is assumed to be a complete subspace of X .
The cases in which FX or GX is a complete subspace of X are similar to the cases
in which gX or fX , respectively, is complete since FX ⊂ gX and GX ⊂ fX . If
Fu = Gu = {gu} = {fu} = {u} and Fv = Gv = {gv} = {fv} = {v} and u 6= v,
then (2.3) gives∫ d(u,v)

0

ϕ(t)dt =

∫ δ(Fu,Gv)

0

ϕ(t)dt

≤ Φ

(∫ max{d(fu,gv),δ(fu,Gv),δ(gv,Gv)}

0

ϕ(t)dt

)

≤ Φ

(∫ d(u,v)

0

ϕ(t)dt

)

<

∫ d(u,v)

0

ϕ(t)dt,
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which is a contradiction. Therefore u = v and the common fixed point is unique.
�

Corollary 2.13. Let (X , d) be a metric space, B(X ) be the family of all nonempty
bounded subsets of X and let f , g : X → X ; F , G : X → B(X ) be single and
set-valued maps such that for all (x, y) ∈ X 2,∫ δ(Fx,Gy)

0

ϕ(t)dt ≤ Φ

(∫ max{d(fx,gy),δ(fx,Gy),δ(gy,Gy)}

0

ϕ(t)dt

)
, (2.4)

(1) (F, f) and (G, g) are weakly compatible,
(2) F and f or G and g are D-maps, and
(3) FX ⊂ gX and GX ⊂ fX .

If the range of the one of maps F , G, f and g is a complete subspace of X , then
F , G, f and g have a unique common fixed point.

Remark 2.14. (1) Theorem 2.12 is an extension of Theorem 1 of Aliouche [3].
(2) If ϕ(t) = 1 in Theorem 2.12, we obtain an extension of Theorem 2.2 of

Aamri and El Moutawakil [2].
(3) If ϕ(t) = 1 in Theorem 2.10, we get an extension of Theorem 2.1 of [2].
(4) Corollary 2.11 is an extension of Corollary 2 of [3].
(5) If we put ϕ(t) = 1 in Corollary 2.11, we obtain an extension of Corollary

2.1 of [2].
(6) Corollary 2.13 is an extension of Corollary 3 of Aliouche [3].
(7) If we let ϕ(t) = 1 in Corollary 2.13, we get an extension of Corollary 2.2

of Aamri and El Moutawakil [2].
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