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Abstract. We generalize several inequalities involving powers of the numer-
ical radius for the product of two operators acting on a Hilbert space. More-
over, we give a Jensen operator inequality for strongly convex functions. As a
corollary, we improve the operator Hölder–McCarthy inequality under suitable
conditions. In particular, we prove that if f : J → R is strongly convex with
modulus c and differentiable on int(J) whose derivative is continuous on int(J)
and if T is a self-adjoint operator on the Hilbert space H with σ(T ) ⊂ int(J),
then 〈

T 2x, x
〉
− 〈Tx, x〉2 ≤ 1

2c
(〈f ′(T )Tx, x〉 − 〈Tx, x〉 〈f ′(T )x, x〉)

for each x ∈H , with ‖x‖ = 1.

1. Introduction and preliminaries

Let H be complex Hilbert space and let B(H ) be the Hilbert space of all
bounded linear operators on H . An operator T ∈ B(H ) is said to be positive
if 〈Tx, x〉 ≥ 0 holds for all x ∈H . We write T ≥ 0 if T is positive.

The numerical radius of T ∈ B(H ) is defined by

w(T ) = sup{|λ| : λ ∈ W (T )} = sup{| 〈Tx, x〉 | : x ∈H , ‖x‖ = 1}.
It is well known that w(.) defines a norm on B(H ), which is equivalent to the
usual operator norm ‖.‖. In fact, for any T ∈ B(H ),

1

2
‖T‖ ≤ w(T ) ≤ ‖T‖ . (1.1)
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Also if T ∈ B(H ) is normal, then w(T ) = ‖T‖.
An important inequality for w(T ) is the power inequality stating that w(T n) ≤

(w(T ))n for every natural number n. Several numerical radius inequalities im-
proving the inequalities in (1.1) has been recently given in [3, 4, 9].

Dragomir [5, 3] proved that for every T, S ∈ B(H ),

w2(T ) ≤ 1

2
(w(T 2) + ‖T‖2) (1.2)

and

wr(S∗T ) ≤ 1

2

∥∥|T |2r + |S|2r
∥∥ (1.3)

for all r ≥ 1. Some interesting inequalities may be found in [9, 12, 13].
Every operator T ∈ B(H ) can be decomposed into T = U |T |, where U is a

partial isometry and |T | is the square root of T ∗T . If U is determined uniquely
by the kernel condition ker(U) = ker(|T |), then this decomposition is called the
polar decomposition, which is one of the most important results in operator theory.
In this paper, T = U |T | denotes the polar decomposition satisfying the kernel
condition ker(U) = ker(|T |).

The Aluthge transform of an operator T ∈ B(H ), denoted by T̃ , is defined by

T̃ = |T | 12U |T | 12 . For every s, t > 0, the generalized Aluthge transformation T̃s,t
is defined by T̃s,t = |T |sU |T |t, where T = U |T | is the polar decomposition of T .

If s = t = 1
2
, then T̃s,t is the Aluthge transformation T̃ of T . For T ∈ B(H ), we

generalize the Aluthge transformation of the operator T to the form

T̃f,g = f(|T |)Ug(|T |),
in which f and g are nonnegative continuous functions such that f(t)g(t) = t
(t ≥ 0).

2. Numerical radius inequalities

To prove our generalized numerical radius, we need several well-known lemmas.

Lemma 2.1. Let a, b ≥ 0, 0 ≤ α ≤ 1, and p, q > 1 satisfy 1
p

+ 1
q

= 1. Then for

all nonnegative nondecreasing convex functions h on [0,∞), we have

(i) h(aαb1−α) ≤ αh(a) + (1− α)h(b).

(ii) h(ab) ≤ 1

p
h(ap) +

1

q
h(bq).

If we take h(u) = ur (r ≥ 1), we have the following result.

Lemma 2.2. Let a, b ≥ 0, 0 ≤ α ≤ 1 and p, q > 1 satisfy 1
p

+ 1
q

= 1. Then

(i) aαb1−α ≤ αa+ (1− α)b ≤ (αar + (1− α)br)
1
r ;

(ii) ab ≤ ap

p
+
bq

q
≤
(
apr

p
+
bqr

q

) 1
r

;

for every r ≥ 1.

The following result that provides an operator version for Jensen’s inequality
is due to Mond and Pečarić [8].
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Theorem 2.3. Let h(t) be a real valued continuous convex function, and let T
be a self-adjoint operator on a Hilbert space H . Then Jensen’s inequality asserts
that

h(〈Tx, x〉) ≤ 〈h(T )x, x〉 (2.1)

for any unit vector x ∈H .

Notice that, if h is concave, then inequality (2.1) is reversed.
The Hölder–McCarthy inequality [7] is a special case of Theorem 2.3.

Lemma 2.4 (Hölder–McCarty inequality). Let T ∈ B(H ), T ≥ 0, and let
x ∈H be any unit vector. Then, we have

(i) 〈Tx, x〉r ≤ 〈T rx, x〉 for r ≥ 1.
(ii) 〈T rx, x〉 ≤ 〈Tx, x〉r for 0 < r ≤ 1.
(iii) If T is invertible, then 〈Tx, x〉r ≤ 〈T rx, x〉 for all r < 0.

The third lemma as the generalized mixed Schwarz inequality.

Lemma 2.5. Let T ∈ B(H ) and x, y ∈H be any vectors.

(i) If α, β ≥ 0 such that α + β = 1, then | 〈Tx, y〉 |2 ≤ 〈|T |2αx, x〉
〈
|T |2βy, y

〉
.

(ii) If f and g are nonnegative continuous functions on [0,∞) satisfying
f(t)g(t) = t (t ≥ 0), then | 〈Tx, y〉 | ≤ ‖f(|T |)x‖ ‖g(|T ∗|)y‖.

Theorem 2.6. Let T ∈ B(H ) be self-adjoint. Then for each nonnegative non-
decreasing convex function h on [0,∞), we have

h(w2(T )) ≤ 1

2

(
h(w(T 2)) + h(‖T‖2)

)
. (2.2)

Proof. We recall the following refinement of the Cauchy–Schwarz inequality ob-
tained by Dragomir in [2]. It says that

‖u‖ ‖v‖ ≥ | 〈u, v〉 − 〈u, z〉 〈z, v〉 |+ | 〈u, z〉 〈z, v〉 | ≥ | 〈u, v〉 |, (2.3)

where u, v, z are vectors in H and ‖z‖ = 1. From inequality (2.3), we deduce
that

| 〈u, z〉 〈z, v〉 | ≤ 1

2
(‖u‖ ‖v‖+ | 〈u, v〉 |) .

Put z = x with ‖x‖ = 1, u = Tx, and v = T ∗x in the above inequality and use
part (i) of Lemma 2.1 to get

| 〈Tx, x〉 |2 ≤ 1

2

(
‖Tx‖2 +

〈
T 2x, x

〉)
.

Now by convexity of h, we have

h(| 〈Tx, x〉 |2) ≤ 1

2

(
h(‖Tx‖2) + h(

〈
T 2x, x

〉
)
)
. (2.4)

Taking the supremum over x ∈ H with ‖x‖ = 1 in inequality (2.4), we obtain
the desired result. �
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Theorem 2.7. Let T ∈ B(H ), and let f, g be nonnegative continuous functions
on [0,∞) satisfying f(t)g(t) = t, (t ≥ 0). Then for all nonnegative nondecreasing
convex functions h on [0,∞), we have

h(w2(T )) ≤ 1

2

(
h(‖T‖2) +

∥∥∥∥1

p
h(fp(|T 2|)) +

1

q
h(gq(|T 2|))

∥∥∥∥) (2.5)

for all p ≥ q > 1 with 1
p

+ 1
q

= 1.

Proof. Let x ∈H be a unit vector. We have

h(|
〈
T 2x, x

〉
|) ≤ h(

∥∥f(|T 2|)
∥∥∥∥g(|(T ∗)2|)

∥∥) (by Lemma 2.5(b))

= h(
〈
f 2(|T 2|)x, x

〉 1
2
〈
g2(|(T ∗)2|)x, x

〉 1
2 )

≤ 1

p
h(
〈
f 2(|T 2|)x, x

〉 p
2 ) +

1

q
h(
〈
g2(|(T ∗)2|)x, x

〉 q
2 )

(by Lemma 2.1(b))

≤ 1

p
h(
〈
fp(|T 2|)x, x

〉
) +

1

q
h(
〈
gq(|(T ∗)2|)x, x

〉
) (by Lemma 2.3)

=

〈(
1

p
h(
〈
fp(|T 2|)x, x

〉
) +

1

q
h(
〈
gq(|(T ∗)2|)x, x

〉
)

)
x, x

〉
It follows from inequality (2.4) that

h(| 〈Tx, x〉 |2) ≤ 1

2

(
h(‖Tx‖ ‖T ∗x‖)

+

〈(
1

p
h(
〈
fp(|T 2|)x, x

〉
) +

1

q
h(
〈
gq(|(T ∗)2|)x, x

〉
)

)
x, x

〉)
.

Taking the supremum over x ∈ H with ‖x‖ = 1 in the above inequality, we
obtain the desired result. �

Theorem 2.8. Let T ∈ B(H ), let T = U |T | be the polar decomposition of

T , and let T̃s,t = |T |sU |T |t be the generalized Aluthge transformation of T with
s+ t = 1. Then

wr(T ) ≤ 1

2

∥∥|T |2rs + |T ∗|2rt
∥∥ . (2.6)

for every r ≥ 1.

Proof. Using the Schwarz inequality in the Hilbert space, we have

| 〈Tx, x〉 | = |
〈
|T |sx, |T |tU∗x

〉
| ≤ ‖|T |sx‖ .

∥∥|T |tU∗x∥∥ (2.7)

=
〈
|T |2sx, x

〉1/2 〈|T ∗|2rx, x〉1/2 , x ∈H .
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Utilizing the arithmetic-mean geometry mean inequality and then the convexity
of the function h(u) = ur, r ≥ 1, we have successively,〈

|T |2sx, x
〉1/2 〈|T ∗|2rx, x〉1/2 ≤ 〈|T |2sx, x〉+ 〈|T ∗|2tx, x〉

2
(2.8)

≤
(
〈|T |2sx, x〉r + 〈|T ∗|2tx, x〉r

2

) 1
r

for every x ∈H . It is known that if Q is positive operator, then for every r ≥ 1
and x ∈H with ‖x‖ = 1, we have the inequality

〈Qx, x〉r ≤ 〈Qrx, x〉 . (2.9)

Applying this property to the positive operators |T |2s and |T ∗|2t, we deduce that(
〈|T |2sx, x〉r + 〈|T ∗|2tx, x〉r

2

) 1
r

≤
(
〈|T |2rsx, x〉+ 〈|T ∗|2rtx, x〉

2

) 1
r

(2.10)

=

(
〈(|T |2rs + |T ∗|2tr)x, x〉

2

) 1
r

(2.11)

for any x ∈H , ‖x‖ = 1.
Now, on making use the inequalities (2.7), (2.8), and (2.10), we get the inequality

| 〈Tx, x〉 |r ≤ 1

2

〈
(|T |2rs + |T ∗|2tr)x, x

〉
(2.12)

for any x ∈H , ‖x‖ = 1.
Taking the supremum over x ∈ H with ‖x‖ = 1 in inequality (2.12) and

since the operator |T |2rs + |T ∗|2tr is self-adjoint, we deduce the desired inequality
(2.6). �

Theorem 2.9. Let T ∈ B(H ), let T = U |T | be the polar decomposition of

T , and let T̃s,t = |T |sU |T |t be the generalized Aluthge transformation of T with
s+ t = 1. Then for each α ∈ (0, 1) and r ≥ 1, we have

w2r(T ) ≤
∥∥∥α|T | 2rsα + (1− α)|T ∗|

2rt
1−α

∥∥∥ . (2.13)

Proof. Using the Schwarz inequality, we have

| 〈Tx, x〉 |2 ≤
〈
|T |2sx, x

〉 〈
|T ∗|2tx, x

〉
≤
〈

(|T |
2s
α )αx, x

〉〈
(|T ∗|

2t
1−α )1−αx, x

〉
(2.14)

for any x ∈H .
It is well-known that if Q is a positive operator and k ∈ (0, 1], then for any

u ∈H , ‖u‖ = 1, we have 〈
Qku, u

〉
≤ 〈Qu, u〉k . (2.15)

Applying this property to the positive operators |T | 2sα and |T ∗|
2t

1−α (α ∈ (0, 1)),
we have〈

(|T |
2s
α )αx, x

〉
.
〈

(|T ∗|
2t

1−α )1−αx, x
〉
≤
〈
|T |

2s
α x, x

〉α
.
〈
|T ∗|

2t
1−αx, x

〉1−α
(2.16)
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for every x ∈H , ‖x‖ = 1.
Now, utilizing the weighted arithmetic mean-geometric mean inequality, that

is, aαb1−α ≤ αa+ (1− α)b, α ∈ (0, 1), a, b ≥ 0, we obtain

〈
(|T |

2s
α )αx, x

〉
.
〈

(|T ∗|
2t

1−α )1−αx, x
〉
≤ α

〈
|T |

2s
α x, x

〉
+ (1− α)

〈
|T ∗|

2t
1−αx, x

〉
(2.17)

for every x ∈H , ‖x‖ = 1.
Moreover, by the following elementary inequality from the convexity of h(v) =

vr, r ≥ 1, namely,

αa+ (1− α)b ≤ (αar + (1− α)br)
1
r , α ∈ (0, 1), a, b ≥ 0,

we deduce that

α
〈
|T |

2s
α x, x

〉
+ (1− α)

〈
|T ∗|

2t
1−αx, x

〉
≤
(
α
〈
|T |

2s
α x, x

〉r
+ (1− α)

〈
|T ∗|

2t
1−αx, x

〉r) 1
r

≤
(
α
〈
|T |

2rs
α x, x

〉
+ (1− α)

〈
|T ∗|

2rt
1−αx, x

〉) 1
r

(2.18)

for any x ∈H , ‖x‖ = 1.
Now, by making use of the inequalities (2.14), (2.16), (2.17), and (2.18), we

obtain

| 〈Tx, x〉 |2r ≤
〈(
α|T |

2rs
α + (1− α)|T ∗|

2rt
1−α

)
x, x
〉

(2.19)

for any x ∈H with ‖x‖ = 1.
Taking the supremum over x ∈H with ‖x‖ = 1 in inequality (2.19), we obtain

the desired inequality. �

Corollary 2.10. Let T ∈ B(H ), let T = U |T | be the polar decomposition of

T , and let T̃s,t = |T |sU |T |t be the generalized Aluthge transformation of T with
s+ t = 1. Then for every r ≥ 1 and p, q ≥ 1 with 1

p
+ 1

q
= 1, we have

w2r(T ) ≤
∥∥∥∥1

p
|T |2prs +

1

q
|T ∗|2rqt

∥∥∥∥ . (2.20)

Theorem 2.11. Let T ∈ B(H ), let T = U |T | be the polar decomposition of

T , and let T̃s,t = |T |sU |T |t be the generalized Aluthge transformation of T with
s+ t = 1. Then for every α ∈ (0, 1) and r ≥ 1, we have

w2r(T ) ≤ 1

2

(
‖T‖2r +

∥∥∥α|T 2|
sr
α + (1− α)|(T 2)∗|

tr
1−α

∥∥∥) . (2.21)
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Proof. Let x ∈H be a unit vector. We get

|
〈
T 2x, x

〉
|r ≤

∥∥|T 2|sx
∥∥r ∥∥|(T 2)∗|sx

∥∥r (by Lemma 2.5(i))

=
〈
|T 2|2sx, x

〉 〈
|(T 2)∗|2tx, x

〉 r
2

≤ α
〈
|T 2|2sx, x

〉 r
2α + (1− α)

〈
|(T 2)∗|2tx, x

〉 r
2(1−α)

(by Lemma 2.1(i))

≤ α
〈
|T 2|

rs
α x, x

〉
+ (1− α)

〈
|(T 2)∗|

rt
1−αx, x

〉
(by Lemma 2.4)

≤
〈(
α|T 2|

rs
α + (1− α)|(T 2)∗|

rt
1−α

)
x, x
〉
.

It follows from inequality (2.4) with the convex function h(u) = ur, (r ≥ 1) that

| 〈Tx, x〉 |2r ≤ 1

2

(
‖Tx‖r ‖T ∗x‖r +

〈(
α|T 2|

rs
α + (1− α)|(T 2)∗|

rt
1−α

)
x, x
〉)

.

Taking the supremum over x ∈ H with ‖x‖ = 1 in the above inequality, we
deduce the desired inequality (2.21). �

Inequality (2.21) induces several numerical radius inequalities as special cases.
For example, the following result may be stated as well.

Corollary 2.12. If we take α = 1/2 in inequality (2.21), then

w2r(T ) ≤ 1

2

(
‖T‖2r +

1

2

∥∥|T |4sr + |T ∗|4tr
∥∥)

for any r ≥ 1 and s+ t = 1.

In addition, by choosing t = s = 1/2, we obtain w2r(T ) ≤ ‖T‖2r for any r ≥ 1.

Theorem 2.13. Let T, S,X ∈ B(H ), and let f, g be nonnegative continuous
functions on [0,∞) satisfying f(t)g(t) = t, (t ≥ 0) and α ∈ (0, 1). Then for all
nonnegative nondecreasing convex functions h on [0,∞), we have

h(w(TXS)) ≤
∥∥∥α[h(Tf 2(|X∗|)T ∗)]

1
2α + (1− α)[h(S∗g2(|X|)S)]

1
2(1−α)

∥∥∥ . (2.22)

Corollary 2.14. Let T, S ∈ B(H ). Then

h(w(S∗T )) ≤
∥∥∥αh(|T |

1
α ) + (1− α)h(|S|

1
1−α )

∥∥∥
holds for any α ∈ (0, 1).

Corollary 2.14 is deduced by putting X = I and f(t) = g(t) =
√
t in Theorem

2.13. In fact, Corollary 2.14 and Theorem 2.13 are equivalent.

Proof of Theorem 2.13. Let X = U |X| be the polar decomposition of X. Put
B = f(|X|)U∗T and A = g(|X|)S. Then by Corollary 2.14, we have

h(w(B∗A)) ≤
∥∥∥αh(|T |

1
α ) + (1− α)h(|S|

1
1−α )

∥∥∥
⇐⇒h(w(TXS)) ≤

∥∥∥α[h(Tf 2(|X∗|)T ∗)]
1
2α + (1− α)[h(S∗g2(|X|)S)]

1
2(1−α)

∥∥∥ .
�
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The following theorem gives an upper bound for w(S∗T ).

Theorem 2.15. Let T, S ∈ B(H ). Then for all nonnegative nondecreasing
convex functions h on [0,∞), we have

h(w(S∗T )) ≤ 1

4

∥∥h(|T ∗|2) + h(|S∗|2)
∥∥+

1

2
h(w(TS∗)).

Proof. First of all, we note that

w(A) = sup
θ∈R

∥∥Re(eiθA)
∥∥ , (2.23)

where Re(Y ) denotes the real part of the operator Y .
For every unit vector x ∈H , we have

Re
〈
eiθS∗Tx, x

〉
= Re

〈
eiθTx, Sx

〉
=

1

4

∥∥(eiθT + S)x
∥∥2 − 1

4

∥∥(eiθT − S)x
∥∥2

(by Polarization Identity)

≤ 1

4

∥∥(eiθT + S)x
∥∥2 ≤ 1

4

∥∥(eiθT + S)
∥∥2

=
1

4

∥∥e−iθT ∗ + S∗
∥∥2 (Since ‖Y ‖ = ‖Y ∗‖)

=
1

4

∥∥(e−iθT ∗ + S∗)∗(e−iθT ∗ + S∗)
∥∥ (Since ‖Y ‖2 = ‖Y ∗Y ‖)

=
1

4

∥∥TT ∗ + SS∗ + eiθTS∗ + e−iθST ∗
∥∥

≤ 1

4
‖TT ∗ + SS∗‖+

1

2

∥∥Re(eiθTS∗)∥∥
≤ 1

4
‖TT ∗ + SS∗‖+

1

2
w(ST ∗). (by (2.23))

Taking the supremum over x ∈ H with ‖x‖ = 1 in the above inequality, we
obtain

w(S∗T ) ≤ 1

4

∥∥|T ∗|2 + |S∗|2
∥∥+

1

2
w(TS∗).

Now since h(·) is a nondecreasing convex function, we have

h(w(S∗T )) ≤ h

(
1

4

∥∥|T ∗|2 + |S∗|2
∥∥+

1

2
w(TS∗)

)
≤ 1

2
h

(
‖|T ∗|2 + |S∗|2‖

2

)
+

1

2
h(w(TS∗))

≤ 1

2

∥∥∥∥h(|T ∗|2) + h(|S∗|2)
2

∥∥∥∥+
1

2
h(w(TS∗))

=
1

4

∥∥h(|T ∗|2) + h(|S∗|2)
∥∥+

1

2
h(w(TS∗)).

This completes the proof. �

The next corollary is an extension of [12, Corollary 2.11].
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Corollary 2.16. Let A ∈ B(H ), let A = U |A| be the polar decomposition of
T , let f, g be nonnegative continuous functions on [0,∞) satisfying f(t)g(t) = t

(t ≥ 0), and let Ãf,g = f(|A|)Ug(|A|) be the generalized Aluthge transformation
of T . Then we have

wr(A) ≤ 1

4

∥∥f 2r(|A|) + g2r(|A|)
∥∥+

1

2
wr(Ãf,g).

Proof. Put T = f(|A|), S = g(|A|)U∗, and h(u) = ur (r ≥ 1) in Theorem 2.15.
Then, we have

h(w(S∗T )) ≤ 1

4

∥∥h(|T ∗|2) + h(|S∗|2)
∥∥+

1

2
h(w(TS∗))⇐⇒

wr(A) ≤ 1

4

∥∥f 2r(|A|) + g2r(|A|)
∥∥+ wr(Ãf,g).

�

Our next result is to find an upper bound for power of the numerical radius of

T
1
pXS

1
q under assumption p, q > 1 with 1

p
+ 1

q
= 1.

Theorem 2.17. Suppose that T, S,X ∈ B(H ) and that T and S are positive.
Then

wr(T
1
pXS

1
q ) ≤ ‖X‖r

∥∥∥∥1

p
T r +

1

q
Sr
∥∥∥∥

for every r ≥ 1 and p, q > 1 with 1
p

+ 1
q

= 1.

Proof. Let x ∈H be a unit vector. Then∣∣∣〈T 1
pXS

1
qx, x

〉∣∣∣r =
∣∣∣〈XS 1

qx, T
1
px
〉∣∣∣r

≤ ‖X‖r
∥∥∥S 1

qx
∥∥∥r ∥∥∥T 1

px
∥∥∥r

≤ ‖X‖r
〈
S

2
qx, x

〉 r
2
〈
T

2
px, x

〉 r
2

≤ ‖X‖r 〈Srx, x〉
1
q 〈T rx, x〉

1
p (by Lemma 2.4)

≤ ‖X‖r
〈(

1

p
Sr +

1

q
T r
)
x, x

〉
. (by Lemma 2.2)

Taking the supremum over x ∈ H with ‖x‖ = 1 in the above inequality, we
obtain the desired inequality. �

Corollary 2.18. Let Ã = |A| 12U |A| 12 be the Aluthge transformation of A such
that U is a partial isometry. Then

w(Ã) ≤ ‖A‖ .

Proof. If we take r = 1, p = q = 2, T = S = |A|, and X = U in Theorem 2.17,
then

w(Ã) ≤
∥∥∥∥1

2
|A|+ 1

2
|A|
∥∥∥∥ = ‖|A|‖ = ‖A‖ .

�
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Theorem 2.19. If T ∈ B(H ), then

w2r(T ) ≤ α

2
wr(T 2) +

(
1− α

2

)
‖T‖2r

for every r ≥ 1 and 0 < α ≤ 1.

Proof. We recall the following refinement of the Cauchy–Schwarz inequality ob-
tained by Dragomir in [2]. It says that

| 〈a, e〉 〈e, b〉 | ≤ α| 〈a, b〉 |+ (1− α) ‖a‖ ‖b‖ ,
where a, b, e are vectors in H and ‖e‖ = 1.

Put e = x with ‖x‖ = 1, a = Tx and b = T ∗x in the above inequality and use
Lemma 2.1(i) with h(u) = ur (r ≥ 1) to get

| 〈Tx, x〉 |2 ≤ α

2
|
〈
T 2x, x

〉
|+
(

1− α
2

)
‖Tx‖ ‖T ∗x‖

≤
(
α

2
|
〈
T 2x, x

〉
|r +

(
1− α

2

)
‖Tx‖r ‖T ∗x‖r

) 1
r

.

Hence

| 〈Tx, x〉 |2r ≤ α

2
|
〈
T 2x, x

〉
|r +

(
1− α

2

)
‖Tx‖r ‖T ∗x‖r . (2.24)

Taking the supremum over x ∈H with ‖x‖ = 1 in inequality (2.24), we get the
desired inequality. �

Corollary 2.20. Let T ∈ B(H ), and let f, g be nonnegative continuous func-
tions on [0,∞) satisfying f(t)g(t) = t, (t ≥ 0). Then

w2r(T ) ≤
(

1− α
2

)
‖T‖2r +

(α
2

)∥∥∥αf r
α (|T 2|) + (1− α)g

r
1−α (|(T 2)∗|)

∥∥∥ (2.25)

for all r ≥ 1 and 0 < α ≤ 1.

Proof. Let x ∈H be a unit vector. We have

|
〈
T 2x, x

〉
|r ≤

∥∥f(|T 2|)x
∥∥r ∥∥g(|(T 2)∗|)x

∥∥r (by Lemma 2.5(ii))

=
〈
f 2(|T 2|)x, x

〉 r
2
〈
g2(|(T 2)∗|)x, x

〉 r
2

≤ α
〈
f 2(|T 2|)x, x

〉 r
2α + (1− α)

〈
g2(|(T 2)∗|)x, x

〉 r
2(1−α)

(by Lemma 2.2)

≤ α
〈
f
r
α (|T 2|)x, x

〉
+ (1− α)

〈
g

r
1−α (|(T 2)∗|)x, x

〉
(by Lemma 2.4)

=
〈(
αf

r
α (|T 2|) + (1− α)g

r
1−α (|(T 2)∗|)

)
x, x
〉
.

It follows from (2.24) that

| 〈Tx, x〉 |2r ≤ α

2

〈(
αf

r
α (|T 2|) + (1− α)g

r
1−α (|(T 2)∗|)

)
x, x
〉

+

(
1− α

2

)
‖Tx‖r ‖T ∗x‖r .

Taking the supremum over x ∈ H with ‖x‖ = 1 in the above inequality, we
deduce the desired inequality. �
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Inequality (2.25) induces several radius inequalities as special cases. For exam-
ple, the following result reads as follows.

Corollary 2.21. If we take f(t) = tp, g(t) = tq with p + q = 1 and α = 1/2 in
inequality (2.25), then

w2r(T ) ≤ 1

4

(
‖T‖2r +

∥∥|T |4rq + |T ∗|4rq
∥∥)

for every r ≥ 1.

3. Numerical radius and strongly convex function

Let J ⊂ R be an interval and let c be a positive number. By following Polyak
[11], a function f : J → R is called strongly convex with modulus c if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− cλ(1− λ)(x− y)2 (3.1)

for all x, y ∈ J and λ ∈ [0, 1]. The function f is called strongly concave with
modulus c if −f is strongly convex with modulus c.

Since strong convexity is a strengthening of the notion of convexity, some prop-
erties of strongly convex functions are just stronger versions of known properties
of convex functions. For instance, a function f : J → R is strongly convex with
modulus c if and only if for every x0 ∈ int(J) (the interior of J) there exists a
number l ∈ R such that

c(x− x0)2 + l(x− x0) + f(x0) ≤ f(x), x ∈ I. (3.2)

In other word, f has a quadratic support at x0.
The differentiable function f is strongly convex with modulus c if and only if

(f ′(x)− f ′(y))(x− y) ≥ 2c(x− y)2 (3.3)

for each x, y ∈ J . For more properties of this class of functions, see [6].

Theorem 3.1. Let f : J → R be strongly convex with modulus c and differentiable
on int(J). If T is a self-adjoint operator on the Hilbert space H with σ(T ) ⊂
int(J), then

f(w(T )) + cw(T 2) ≤ w(f(T )) + cw2(T ) (3.4)

for each x ∈H , with ‖x‖ = 1.

Proof. It follows from (3.2) by utilizing functional calculus that

c(T 2 + x20I − 2x0T ) + lT − lx0I + f(x0)I ≤ f(T ), (3.5)

which is equivalent to

c(
〈
T 2x, x

〉
+ x20 − 2x0) + l 〈Tx, x〉 − lx0 + f(x0) ≤ 〈f(T )x, x〉 (3.6)

for each x ∈H , with ‖x‖ = 1.
Now, applying (3.6) for x0 = 〈Tx, x〉, we obtain

f(〈Tx, x〉) ≤ 〈f(T )x, x〉 − c(
〈
T 2x, x

〉
− 〈Tx, x〉2), (3.7)

and so
f(〈Tx, x〉) + c

〈
T 2x, x

〉
≤ 〈f(T )x, x〉+ c 〈Tx, x〉2 . (3.8)
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Taking the supremum over x ∈ H with ‖x‖ = 1 in inequality (3.8), we deduce
the desired inequality. �

Remark 3.2. Notice that the quantity w(T 2) − w2(T ) is positive, therefore we
have

f(w(T )) ≤ w(f(T ))− c
(
w(T 2)− w2(T )

)
≤ w(f(T ))

for each x ∈H , with ‖x‖ = 1.

Remark 3.3 ([?, Proposition 1.1.2]). The function f : J → R is strongly convex
with modulus c if and only if the function g : J → R defined by g(x) = f(x)−cx2
is convex. Consider the function f : (1,∞) → R, given by f(x) = xr with
r ≥ 2. It can be easily verified that, this function is strongly convex with modulus

c =
r2 − r

2
. Based on this fact, from Theorem 3.1, we obtain

wr(T ) ≤ w(T r)− r2 − r
2

(w(T 2)− w2(T ))

for each positive operator T and x ∈H with ‖x‖ = 1.
It is readily checked that the function f : (0, 1) → R given by f(x) = −xr with

0 < r < 1 is a strongly convex function with modulus c =
r − r2

2
. Similar to the

above argument, by using Theorem 3.1, we get

w(T r) ≤ wr(T ) +
r − r2

2
(w2(T )− w(T 2)),

for each positive operator T and x ∈H with ‖x‖ = 1.

The following theorem is a generalization of Theorem 3.1.

Theorem 3.4. Let all the assumptions of Theorem 3.1 be satisfied. Moreover,
let f(0) ≤ 0. Then

f(w(T )) ≤ w(f(T ))− c
(
w(T 2)− 1

‖x‖2
w(T )2

)
for each x ∈H with ‖x‖ ≤ 1.

Proof. Let y =
x

‖x‖
, so that ‖y‖ = 1. We have

f(〈Tx, x〉) = f(‖x‖2 f(Ty, y) + (1− ‖x‖2 .0)

≤ ‖x‖2 f(〈Ty, y〉) + (1− ‖x‖2 f(0) (by (3.1))

≤ ‖x‖2 f(〈Ty, y〉) (since f(0) ≤ 0)

≤ ‖x‖2
(
〈f(T )y, y〉 − c(

〈
T 2y, y

〉
− 〈Ty, y〉2)

)
(by inequality (3.8))

= 〈f(T )x, x〉 − c
(〈
T 2x, x

〉
− 1

‖x‖2
〈Tx, x〉2

)
.

Taking the supremum over x ∈ H with ‖x‖ ≤ 1 in the above inequality, we
deduce the desired inequality. �
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In what follows, we make use of Lemma 2.1 from [1, Theorem 3.1.2] which we
cite here.

Lemma 3.5. Let Φ be a unital completely positive linear map from a C∗-sub-
algebra A of Mn(C) into Mm(C). Then there exist a Hilbert space K , an isometry
V : Cm → K , and a unital ∗-homomorphism π from A into the C∗-algebra
B(K ) such that Φ(A) = V ∗π(A)V .

In the next theorem, we extend Theorem 3.1 to all positive linear maps.

Theorem 3.6. Let all the assumptions of Theorem 3.1 be satisfied, and let Φ :
Mn(C)→Mm(C) be a unital positive linear map. Then

f(w(Φ(A)) + c ‖Φ(A)‖2 ≤ w(φ(f(A)) + cw2(Φ(A)) (3.9)

for every Hermitian matrix A ∈Mn(C) and every unit vector x ∈ Cm.

Proof. We may assume that A is the unital C∗-algebra generated by a single
positive operator A. Hence by a classical dilation theorem of Naimark (see [10,
Theorem 3.10]), our maps Φ will be automatically completely positive. So, by
Lemma 3.5, there exist a Hilbert space K , an isometry V : Cm → K and a
unital ∗-homomorphism π from A into the C∗-algebra B(K ) such that Φ(A) =
V ∗π(A)V . Clearly,

f(π(A)) = π(f(A)). (3.10)

Taking into account that ‖V ‖ = 1 (V is an isometry), we observe that

f(〈Φ(A)x, x〉) = f(〈V ∗π(A)V x, x〉)
= f(〈π(A)V x, V x〉)
≤ 〈f(π(A))V x, V x〉 − c(

〈
π(A)2V x, V x

〉
− 〈π(A)V x, V x〉2)

(by Theorem 3.1)

= 〈π(f(A))V x, V x〉 − c(
〈
π(A)2V x, V x

〉
− 〈π(A)V x, V x〉2)

(by (3.10))

= 〈V ∗π(f(A))V x, x〉 − c(
〈
(V ∗π(A)V )2x, x

〉
− 〈V ∗π(A)V x, x〉2)

= 〈Φ(f(A)x, x〉 − c(
〈
Φ(A)2x, x

〉
− 〈Φ(A)x, x〉2).

Hence

f(〈Φ(A)x, x〉) + c ‖Φ(A)x‖2 ≤ 〈Φ(f(A))x, x〉+ c 〈Φ(A)x, x〉2 .
Taking the supremum over x ∈ H with ‖x‖ ≤ 1 in the above inequality, we
deduce the desired inequality. �

Theorem 3.7. Let f : J → R be strongly convex with modulus c and differentiable
on int(J), and let the derivative of f be continuous on int(J). If T is a self-adjoint
operator on the Hilbert space H with σ(T ) ⊂ int(J), then〈

T 2x, x
〉
− 〈Tx, x〉2 ≤ 1

2c
(〈f ′(T )Tx, x〉 − 〈Tx, x〉 〈f ′(T )x, x〉) (3.11)

for each x ∈H , with ‖x‖ = 1.
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Proof. It follows from (3.3) by utilizing functional calculus that

2c(T 2 − y2I + 2T 2y) ≤ f ′(T )T − yf ′(T )− f ′(y)T + yf ′(y)I

which is equivalent to

2c(
〈
T 2x, x

〉
+y2−2y 〈Tx, x〉) ≤ 〈f ′(T )Tx, x〉−y 〈f ′(T )x, x〉−f ′(y) 〈Tx, x〉+yf ′(y)

for each x ∈H , with ‖x‖ = 1.
Now, applying the last inequality with y = 〈Tx, x〉, we have

2c(
〈
T 2x, x

〉
− 〈Tx, x〉2) ≤ 〈f ′(T )Tx, x〉 − 〈Tx, x〉 〈f ′(T )x, x〉 .

Hence the desired inequality is obtained. �

By replacing c(x − y)2 with a nonnegative real valued function G(x − y), we
can define G-strongly convex functions as follows:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− λ(1− λ)G(x− y) (3.12)

for each λ ∈ [0, 1] and x, y ∈ J . (Very recently, this approach has been investi-
gated by Adamek in [?]).

We should note that, if G is G-strongly affine, then the function f is G-strongly
convex if and only if g = f −G is convex (see [?, Lemma 4]).

Theorem 3.8. Let f : J → R be an G-strongly convex and differentiable function
on int(J), and let G : J → [0,∞) be a continuous function. If T is a self-adjoint
operator on the Hilbert space H with σ(T ) ⊂ int(T ), then

f(〈Tx, x〉) ≤ 〈f(T )x, x〉 − 〈G(T − 〈Tx, x〉)x, x〉 (3.13)

for each x ∈H , with ‖x‖ = 1.

Proof. From (3.12), we infer that

f(λ(x− y) + y)− f(y) + λ(1− λ)G(x− y) ≤ λ(f(x)− f(y)).

By dividing both sides by λ, we obtain

f(λ(x− y) + y)− f(y)

λ
+ (1− λ)F (x− y) ≤ f(x)− f(y).

Notice that if f is differentiable, then, letting λ→ 0, we have

f ′(y)(x− y) +G(x− y) + f(y) ≤ f(x), (3.14)

for all x, y ∈ J and λ ∈ [0, 1].
It follows from (3.14) by utilizing functional calculus that

f ′(y)(T − yI) +G(T − y) + f(y)I ≤ f(T )

which is equivalent to

f ′(y)(〈Tx, x〉 − y) + 〈G(T − y)x, x〉+ f(y) ≤ 〈f(T )x, x〉 .
for each x ∈H , with ‖x‖ = 1.

Now, by applying the last inequality with y = 〈Tx, x〉, we have

〈G(T − 〈Tx, x〉)x, x〉+ f(〈Tx, x〉) ≤ 〈f(T )x, x〉 ,
so the result is obtained. �
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