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UNIQUENESS OF MEROMORPHIC FUNCTIONS
WITH REGARD TO MULTIPLICITY

HARINA PANDIT WAGHAMORE∗ AND NAVEENKUMAR HALAPPA SANNAPPALA

Communicated by H.M. Srivastava

Abstract. In this paper, we investigate the uniqueness problem on meromor-
phic functions concerning differential polynomials sharing one value. A unique-
ness result which related to multiplicity of meromorphic function is proved in
this paper. By using the notion of multiplicity, our results will generalise and
improve the result due to Chao Meng [J. Applied Math. Inform. 33 (2015),
no. 5-6, pp. 475–484].

1. Introduction and main results

Let f be a nonconstant meromorphic function in the whole complex plane. We
shall use the following standard notations of the value distribution theory:
T (r, f), N(r, f), N(r, f), m(r, f), (see [3], [14], [15]). The notation S(r, f) is de-
fined to be any quantity satisfying S(r, f) = o(T (r, f)) as r → ∞, r /∈ E, where
E is a set of positive real number of finite linear measure, not necessarily the
same at each occurrence. The notations T (r) and S(r) are defined, respectively,
by

T (r) = max {T (r, f), T (r, g)} , S(r) = o(T (r)) as r →∞, r /∈ E,

for any two nonconstant meromorphic functions f and g. A meromorphic function
a is called a small function with respect to f provided that T (r, a) = S(r, f).
Moreover, GCD(n1, n2, . . . , nk) denotes the greatest common divisor of positive
integers n1, n2, . . . , nk.

Let f and g be two nonconstant meromorphic functions, and let a ∈ C. We say
that f and g share the value a counting multiplicities (CM), provided that f − a
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and g−a have the same zeros with the same multiplicities. If f−a and g−a have
the same zeros, then we say that f and g share a ignoring multiplicities (IM).
Similarly, we immediately get the definitions of f and g share a IM (or CM),
where a is a small function of f and g. In addition, we also need the following
notation, for any a ∈ C = C ∪ {∞} ,

Θ(a, f) = 1− lim sup
r→∞

N(r, a; f)

T (r, f)
.

For a complex number a ∈ C ∪ {∞} and a positive integer k, we denote by
Ek(a, f) the set of all a-points of f where an a-point with multiplicity m is counted
m times if m ≤ k and k + 1 times if m > k. For a complex number a ∈ C∪{∞} ,
if Ek(a, f) = Ek(a, g), then we say that f and g share the value a with weight k.

We write f, g share (a, k) to mean that f, g share the value a with weight k.
Clearly if f, g share (a, k), then f, g share (a, p) for all integer p, 0 ≤ p ≤ k. Also
we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or
(a,∞), respectively. We call f and g share (z, k) if f − z and g − z share (0, k).

In 1997 Yang and Hua proved the following result.
Theorem A [13]. Let f and g be two nonconstant meromorphic functions, let
n ≥ 11 be an integer, and let a ∈ C − {0}. If fnf

′
and gng

′
share the value a

CM, then either f = dg for some (n + 1)th root of unity d or g(z) = c1e
cz and

f(z) = c2e
−cz, where c, c1 and c2 are constants and satisfy (c1c2)

n+1c2 = −a2.
In 2001, Fang and Hong obtained the following result.

Theorem B [2].Let f and g be two transcendental entire functions, and let
n ≥ 11 be an integer. If fn(f − 1)f

′
and gn(g − 1)g

′
share the value one CM,

then f ≡ g.

In 2004, Lin and Yi extended the above theorem in view of the fixed-point.
They proved the following result.
Theorem C [6]. Let f and g be two transcendental meromorphic functions, and
let n ≥ 13 be an integer. If fn(f − 1)2f

′
and gn(g − 1)2g

′
share z CM, then

f ≡ g.

In 2006, Lahiri and Pal proved the following result.
Theorem D [5]. Let f and g be two nonconstant meromorphic functions, and let
n ≥ 14 be an integer. If E3)

(
1, fn(f 3 − 1)f

′)
= E3)

(
1, gn(g3 − 1)g

′)
, then f ≡ g.

In 2008, Chao Meng relaxed the nature of fixed point to IM and proved the
following result.
Theorem E [7]. Let f and g be two transcendental meromorphic functions, and
let n ≥ 28 be an integer. If fn(f−1)2f

′
and gn(g−1)2g

′
share z IM, then f ≡ g.

In 2009, Chao Meng relaxed nature of sharing value in the above theorem and
proved the following result.
Theorem F [8]. Let f and g be two nonconstant meromorphic functions such
that fn(f 3 − 1)f

′
and gn(g3 − 1)g

′
share (1, l), where n is a positive integer such

that (n + 1) is not divisible by three. If
(i)l = 2 and n ≥ 14; (ii)l = 1 and n ≥ 17; (iii)l = 0 andn ≥ 35, then f ≡ g.
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In 2015, Chao Meng proved the following result.
Theorem G [9]. Let f and g be two nonconstant meromorphic functions, n ≥ 12
a positive integer. If fn(f 3− 1)f

′
and gn(g3− 1)g

′
share (1, 2) and f and g share

∞ IM , then f ≡ g.

In this paper, using the notion of multiplicity, we prove the following theorems.

Theorem 1.1. Let f and g be two nonconstant meromorphic functions, whose
zeros and poles are of multiplicities atleast s, where s is a positive integer. Let
n and m be positive integers with s(n − m − 3) ≥ 6, and let P (z) = amz

m +
am−1z

m−1 + · · · + a1z + a0, where a0 6= 0, a1, a2, . . . , am−1, am 6= 0 are complex
constants. If fnP (f)f

′
and gnP (g)g

′
share (1, 2) and f and g share ∞ IM, then

one of the following two cases holds:
(i)f ≡ tg for a constant t such that td = 1, where d = GCD(n + m + 1, . . . , n +
m + 1− i, . . . , n + 1) and am−i 6= 0 for some i = 0, 1, . . . ,m;
(ii)f and g satisfy the algebraic equation R(f, g) ≡ 0, where

R(w1, w2) = wn+1
1

(
amw

m
1

n + m + 1
+

am−1w
m−1
1

n + m
+ · · ·+ a0

n + 1

)
− wn+1

2

(
amw

m
2

n + m + 1
+

am−1w
m−1
2

n + m
+ · · ·+ a0

n + 1

)
.

Theorem 1.2. Let f and g be two nonconstant meromorphic functions, whose
zeros and poles are of multiplicities atleast s, where s is a positive integer. Let
nand m be positive integers with s(n −m) > 3k + 4 + (k + 2)s and Θ(∞, f) +
Θ(∞, g) > 4

n
, and let P (z) = amz

m + am−1z
m−1 + · · · + a1z + a0, where a0 6=

0, a1, a2, . . . , am−1, am 6= 0 are complex constants. If [fnP (f)](k) and [gnP (g)](k)

share (1, 2) and f and g share ∞ IM, then one of the following two cases holds:
(i)f ≡ tg for a constant t such that td = 1, where d = GCD(n + m, . . . , n + m−
i, . . . , n + 1, n) and am−i 6= 0 for some i = 0, 1, . . . ,m;
(ii)f and g satisfy the algebraic equation R(f, g) ≡ 0, where R(f, g) = fnP (f)−
gnP (g).

Remark 1.3. (1) We set P (z) = (z − 1)m. Then, with am = 1 and a0 = −1 and
under the condition (ii) of Theorem 1.1, Theorem 1.1 reduces to Theorem G, if
m = 3 and s = 1.

(2) Giving specific values for s in Theorem 1.1, we get the following interesting
cases:
i) If s = 1, then n ≥ m + 9.
ii) If s = 2, then n ≥ m + 6.
iii) If s = 3, then n ≥ m + 5.

We conclude that if f and g have zeros and poles of higher order multiplicity,
then we can reduce the values of n.

(3) In order to discuss the case of sharing IM , we have to replace the sharing
(1, 2) in the above Theorems 1.1 and 1.2 by (1, 0). Then we obtain the same result
for the value of n higher than the above mentioned Theorems 1.1 and 1.2.
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The following example shows that f and g share ∞ IM, in Theorems 1.1 and
1.2 can not be removed.

Example 1.4. Let P (z) = (z− 1)6(z + 1)6z11, f(z) = sinz, g(z) = cosz, k = 0,
and s = 1. It is easy to see that n > m + 6 and P (f(z))fn(z) = P (g(z))gn(z).
Therefore P (f(z))fn(z) and P (g(z))gn(z) share 1 CM . It is also clear that though
f and g satisfy R(f, g) = 0, where R(w1, w2) = P (w1)w1(z) − P (w2)w2(z), we
have f 6≡ tg for a constant t satisfying tm = 1, where m ∈ Z+.

2. Some lemmas

For the proof of our main results, we need the following lemmas.

Lemma 2.1. [1] If F and G share (1, 2) and (∞, k), where 0 ≤ k ≤ ∞, then one
of the following cases holds:
(1) T (r, F ) ≤ N2(r,

1
F

)+N2(r,
1
G

)+N(r, F )+N(r,G)+N∗(r,∞;F,G)+S(r, F )+
S(r,G), the same inequality holds for T (r,G);

(2) F ≡ G;
(3) FG ≡ 1.

Lemma 2.2. [16] Suppose that f(z) is a nonconstant meromorphic function in
the complex plane and that k is a positive integer. Then

N

(
r,

1

f (k)

)
≤ N

(
r,

1

f

)
+ kN(r, f) + S(r, f).

Lemma 2.3. [17] Let f be a nonconstant meromorphic function, and let p and
k be positive integers. Then

Np

(
r,

1

f (k)

)
≤ T

(
r, f (k)

)
− T (r, f) + Np+k

(
r,

1

f

)
, (2.1)

Np

(
r,

1

f (k)

)
≤ kN(r, f) + Np+k

(
r,

1

f

)
+ S(r, f). (2.2)

Lemma 2.4. [12] Let f be a nonconstant meromorphic function, and let a1, a2, . . . ,
an (6= 0) be finite complex numbers. Then
T (r, anf

n + an−1f
n−1 + · · ·+ a1f + a0) = nT (r, f) + S(r, f).

Lemma 2.5. [10] Let f and g be two nonconstant meromorphic functions. Then
fnP (f)f

′
gnP (g)g

′ 6= 1, where n + m(≥ 6) is a positive integer.

Lemma 2.6. [4] Let f and g be two nonconstant meromorphic functions such
that Θ(∞, f) + Θ(∞, g) > 4

n
for all integers n ≥ 3. Then fn(af + b) = gn(ag + b)

implies f = g, where a and b are two finite nonzero complex constants.

Lemma 2.7. Let f and g be two nonconstant meromorphic functions whose zeros
and poles are of multiplicities at least s, where s is a positive integer, and let n
and k be positive integers. Let F = [fnP (f)](k) and G = [gnP (g)](k), where p(z)
is defined as in Theorem 1.1. If there exist two nonzero constants b1 and b2 such

that N
(
r, 1

F

)
= N

(
r, 1

G−b1

)
and N

(
r, 1

G

)
= N

(
r, 1

F−b2

)
, then (n−m)s ≤ 3k+3.
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Proof. By the second fundamental theorem of Nevanlinna’s theory,

T (r, F ) ≤ N

(
r,

1

F

)
+ N(r, F ) + N

(
r,

1

F − b2

)
+ S(r, F )

≤ N

(
r,

1

F

)
+ N(r, F ) + N

(
r,

1

G

)
+ S(r, F ).

(2.3)

Combining (2.1), (2.2), (2.3), and Lemma 2.4, we get

(n + m)T (r, f) ≤ T (r, F )−N

(
r,

1

F

)
+ Nk+1

(
r,

1

fnP (f)

)
+ S(r, f)

≤ N

(
r,

1

G

)
+ N(r, f) + Nk+1

(
r,

1

fnP (f)

)
+ S(r, f)

≤ Nk+1

(
r,

1

fnP (f)

)
+ Nk+1

(
r,

1

gnP (g)

)
+ kN(r, g)

+ N(r, f) + S(r, f) + S(r, g)

≤
(
k + 2

s
+ m

)
T (r, f) +

(
2k + 1

s
+ m

)
T (r, g)

+ S(r, f) + S(r, g)

≤
(

3k + 3

s
+ 2m

)
T (r) + S(r).

(2.4)

Similarly, for the case of g,

(n + m)T (r, g) ≤
(

3k + 3

s
+ 2m

)
T (r) + S(r). (2.5)

It follows from (2.4) and (2.5) that(
n−m−

(
3k + 3

s

))
T (r) ≤ S(r)

which gives (n−m)s ≤ 3k + 3. This completes the proof. �

Lemma 2.8. [11] Let f and g be two nonconstant meromorphic functions, and
let n(≥ 1), k(≥ 1), and m(≥ 1) be integers. Then
[fnP (f)](k)[gnP (g)](k) 6= 1.

3. Poof of theorems

Proof of Theorem 1.1. Let

F = fnP (f)f
′
, G = gnP (g)g

′
, (3.1)

F ∗ =
am

m + n + 1
fm+n+1 +

am−1
m + n

fm+n + · · ·+ a0
n + 1

fn+1, (3.2)

and G∗ =
am

m + n + 1
gm+n+1 +

am−1
m + n

gm+n + · · ·+ a0
n + 1

gn+1. (3.3)
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Thus we obtain that F and G share (1, 2). If possible, let the case 1 of Lemma
2.1; that is,

T (r, F ) ≤ N2

(
r,

1

F

)
+ N2

(
r,

1

G

)
+ N(r, F ) + N(r,G) + N∗(r,∞;F,G)

+ S(r, F ) + S(r,G). (3.4)

Moreover, by Lemma 2.4, we have

T (r, F ∗) = (m + n + 1)T (r, f) + S(r, f), (3.5)

T (r,G∗) = (m + n + 1)T (r, g) + S(r, g).

Since (F ∗)
′
= F, we deduce

m

(
r,

1

F ∗

)
= m

(
r,

1

F

)
+ S(r, f).

By Nenanlinna’s first fundamental theorem, we get

T (r, F ∗) ≤ N(r, F ) + N

(
r,

1

F ∗

)
−N

(
r,

1

F

)
+ S(r, f)

≤ T (r, F ) + N

(
r,

1

f

)
+

m∑
i=1

N

(
r,

1

f − bi

)
−

m∑
i=1

N

(
r,

1

f − ci

)
−N

(
r,

1

f ′

)
+ S(r, f),

(3.6)

where b1, b2, . . . , bm are roots of algebraic equation

am
m + n + 1

zm +
am−1
m + n

zm−1 + · · ·+ a0
n + 1

= 0,

and c1, c2, . . . , cm are roots of algebraic equation amz
m +am−1z

m−1 + · · ·+a0 = 0.

It follows from (3.4) and (3.6) that

T (r, F ∗) ≤ N2

(
r,

1

F

)
+ N2

(
r,

1

G

)
+ N(r, F ) + N(r,G) + N∗(r,∞;F,G)

+ N

(
r,

1

f

)
+

m∑
i=1

N

(
r,

1

f − bi

)
−

m∑
i=1

N

(
r,

1

f − ci

)
−N

(
r,

1

f ′

)
+ S(r, f).

(3.7)

It follows from (3.1) that

N2

(
r,

1

F

)
+ N(r, F ) ≤ 2N

(
r,

1

f

)
+ N

(
r,

1

f − c1

)
+ · · ·+ N

(
r,

1

f − cm

)
+ N

(
r,

1

f ′

)
+ N(r, f). (3.8)
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N2

(
r,

1

G

)
+ N(r,G) ≤ 2N

(
r,

1

g

)
+ N

(
r,

1

g − c1

)
+ · · ·+ N

(
r,

1

g − cm

)
+ N

(
r,

1

g′

)
+ N(r, g). (3.9)

From (3.7), (3.8), and (3.9), we obtain

T (r, F ∗) ≤ 2N

(
r,

1

f

)
+ N

(
r,

1

f − b1

)
+ · · ·+ N

(
r,

1

f − bm

)
+ N

(
r,

1

f

)
+ 2N

(
r,

1

g

)
+ N

(
r,

1

g − c1

)
+ · · ·+ N

(
r,

1

g − cm

)
+ N

(
r,

1

g′

)
+ N∗(r,∞;F,G) + N(r, f) + N(r, g) + S(r, f) + S(r, g).

(3.10)

By Lemma 2.2, we have

N

(
r,

1

g′

)
≤ N

(
r,

1

g

)
+ N(r, g) + S(r, f). (3.11)

Also, we have

N(r, f) + N(r, g) + N∗(r,∞;F,G) ≤ N(r, f) + N(r, g). (3.12)

By our assumption, zeros and poles of f and g are of multiplicities atleast s; we
have

N(r, g) ≤ 1

s
N(r, g) ≤ 1

s
T (r, g), (3.13)

N(r,
1

g
) ≤ 1

s
N(r,

1

g
) ≤ 1

s
T (r, g). (3.14)

We deduce from (3.10)–(3.14) that

(n + m + 1)T (r, f) ≤
(

2

s
+ m + 2

)
T (r, f) +

(
3

s
+ m + 2

)
T (r, g) (3.15)

+ S(r, f) + S(r, g),(
n− 2

s
− 1

)
T (r, f) ≤

(
3

s
+ m + 2

)
T (r, g) + S(r, f) + S(r, g).

(3.16)

Similarly,(
n− 2

s
− 1

)
T (r, g) ≤

(
3

s
+ m + 2

)
T (r, f)+S(r, f)+S(r, g).

(3.17)
From (3.15) and (3.17), we deduce that (n−m− 3)s ≤ 5, which contradicts the
assumption (n−m− 3)s ≥ 6.

Case 2: Suppose FG ≡ 1, by Lemma 2.5, we get a contradiction.

Case 3: If F ≡ G, that is

F ∗ = G∗ + c,
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where c is a constant, then it follows that

T (r, f) = T (r, g) + S(r, f). (3.18)

Suppose that c 6= 0, by (3.2), (3.3), (3.5), (3.13), (3.14), (3.18), the second
fundamental theorem, and lemma 2.4 we have

T (r,G∗) ≤ N

(
r,

1

G∗

)
+ N

(
r,

1

G∗ + c

)
+ N(r,G∗) + S(r, g)

(n + m + 1)T (r, g) ≤ N

(
r,

1

G∗

)
+ N

(
r,

1

F ∗

)
+ N(r,G∗) + S(r, g)

≤ N

(
r,

1

g

)
+ N

(
r,

1

gm + · · ·+ m+n+1
n+1

a0
am

)
+ N

(
r,

1

f

)

+ N

(
r,

1

fm + · · ·+ m+n+1
n+1

a0
am

)
+ N(r, g) + S(r, g)

≤
(

3

s
+ 2m

)
T (r, f) + S(r, f) + S(r, g),

(3.19)

which contradicts our assumption (n−m− 3)s ≥ 6. Therefore F ∗ = G∗ that is,

fn+1

(
amf

m

m + n + 1
+

am−1f
m−1

m + n
+ · · ·+ a0

n + 1

)
= gn+1

(
amg

m

m + n + 1
+

am−1g
m−1

m + n
+ · · ·+ a0

n + 1

)
. (3.20)

Let h = f
g
. If h is constant, then, substituting f = gh into (3.20), we deduce,

amg
m+n+1 (hm+n+1 − 1)

m + n + 1
+

am−1g
m+n (hm+n − 1)

m + n
+ · · ·+ a0g

n+1 (hn+1 − 1)

n + 1
= 0,

(3.21)
which implies hd = 1, where d = (n + m + 1, n + m, . . . , n + m + 1 − i, . . . , n +
1), am−i 6= 0 for some i = 0, 1, . . . ,m.

Thus f = tg, for a constant t, such that td = 1, where d = (n + m + 1, n +
m, . . . , n + m + 1− i, . . . , n + 1), am−i 6= 0, for some i = 0, 1, . . . ,m.

If h is not constant, then, by (3.21), f and g satisfy the algebraic equation
R(f, g) ≡ 0, where

R(w1, w2) = wn+1
1

(
amw

m
1

n + m + 1
+

am−1w
m−1
1

n + m
+ · · ·+ a0

n + 1

)
− wn+1

2

(
amw

m
2

n + m + 1
+

am−1w
m−1
2

n + m
+ · · ·+ a0

n + 1

)
.

This completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. Let

F = [fnP (f)](k), G = [gnP (g)](k), (3.22)
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F ∗ =
am(n + m)!

(n + m− k + 1)!
fn+m−k+1 +

am−1(n + m− 1)!

(n + m− k)!
fn+m−k

+ · · ·+ a0 n!

(n− k + 1)!
fn−k+1, (3.23)

and G∗ =
am(n + m)!

(n + m− k + 1)!
gn+m−k+1 +

am−1(n + m− 1)!

(n + m− k)!
gn+m−k

+ · · ·+ a0 n!

(n− k + 1)!
gn−k+1. (3.24)

Thus we obtain that F and G share (1, 2). If possible, let the case 1 of Lemma
2.1; that is,

T (r, F ) ≤ N2

(
r,

1

F

)
+ N2

(
r,

1

G

)
+ N(r, F ) + N(r,G) + N∗(r,∞;F,G)

+ S(r, F ) + S(r,G). (3.25)

Moreover, by Lemma 2.4, we have

T (r, F ∗) = (n + m− k + 1)T (r, f) + S(r, f), (3.26)

T (r,G∗) = (n + m− k + 1)T (r, g) + S(r, g). (3.27)

Since (F ∗)
′
= F, we deduce

m

(
r,

1

F ∗

)
= m

(
r,

1

F

)
+ S(r, f). (3.28)

By Nenanlinna’s first fundamental theorem, we get

T (r, F ∗) ≤ N(r, F ) + N

(
r,

1

F ∗

)
−N

(
r,

1

F

)
+ S(r, f)

≤ T (r, F ) + N

(
r,

1

f

)
+

m∑
i=1

N

(
r,

1

f − bi

)
−

m∑
i=1

N

(
r,

1

f − ci

)
− kN(r, f) + S(r, f),

(3.29)

where b1, b2, . . . , bm are roots of algebraic equation

am(n + m)!

(n + m− k + 1)!
zm +

am−1(n + m− 1)!

(n + m− k)!
zm−1 + · · ·+ a0n!

(n− k + 1)!
= 0,

and c1, c2, . . . , cm are roots of algebraic equation amz
m +am−1z

m−1 + · · ·+a0 = 0.
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It follows from (3.25) and (3.29) that

T (r, F ∗) ≤ N2

(
r,

1

F

)
+ N2

(
r,

1

G

)
+ N(r, F ) + N(r,G) + N∗(r,∞;F,G)

+ N

(
r,

1

f

)
+

m∑
i=1

N

(
r,

1

f − bi

)
−

m∑
i=1

N

(
r,

1

f − ci

)
− kN(r, f)

+ S(r, f).
(3.30)

It follows from (3.22) that

N2

(
r,

1

F

)
+ N(r, F ) = N2

(
r,

1

[fnP (f)](k)

)
+ N(r, F )

≤ (k + 2)N

(
r,

1

f

)
+ N

(
r,

1

f − c1

)
+ · · ·+ N

(
r,

1

f − cm

)
+ (k + 1)N(r, f),

(3.31)

N2

(
r,

1

G

)
+ N(r,G) = N2

(
r,

1

[gnP (g)](k)

)
+ N(r,G)

≤ (k + 2)N

(
r,

1

g

)
+ N

(
r,

1

g − c1

)
+ · · ·+ N

(
r,

1

g − cm

)
+ (k + 1)N(r, g).

(3.32)

From (3.30), (3.31), and (3.32), we obtain

T (r, F ∗) ≤ (k + 2)N

(
r,

1

f

)
+ N

(
r,

1

f − b1

)
+ · · ·+ N

(
r,

1

f − bm

)
+ kN(r, f) + N(r, f) + (k + 2)N

(
r,

1

g

)
+ kN(r, g) + N(r, g)

+ N

(
r,

1

g − c1

)
+ · · ·+ N

(
r,

1

g − cm

)
+ N∗(r,∞;F,G) + N

(
r,

1

f

)
− kN(r, f) + S(r, f) + S(r, g).

(3.33)

Also, we have

N(r, f) + N(r, g) + N∗(r,∞;F,G) ≤ N(r, f) + N(r, g). (3.34)

By our assumption, zeros and poles of f and g are of multiplicities atleast s; we
have

N(r, g) ≤ 1

s
N(r, g) ≤ 1

s
T (r, g) (3.35)

N(r,
1

g
) ≤ 1

s
N(r,

1

g
) ≤ 1

s
T (r, g). (3.36)
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We deduce from (3.33)–(3.36) that

(n + m− k + 1)T (r, f) ≤
(
k + 2

s
+ 2 + m

)
T (r, f) +

(
2k + 2

s
+ 1 + m

)
T (r, g)

+ S(r, f) + S(r, g)(
n− 1− k − (k + 2)

s

)
T (r, f) ≤

(
2k + 2

s
+ 1 + m

)
T (r, g)+S(r, f)+S(r, g).

(3.37)
Similarly,(
n− 1− k − (k + 2)

s

)
T (r, g) ≤

(
2k + 2

s
+ 1 + m

)
T (r, f)+S(r, f)+S(r, g).

(3.38)
From (3.37) and (3.38), we deduce that (n − m)s ≤ 3k + 4 + (k + 2)s, which
contradicts the assumption (n−m)s > 3k + 4 + (k + 2)s.

Case 2: Suppose that FG ≡ 1; by Lemma 2.8, we get a contradiction.

Case 3: If F ≡ G, then this implies that

[fnP (f)](k) = [gnP (g)](k). (3.39)

Integrating for (3.39), we have

[fnP (f)](k−1) = [gnP (g)](k−1) + bk−1, (3.40)

where bk−1 is constant. If bk−1 6= 0, we obtain (n−m)s ≤ 3k+3 < 3k+4+(k+2)s
by Lemma 2.7. This is a contradiction with our assumption that (n − m)s >
3k + 4 + (k + 2)s. Thus bk−1 = 0. By repeating k times,

fnP (f) = gnP (g). (3.41)

If m = 1 in (3.41), then f = g by Lemma 2.6. Suppose that m ≥ 2 and h = f
g
. If

h is constant, putting f = gh in (3.41), we get

amg
n+m

(
hn+m − 1

)
+am−1g

n+m−1 (hn+m−1 − 1
)
+· · ·+a0g

n (hn − 1) = 0, (3.42)

which implies hd = 1, where d = GCD(n+m, . . . , n+m− i, . . . , n+ 1, n). Hence
f ≡ tg for a constant t such that td = 1, d = GCD(n+m, . . . , n+m− i, . . . , n+
1, n), i = 0, 1, . . . ,m.

If h is not constant, then we can see that f and g satisfy the algebraic equation
R(f, g) = 0, by (3.42), where R(f, g) = fnP (f)− gnP (g).
This completes the proof of Theorem 1.2. �

4. Open problems.

Following questions are posed from the results:
Question 4.1. Can n in Theorems 1.1–1.2 be still reduced?
Question 4.2. Is it possible to replace the nonconstant meromorphic functions
by nonconstant entire functions?
Question 4.3. What can be said about if the sharing one value is replaced by a
small function?
Question 4.4. Can (1, 2) shared value be replaced by (1, l) (l ≥ 0) shared value
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in Theorems 1.1–1.2?

Acknowledgement. The authors would like to thank the anonymous referee’s
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