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SOLVABILITY OF NONLINEAR GOURSAT TYPE PROBLEM
FOR HYPERBOLIC EQUATION WITH INTEGRAL

CONDITION

TAKI-EDDINE OUSSAEIF 1∗ AND ABDELFATAH BOUZIANI 2

Communicated by C. Zhang

Abstract. This paper is concerned with the existence and uniqueness of a
strong solution for linear problem by using a functional analysis method, which
is based on an energy inequality and the density of the range of the operator
generated by the problem. Applying an iterative process based on results
obtained from the linear problem, we prove the existence and uniqueness of
the weak generalized solution of nonlinear hyperbolic Goursat problem with
integral condition.

1. Introduction

The Goursat problem arises in linear and nonlinear partial differential equations
with mixed derivatives. The standard form of the Goursat problem is given by

uxt = f(x, t, u, ux, ut) 0 ≤ x ≤ a, 0 ≤ t ≤ T,

u(x, 0) = g (x) , u(0, t) = h (t) ,

g (0) = h (0) = u(0, 0).

The Goursat problem is named after the French mathematician Èdouard Gour-
sat, where in [16] he studied a linear problem: uxt = a(x, t)ux + b(x, t)ut +
c(x, t)u + f(x, t). The Goursat problem associated with hyperbolic partial dif-
ferential equations arises in several areas of physics and engineering. Frisch and
Chao [15], Cheung [14], Kaup and Newell [21], Ying and Wang, [27], Hillion [17],
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McClaughlin et al. [24] ,Chen and Li [13], and Kaup and Steudel [22] described
in detail areas of applications, where a Goursat problem arises.

Cannon was the first who drew attention to these problems with an integral
condition in [9], and the importance of the problems with integral conditions has
been pointed out by Samarskii [25].

Mathematical modeling of problems with integral conditions is encountered in
various applications in chemical engineering, thermoelasticity, underground water
flow, plasma physics, and population dynamics.

More works related to these problems with an integral condition have been
published, among them we cite the works of Kartynnik [20], Ionkin [18] Cannon
and van der Hoek [11, 12], Yurchuk [28], Cannon, Esteva, and van der Hoek
[10], Lin [23], Benouar and Yurchuk [1], Shi [26], Bouziani [2, 3, 4], Bouziani and
Benouar [5, 6, 7], and Jumarhon and McKee [19]. Motivated by this, we study a
nonlinear Goursat type problem for hyperbolic equation with integral condition,
Our proof is based on a priori estimate and on the fact that the range of the
operator generated by the considered problem is dense.

2. Formulation of the problem

In the rectangle Q = (0, b) × (0, T ), with T < ∞, we consider the nonlinear
Goursat hyperbolic equation:

Lu =
∂2u

∂x∂t
+ p(x, t)

∂u

∂t
+ q(x, t)

∂u

∂x
= f

(
x, t, u,

∂u

∂x

)
, (x, t) ∈ Q, (2.1)

with the initial data

`u = u(x, 0) = ϕ (x) , x ∈ [0, b] , (2.2)

and integral condition ∫ b

0

u (x, t) dx = 0, t ∈ [0, T ] , (2.3)

where p(x, t) and q(x, t) satisfy the conditions:

p, q ∈ C2
(
Q
)
, c0 ≤ q(x, t) ≤ c1, ∂q(x,t)

∂t
≤ c2, ∂q(x,t)

∂x
≤ c3, (2.4)

and 2ε < c4 ≤ ∂p(x,t)
∂t
≤ c5, p(x, t) ≤ c6 where ε << 1, (x, t) ∈ Q, (2.5)

where ci, i = 0, 6, and ε are positive constants. The functions f and ϕ are known
functions.

We shall assume that there exists a positive constant L such that

|f(x, t, u1, v1)− f(x, t, u2, v2)| ≤ L (|u1 − u2|+ |v1 − v2|) for all (x, t) ∈ Q.
(2.6)

This paper is organized as follows: In Section 3, we state and pose the linear prob-
lem associated to (2.1)–(2.3) and introduce the function spaces used throughout
the paper as well. Then in Section 4, we prove the uniqueness of the solution of
the linear problem. In Section 5, we show the existence of solutions. Finally, in
Section 6, on the basis of the results obtained in Sections 4 and 5, and on the use
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of an iterative process, we prove the existence and uniqueness of the solution of
the nonlinear problem (2.1)–(2.3).

3. The linear problem

Let us, in this section, give the position of the linear problem and introduce
the different function spaces needed to investigate the Goursat problem given by
the hyperbolic equation:

Lu =
∂2u

∂x∂t
+ p(x, t)

∂u

∂t
+ q(x, t)

∂u

∂x
= f (x, t) , (x, t) ∈ Q. (3.1)

We employ certain function spaces to investigate our problem. Let L2 (0, b) and
L2 (0, T ;L2 (0, b)) be the standard functional spaces. We denote by C0 (0, b) the
vector space of continuous functions with compact support in (0, b) . Since such
functions are Lebesgue integrable with respect to dx, we can define on C0 (0, b)
the bilinear form given by

(u,w) =

∫ b

0

=∗xu · =∗xw dx, (3.2)

where

=∗xu =

∫ b

x

u (ξ, t) dξ.

The bilinear form (3.2) is considered as a scalar product on C0 (0, b) for which
C0 (0, b) is not complete.

Definition 3.1. We denote by B1
2 (0, b) a completion of C0 (0, b) for the scalar

product (3.2), which is denoted (·, ·)B1
2(0,b) , called the Bouziani space or the space

of square integrable primitive functions on (0, b) . By the norm of function u from
B1

2 (0, b), we understand the non-negative number:

‖u‖B1
2(0,b) =

√
(u, u)B1

2(0,b) = ‖=∗xu‖L2(0,b) . (3.3)

For u ∈ L2 (0, b) , we have the elementary inequality

‖u‖B1
2(0,b) ≤

b√
2
‖u‖L2(0,b) . (3.4)

We denote by L2 (0, T ;B1
2 (0, b)) the space of functions, which are square inte-

grable in the Bochner sense, with the scalar product

(u,w)L2(0,T ; B1
2(0,b)) =

∫ T

0

(u (•, t) , w (•, t))B1
2(0,b) dt. (3.5)

Since the space B1
2 (0, b) is a Hilbert space, it can be shown that L2 (0, T ;B1

2 (0, b))
is a Hilbert space as well. The set of all continuous abstract functions in [0, T ]
equipped with the norm

sup
0≤τ≤T

‖u (·, τ)‖B1
2(0,b) , (3.6)

is denoted by C (0, T ;B1
2 (0, b)) .
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In this paper, we prove the existence and the uniqueness for a strong solution
of the problem (3.2), (2.1)–(2.3) as a solution of the operator equation

Lu = F (3.7)

where L = (L, `), with domain of definition D(L) consisting of functions u ∈
L2 (Q) such that ∂u

∂t
, ∂u
∂x

, and ∂2u
∂t∂x
∈ L2 (0, T ;B1

2 (0, b)) and u satisfies the condition
(2.3) the operator L is considered from B to F, where B is the Banach space
consisting of all functions u(x, t) having a finite norm

‖u‖2
B =

∥∥∥∥∂u∂t
∥∥∥∥2

L2(0,T ; L2(0,b))

+

∥∥∥∥∂u∂t
∥∥∥∥2

L2(0,T ; B1
2(0,b))

+ sup
0≤τ≤T

‖u (·, τ)‖2
L2(0,b) ,

and satisfying the condition (2.3) and F is the Hilbert space consisting of all
elements F = (f, ϕ) for which the norm

‖F‖2
F = ‖f‖2

L2(0,T ; L2(0,b)) + ‖ϕ‖2
L2(0,b)

is finite.
Then, we establish the energy inequality:

‖u‖B ≤ c ‖Lu‖F ,

and we show that the operator L has a closure L.

Definition 3.2. A solution of the operator equation

Lu = F

is called a strong solution of the problem (3.1), (2.1)–(2.3).

Since points of the graph L are limits of sequences of points of the graph of L,
we can extend (3.7) to apply to strong solution by taking limits; that is,

‖u‖B ≤ c
∥∥Lu∥∥

F
∀u ∈ D(L).

From this inequality we obtain the uniqueness of a strong solution if it exists,
and the the equality of sets R(L) and R(L). Thus, proving that the set R(L) is
dense in F.

4. An energy inequality and its consequences

Theorem 4.1. For any function u ∈ D(L), there exists a positive constant c,
such that

‖u‖B ≤ c ‖Lu‖F . (4.1)

Proof. Multiplying the equation (3.1) by the following Mu :

Mu = =∗xut,
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and integrating over Qτ , where Qτ = (0, b)× (0, τ), we get∫
Qτ
Lu ·Mudxdt =

∫
Qτ

∂2u

∂x∂t
=∗xutdxdt+

∫
Qτ
p(x, t)

∂u

∂t
=∗xutdxdt

+

∫
Qτ
q(x, t)

∂u

∂x
=∗xutdxdt

=

∫
Qτ
f(x, t)=∗xutdxdt. (4.2)

Standard integration by parts each term in (4.2) by using the condition (2.3), we
obtain ∫

Qτ

∂2u

∂x∂t
=∗xutdxdt =

∫ τ

0

∂u

∂t
=∗xut

∣∣∣∣x=b

x=0

dt+

∫
Qτ

(
∂u

∂t

)2

dxdt

=

∫
Qτ

(
∂u

∂t

)2

dxdt, (4.3)

∫
Qτ
p(x, t)

∂u

∂t
=∗xutdxdt = −1

2

∫ τ

0

p(x, t) (=∗xut)
2

∣∣∣∣x=b

x=0

dt

+
1

2

∫
Qτ

∂p(x, t)

∂x
(=∗xut)

2 dxdt

=
1

2

∫
Qτ

∂p(x, t)

∂x
(=∗xut)

2 dxdt, (4.4)

∫
Qτ
q(x, t)

∂u

∂x
=∗xutdxdt =

∫ τ

0

q(x, t)u=∗xut
∣∣∣∣x=b

x=0

dt+

∫
Qτ
q(x, t)uutdxdt

−
∫
Qτ

∂q(x, t)

∂x
u=∗xutdxdt

=
1

2

∫ b

0

q(x, τ)u2dx− 1

2

∫ b

0

q(x, 0)ϕ2dx

−1

2

∫
Qτ

∂q(x, t)

∂t
u2dxdt

−
∫
Qτ

∂q(x, t)

∂x
u=∗xutdxdt. (4.5)

By virtue of the Cauchy inequality with ε,

ab ≤ ε

2
a2 +

1

2ε
b2, a, b ∈ R,

we obtain ∫
Qτ
f(x, t)=∗xutdxdt ≤

1

2ε

∫
Qτ
f 2dxdt+

ε

2

∫
Qτ

(=∗xut)
2 dxdt, (4.6)
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and∫
Qτ

∂q(x, t)

∂x
u=∗xutdxdt ≤

1

2ε

∫
Qτ

(
∂q(x, t)

∂x
u

)2

dxdt+
ε

2

∫
Qτ

(=∗xut)
2 dxdt. (4.7)

Substituting (4.3)–(4.5) into (4.2), and according to (4.6) and (4.7) and the con-
dition (2.5) we get:∫

Qτ

(
∂u

∂t

)2

dxdt+
c4

2

∫
Qτ

(=∗xut)
2 dxdt+

c0

2

∫ b

0

u (x, τ)2 dx

≤ 1

2ε

∫
Qτ
f 2dxdt+ ε

∫
Qτ

(=∗xut)
2 dxdt

+
c1

2

∫ b

0

ϕ2dx+

(
c2

2

2ε
+
c3

2

)∫
Qτ
u2dxdt.

By using Lemma 1 in [8] we obtain∫
Qτ

(
∂u

∂t

)2

dxdt+

∫
Qτ

(=∗xut)
2 dxdt+

∫ b

0

u (x, τ)2 dx

≤ k

(∫
Qτ
f 2dxdt+

∫ b

0

ϕ2dx

)
(4.8)

where

k =
max

(
c1
2
, 1

2ε

)
min

(
1, c4

2
− ε, c0

2

) exp

((
c2

2

2ε
+
c3

2

)
T

)
.

The right-hand side of (4.8) is independent of τ , hence replacing the left-hand
side by its upper bound with respect to τ from 0 to T, we obtain the desired

inequality, where c = (k)
1
2 . �

Proposition 4.2. The operator L from B to F admits a closure.

Proof. Suppose that {un} ∈ D (L) is a sequence such that

un → 0 in B (4.9)

and

Lun → (f, ϕ) in F ; (4.10)

we must show that f ≡ 0 and ϕ ≡ 0.
According to (4.9), we get

un → 0 in D′ (Q) .

By virtue of the continuity of derivation of D′ (Q) in D′ (Q), we deduce that

Lun → 0 in D′ (Q) . (4.11)

Further, according to (4.10) we have

Lun → f in L2 (Q) ; (4.12)

thus we have

Lun → f in D′ (Q) . (4.13)
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Then by of the uniqueness of the limit in D′ (Q), we see that f ≡ 0. On the other
hand, (4.10) implies that

`un → ϕ in L2 (0, b) . (4.14)

Moreover, since by virtue of (4.9) and the fact that∫ b

0

(`un)2 dx ≤ ‖un‖2
B ∀n,

we have
`un → 0 in L2 (0, b) . (4.15)

Now the uniqueness of the limit in L2 (0, b) implies that ϕ ≡ 0. �

Theorem 4.1 is valid for strong solution; that is, we have the inequality

‖u‖B ≤ c
∥∥Lu∥∥

F
∀u ∈ D(L). (4.16)

Hence we obtain the following result.

Corollary 4.3. A strong solution of the problem (3.1), (2.2)–(2.3) is unique if it
exists and depends continuously on F = (f, ϕ) ∈ F.

Corollary 4.4. The range R(L) of the operator L is closed in F , and R(L) =

R(L).

5. Existence of solutions

To show the existence of solutions, we prove that R(L) is dense in F for all
u ∈ D (L) and for arbitrary F = (f, ϕ) ∈ F.
Theorem 5.1. Suppose the conditions of theorem 4.1 are satisfied. Then the

problem (3.1), (2.2)–(2.3) admits a unique strong solution u = L
−1F = L−1F .

Proof. First we prove that R(L) is dense in F , for the special case, where D (L)
is reduced to D0 (L) , where D0 (L) = {u, u ∈ D (L) : `u = 0} . �

Proposition 5.2. Let the conditions of theorem 5.1 be satisfied. If, for ω ∈
L2 (Q) and for all u ∈ D0 (L) , we have∫

Q

Lu.ω dxdt = 0, (5.1)

then ω vanishes almost everywhere in Q.

Proof. The scalar product of F is defined by

(Lu, ω)F =

∫
Q

Lu.ωdxdt (5.2)

the equality (5.1) can be written as follows:∫
Q

∂2u

∂x∂t
ωdxdt = −

∫
Q

(
p(x, t)

∂u

∂t
+ q(x, t)

∂u

∂x

)
ωdxdt. (5.3)

If we put

u(x, t) =

{
=?xz if t 6= 0,
0 if t = 0,
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such that z, ∂z
∂t
, ∂=

?
xz
∂t
∈ L2 (Q) , then z satisfies the condition (2.3). As a result of

(5.3), we obtain the equality∫
Q

∂z

∂t
ωdxdt = −

∫
Q

(
p(x, t)

∂=?xz
∂t

+ q(x, t)z

)
ωdxdt = 0. (5.4)

In terms of the given function ω, and from the equality (5.4) we give the function
ω in terms of z as follows:

ω =
∂z

∂t
, so ω ∈ L2 (Q) , (5.5)

and z satisfies the same condition of the function u and

z (x, T ) = 0. (5.6)

Replacing ω in (5.4) by its representation (5.5), we obtain∫
Q

(
∂z

∂t

)2

dxdt = −
∫
Q

(
p(x, t)

∂ (=?xz)

∂t

∂z

∂t
+ q(x, t)z

∂z

∂t

)
dxdt. (5.7)

Integrating by parts each term in the right-hand side of (5.7) with respect to x
and t by taking the conditions of the function z yields

−
∫
Q

p(x, t)
∂ (=?xz)

∂t

∂z

∂t
dxdt = −1

2

∫
Q

∂p(x, t)

∂x

(
=?x
∂z

∂t

)2

dxdt, (5.8)

−
∫
Q

q(x, t)z
∂z

∂t
dxdt =

1

2

∫
Q

∂q(x, t)

∂t
z2dxdt− 1

2

∫ α

0

q (x, t) z2
∣∣t=T
t=0

dx

= −1

2

∫
Q

∂q(x, t)

∂t
z2dxdt+

1

2

∫ b

0

q (x, T ) z (x, T )2 dx

−1

2

∫ b

0

q (x, t) z (x, 0)2 dx. (5.9)

We combining (5.8) and (5.9) in (5.7), we get∫
Q

(
∂z

∂t

)2

dxdt = −1

2

∫
Q

∂p(x, t)

∂x

(
=?x
∂z

∂t

)2

dxdt− 1

2

∫
Q

∂q(x, t)

∂t
z2dxdt

−1

2

∫ b

0

q (x, t) z (x, 0)2 dx, (5.10)

and thus z = 0 in Q; then ω = 0 in Q. This proves Proposition 5.2. �

Theorem 5.3. Suppose that the conditions of Theorem 4.1 are satisfied. Then

the problem (3.1), (2.2)–(2.3) admits a unique strong solution u = L
−1F = L−1F .

Proof. First we prove that R(L) is dense in F , for the special case, where D (L)
is reduced to D0 (L) , where D0 (L) = {u, u ∈ D (L) : `u = 0} . �

We return to the proof of Theorem 5.1. We have already noted that it is
sufficient to prove that the set R(L) dense in F.
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The rest of proof of Theorem 5.1. Suppose that, for some W = (ω, ω0) ∈ R(L)⊥

and for all u ∈ D(L), it holds

(Lu, ω)F =

∫
Q

Lu.ωdxdt+

∫ 1

0

`u.ω0dx = 0. (5.11)

Then we must prove that W = 0. Putting u ∈ D0(L) in (5.11), we have∫
Q

Lu.ωdxdt = 0, u ∈ D0(L).

Hence Proposition 5.2 implies that ω = 0. Thus (5.11) takes the form∫ 1

0

(`u) (ω0) dx = 0, u ∈ D(L). (5.12)

Since the range of the trace operator ` is dense in the Hilbert F space with the
norm (∫ 1

0

(`u)2 dx

) 1
2

,

the equality (5.12) implies that ω0 = 0 (we recall satisfies a compatibility condi-
tions). Hence W = 0. This completes the proof of Theorem 5.1. �

6. The nonlinear problem

This section is consecrated to the proof of the existence, uniqueness, and con-
tinuous dependence of the solution on the data of the problem (2.1)–(2.3). Let
us consider the following auxiliary problem with homogeneous equation:

Lu =
∂2w

∂x∂t
+ p(x, t)

∂w

∂t
+ q(x, t)

∂w

∂x
= 0, (x, t) ∈ Q, (6.1)

`w = w(x, 0) = ϕ (x) , x ∈ [0, b] , (6.2)∫ b

0

w (x, t) dx = 0, t ∈ [0, T ] , (6.3)

If u is a solution of problem (2.1)–(2.3) and w is a solution of problem (6.1)–(6.3),
then y = u− w satisfies

Lu =
∂2y

∂x∂t
+ p(x, t)

∂y

∂t
+ q(x, t)

∂y

∂x
= G

(
x, t, y,

∂y

∂x

)
, (x, t) ∈ Q, (6.4)

`y = y(x, 0) = 0, x ∈ [0, b] , (6.5)∫ b

0

y (x, t) dx = 0, t ∈ [0, T ] , (6.6)

where G
(
x, t, y, ∂y

∂x

)
= f

(
x, t, y + w, ∂y

∂x
+ ∂w

∂x

)
, where the function G satisfies the

condition (2.6); that is, there exists a positive constant L such that

|f(x, t, u1, v1)− f(x, t, u2, v2)| ≤ L (|u1 − u2|+ |v1 − v2|) for all (x, t) ∈ Q,
(6.7)
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According to results of the previous section, we deduce that the problem (6.1)–
(6.3) admits a unique solution that depends continuously upon the initial con-
dition (6.2). Then, we shall prove that problem (6.4)–(6.6) has a unique weak
solution.

Firstly, we precise the concept of the solution that we are considering. Let

v = v(x, t) be any function from C̃1 (Q) , the space of functions v belonging to

C1 (Q) , having ∂2v
∂x∂t

continuous in Q.
We shall compute the integral

∫
Q
G=?xvdxdt; for this we assume that y, v ∈

C̃1 (Q) , y(x, 0) = 0, v(x, T ) = 0, and
∫
Q
y(x, t)dx =

∫
Q
v(x, t)dx = 0. By using

conditions on y and v, we have∫
Q

∂2y

∂x∂t
=∗xvdxdt =

∫
Q

∂y

∂t
vdxdt, (6.8)

∫
Q

p(x, t)
∂y

∂t
=∗xvdxdt = −

∫
Q

v (=∗xpty) dxdt+

∫
Q

∂v

∂t
(=∗xpy) dxdt, (6.9)

∫
Ω

q(x, t)
∂y

∂x
=∗xvdxdt = −

∫
Q

yv=∗xqdxdt, (6.10)

∫
Q

G=?xvdxdt = −
∫
Q

v=∗xGdxdt. (6.11)

It then follows from (6.8)–(6.11) that

A (y, v) = −
∫
Q

v=∗xGdxdt, (6.12)

where

A (y, v) =

∫
Q

∂y

∂t
vdxdt−

∫
Q

v (=∗xpty) dxdt+

∫
Q

∂v

∂t
(=∗xpy) dxdt−

∫
Q

yv=∗xqdxdt.

Definition 6.1. A function y ∈ L2(0, T ; H1(0, b)) is called a weak solution of
problem (6.4)–(6.6), if (6.12) holds.

Let us construct an iteration sequence in the following way: Starting with
y(0) = 0, the sequence (

{
y(n)
}
n∈N is defined as follows: given the element y(n−1),

then, for n = 1, 2, . . . , solve the problem:

∂2y(n)

∂x∂t
+ p(x, t)

∂y(n)

∂t
+ q(x, t)

∂y(n)

∂x
= G

(
x, t, y(n−1),

∂y(n−1)

∂x

)
, (x, t) ∈ Q,

(6.13)

y(n)(x, 0) = 0, x ∈ [0, b] , (6.14)∫ b

0

y(n) (x, t) dx = 0, t ∈ [0, T ] , (6.15)
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Theorem 5.1 asserts that, for fixed n, each problem (6.13)–(6.15) has a unique
solution y(n) (x, t). If we set Z(n)(x, t) = y(n+1)(x, t)− y(n)(x, t), then we have the
new problem

∂2Z(n)

∂x∂t
+ p(x, t)

∂Z(n)

∂t
+ q(x, t)

∂Z(n)

∂x
= θ(n−1) (x, t) , (x, t) ∈ Q, (6.16)

Z(n)(x, 0) = 0, x ∈ [0, b] , (6.17)∫ b

0

Z(n) (x, t) dx = 0, t ∈ [0, T ] , (6.18)

where

θ(n−1) (x, t) = G

(
x, t, y(n),

∂y(n)

∂x

)
−G

(
x, t, y(n−1),

∂y(n−1)

∂x

)
.

Lemma 6.2. Assume that condition (6.7) holds; then, for the linearized problem
(6.16)–(6.18), we have the a priori estimate∥∥Z(n)

∥∥
L2(0,T ; H1(0,b))

≤ K̃
∥∥Z(n−1)

∥∥
L2(0,T ; H1(0,b))

, (6.19)

where K̃ is a positive constant given by

K̃ =

√
2k∗L2T

min (1, T )

and

k∗ =

(
1
2

+ 1
2ε

)
min

(
1
2
, c4

2
− ε, c0

2

) exp

(
max

(
c2

2

2ε
+
c3

2
,
1

2
+

1

2
c2

6 + c1

)
T

)
.

Proof. Multiplying equation (6.16) by =∗xZ
(n)
t , and integrating over Qτ , where

Qτ = (0, b)× (0, τ), we get∫
Qτ

∂2Z(n)

∂x∂t
=∗x
∂Z(n)

∂t
dxdt+

∫
Ω

p(x, t)
∂Z(n)

∂t
=∗x
∂Z(n)

∂t
dxdt

+

∫
Qτ
q(x, t)

∂Z(n)

∂x
=∗x
∂Z(n)

∂t
dxdt =

∫
Qτ
θ(n−1) (x, t)=∗x

∂Z(n)

∂t
dxdt. (6.20)

Standard integration by parts each term in (6.20) with use the condition (6.18)
and (2.5) and follows the same method in Section 4, we have∫

Qτ

(
∂Z(n)

∂t

)2

dxdt+
c4

2

∫
Q

(
=∗x
∂Z(n)

∂t

)2

dxdt+
c0

2

∫ b

0

Z(n) (x, τ)2 dx

≤ 1

2ε

∫
Qτ

(
θ(n−1)

)2
dxdt+ ε

∫
Qτ

(
=∗x
∂Z(n)

∂t

)2

dxdt

+

(
c2

2

2ε
+
c3

2

)∫
Q

(
Z(n)

)2
dxdt.
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Again, Multiplying equation (6.16) by ∂Z(n)

∂x
and integrating over Qτ , we get

1

2

∫ b

0

(
∂Z(n)

∂x

)2

dxdt

≤ 1

2

∫
Qτ

(
θ(n−1)

)2
dxdt+

1

2

∫
Qτ

(
∂Z(n)

∂t

)2

dxdt

+

(
1

2
+

1

2
c2

6 + c1

)∫
Qτ

(
∂Z(n)

∂x

)2

dxdt.

Now, combining the last two previous inequalities, we obtain

1

2

∫
Qτ

(
∂Z(n)

∂t

)2

dxdt+
(c4

2
− ε
)∫

Qτ

(
=∗x
∂Z(n)

∂t

)2

dxdt

+
c0

2

∫ b

0

Z(n) (x, τ)2 dx+
1

2

∫ b

0

(
∂Z(n) (x, τ)

∂x

)2

dx

≤
(
c2

2

2ε
+
c3

2

)∫
Qτ

(
Z(n)

)2
dxdt+

(
1

2
+

1

2
c2

6 + c1

)∫
Qτ

(
∂Z(n)

∂x

)2

dxdt

+

(
1

2
+

1

2ε

)∫
Qτ

(
θ(n−1)

)2
dxdt,

Then, applying Gronwall’s lemma implies that∫
Qτ

(
∂Z(n)

∂t

)2

dxdt+

∫
Qτ

(
=∗x
∂Z(n)

∂t

)2

dxdt+

∫ b

0

(
Z(n)

)2
dx

+

∫ b

0

(
∂Z(n)

∂x

)2

dxdt ≤ k∗
(∫

Qτ

(
θ(n−1)

)2
dxdt

)
, (6.21)

where

k∗ =

(
1
2

+ 1
2ε

)
min

(
1
2
, c4

2
− ε, c0

2

) exp

(
max

(
c2

2

2ε
+
c3

2
,
1

2
+

1

2
c2

6 + c1

)
T

)
.

By virtue of condition (6.7), we obtain(∫
Q

(
θ(n−1)

)2
dxdt

)
≤ L2

∫
Q

(∣∣Z(n−1) (x, t)
∣∣+

∣∣∣∣∂Z(n−1) (x, t)

∂x

∣∣∣∣)2

dxdt

≤ 2L2

∫ T

0

(∥∥Z(n−1) (•, t)
∥∥2

L2(0,b)

+

∥∥∥∥∂Z(n−1) (•, t)
∂x

∥∥∥∥2

L2(0,b)

)
dt. (6.22)
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Substituting (6.22) into (6.21), we get∫
Qτ

(
∂Z(n)

∂t

)2

dxdt+

∫
Qτ

(
=∗x
∂Z(n)

∂t

)2

dxdt+
∥∥Z(n) (•, τ)

∥∥2

H1(0,b)

≤ 2k∗L2

∫ T

0

(∥∥Z(n−1) (•, t)
∥∥2

L2(0,b)
+

∥∥∥∥∂Z(n−1) (•, t)
∂x

∥∥∥∥2

L2(0,b)

)
dt,

so, we obtain∫
Qτ

(
∂Z(n)

∂t

)2

dxdt+

∫
Qτ

(
=∗x
∂Z(n)

∂t

)2

dxdt+
∥∥Z(n) (•, τ)

∥∥2

H1(0,b)

≤ 2k∗L2

∫ T

0

∥∥Z(n−1) (•, t)
∥∥2

H1(0,b)
dt, (6.23)

After discarding the second term on the left-hand side of (6.23) and integrating
the resulted inequality over the interval (0, T ), we obtain∥∥Z(n)

∥∥
L2(0,T ; H1(0,b))

≤ 2k∗L2T

min (1, T )

∥∥Z(n−1)
∥∥
L2(0,T ; H1(0,b))

.

Then, we obtain the desired inequality (6.19). �

From the criteria of convergence of series, we see that the series
∑∞

n=1 Z
(n)

converges if 2k∗L2T
min(1,T )

< 1,; that is, if L <
√

min(1,T )
2k∗T

. Since Z(n)(x, t) = y(n+1)(x, t)−
y(n)(x, t), then it follows that the sequence (y(n))n∈N defined by

y(n)(x, t) =
n−1∑
i=0

Z(i) + y(0)(x, t),

converges to an element y ∈ L2 (0, T ; H1(0, b)) .
We must show that the limit function y is a solution of the problem under

study. To do this, we will show that y verifies the condition (6.12) as mentioned
in Definition 6.1. So, we consider the weak formulation of problem (6.13)–(6.15)

A (y, v) = −
∫
Q

v=∗xG
(
x, t, y(n−1),

∂y(n−1)

∂x

)
dxdt. (6.24)

From (6.24) we have

A
(
y(n) − y, v

)
+ A (y, v) = −

∫
Q

v

(
=∗xG

(
x, t, y(n−1),

∂y(n−1)

∂x

)
−=∗xG

(
x, t, y,

∂y

∂x

))
dxdt

−
∫
Q

v=∗xG
(
x, t, y,

∂y

∂x

)
dxdt. (6.25)
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However, we apply the Cauchy–Schwarz inequality, and we get

A
(
y(n) − y, v

)
=

∫
Q

(
∂y(n)

∂t
− ∂y

∂t

)
vdxdt−

∫
Q

v
((
=∗xpty(n)

)
− (=∗xpty)

)
dxdt

+

∫
Q

∂v

∂t

((
=∗xpy(n)

)
− (=∗xpy)

)
dxdt

−
∫
Q

(
y(n) − y

)
v=∗xqdxdt

≤ c7

∥∥y(n) − y
∥∥
L2(0,T ; H1(0,b))

‖v‖L2(0,T ; H1(0,b)) , (6.26)

where

c7 = max

(
1,

(
c5b√

2
+ c1b

)
,
c6b√

2

)
.

and we have:

−
∫
Q

v

(
=∗xG

(
x, t, y(n−1),

∂y(n−1)

∂x

)
−=∗xG

(
x, t, y,

∂y

∂x

))
dxdt

≤ bL√
2

∥∥y(n) − y
∥∥
L2(0,T ; H1(0,b))

‖v‖L2(0,T ; L2(0,b)) .(6.27)

Taking into account (6.26) and (6.27) and passing to the limit in (6.25) as n→∞,
we obtain

A (y, v) = −
∫
Q

v=∗xG
(
x, t, y,

∂y

∂x

)
dxdt.

Therefore, we have established the following result.

Theorem 6.3. Assume that conditions (2.5) and (6.7) are hold, and that

L <

√
min (1, T )

2kT
;

then problem (6.4)–(6.6) admits a weak solution in L2 (0, T ; H1(0, b)) .

It remains to prove that problem (6.4)–(6.6) admits a unique solution.

Theorem 6.4. Under the conditions (2.5) and (6.7) the solution of the problem
(6.4)–(6.6) is unique.

Proof. Suppose that y1 and y2 in L2 (0, T ; H1(0, b)) are two solution of (6.4)–
(6.6); then Z = y1 − y2 satisfies Z ∈ L2 (0, T ; H1(0, b)) and

∂2Z

∂x∂t
+ p(x, t)

∂Z

∂t
+ q(x, t)

∂Z

∂x
= ψ (x, t) , (x, t) ∈ Q, (6.28)

Z(x, 0) = 0, x ∈ [0, b] , (6.29)∫ b

0

Z (x, t) dx = 0, t ∈ [0, T ] , (6.30)

where

ψ (x, t) = G

(
x, t, y1,

∂y1

∂x

)
−G

(
x, t, y2,

∂y2

∂x

)
.
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Taking the inner product in L2 (0, T ; L2(0, b)) of equation (6.28) and =∗xZt and
following the same procedure done in establishing the proof of Lemma 6.2, we
get

‖Z‖L2(0,T ; H1(0,b)) ≤ K̃ ‖Z‖L2(0,T ; H1(0,b)) , (6.31)

where K̃ is the same constant of Lemma 6.2.
Since K̃ < 1, then from (6.31) that(

1− K̃
)
‖Z‖L2(0,T ; H1(0,b)) ≤ 0,

from which we conclude that y1 = y2 in L2 (0, T ; H1(0, b)) . �

Remark 6.5. Since w is a strong solution of the linear problem (6.1)–(6.3), and
y = u − w is a weak solution of the non-linear problem (6.4)–(6.6). Then u ∈
L2 (0, T ; H1(0, b)) is a weak solution of the main nonlinear problem (2.1)–(2.3).
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