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ABSTRACT. We generalize several inequalities involving powers of the numer-
ical radius for the product of two operators acting on a Hilbert space. More-
over, we give a Jensen operator inequality for strongly convex functions. As a
corollary, we improve the operator Holder—-McCarthy inequality under suitable
conditions. In particular, we prove that if f : J — R is strongly convex with
modulus ¢ and differentiable on int(J) whose derivative is continuous on int(.J)
and if T is a self-adjoint operator on the Hilbert space . with o(T') C int(J),
then
(T*z,2) — (T z)? < 1
’ ’ - 2
for each x € S, with ||z| = 1.

(f(D) Tz, ) — (T, ) (f(T)z,x))

1. INTRODUCTION AND PRELIMINARIES

Let ¢ be complex Hilbert space and let Z(J#) be the Hilbert space of all
bounded linear operators on . An operator T' € () is said to be positive
if (Tx,x) > 0 holds for all x € 7. We write T' > 0 if T is positive.

The numerical radius of T € #(.7) is defined by

w(T) = sup{|A\| : A € W(T)} = sup{| (Tx,z) | : x € 72, ||z| = 1}.

It is well known that w(.) defines a norm on (), which is equivalent to the
usual operator norm ||.||. In fact, for any 7" € B(.7),

LI < w(@) < 7). (11)
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16 M.H.M. RASHID

Also if T € () is normal, then w(T') = ||T|.

An important inequality for w(7T") is the power inequality stating that w(7") <
(w(T))™ for every natural number n. Several numerical radius inequalities im-
proving the inequalities in (1.1) has been recently given in [3, 4, 9].

Dragomir [5, 3] proved that for every T',S € B(),

WA(T) < (T + |TI) (12)

and )
w%?ﬂgimN”+wWH (1.3)
for all » > 1. Some interesting inequalities may be found in [9, 12, 13].

Every operator T" € () can be decomposed into T' = U|T|, where U is a
partial isometry and |T'| is the square root of T*T. If U is determined uniquely
by the kernel condition ker(U) = ker(|7'|), then this decomposition is called the
polar decomposition, which is one of the most important results in operator theory.
In this paper, T' = U|T| denotes the polar decomposition satisfying the kernel
condition ker(U) = ker(|T).

The Aluthge transform of an operator T € #(), denoted by T, is defined by
T = |T|2U|T|z. For every s,t > 0, the generalized Aluthge transformation fgvt
is defined by Ty, = |T|*U|T|*, where T = U|T| is the polar decomposition of T
If s =t =1, then T, is the Aluthge transformation T of T'. For T € B(), we
generalize the Aluthge transformation of the operator T' to the form

Tyq = F(THUg(T),
in which f and g are nonnegative continuous functions such that f(t)g(t) =t
(t >0).
2. Numerical radius inequalities

To prove our generalized numerical radius, we need several well-known lemmas.

Lemma 2.1. Let a,b >0, 0 < a <1, and p,q > 1 satisfy % —1—5 = 1. Then for
all nonnegative nondecreasing convexr functions h on [0,00), we have
(i) h(a®b'=®) < ah(a) + (1 — a)h(b).
1 1
(ii) h(ab) < —h(a?) + —h(b7).
p q

If we take h(u) = u" (r > 1), we have the following result.
Lemma 2.2. Let a,b>0,0<a <1 and p,q > 1 satisfy % + % =1. Then
(i) a®b* < aa+ (1 — a)b < (aa” + (1 — a)b")r;
1
X proopar\ v
(i) ab< &+ = < <a—+—) ;

p q p q
for every r > 1.

The following result that provides an operator version for Jensen’s inequality
is due to Mond and Pecarié¢ [8].
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Theorem 2.3. Let h(t) be a real valued continuous convez function, and let T
be a self-adjoint operator on a Hilbert space €. Then Jensen’s inequality asserts
that

h({(Tz,x)) < (W(T)z, ) (2.1)
for any unit vector x € .

Notice that, if h is concave, then inequality (2.1) is reversed.
The Holder-McCarthy inequality [7] is a special case of Theorem 2.3.

Lemma 2.4 (Holder-McCarty inequality). Let T € B(A), T > 0, and let
x € I be any unit vector. Then, we have

(i) (Tx,x)" <(T"x,x) forr > 1.
(i) (TTx,x) < (Tx,z)" for0<r <1
(iii) If T is invertible, then (Tx,x)" < (T"x,z) for all r < 0.

The third lemma as the generalized mixed Schwarz inequality.

Lemma 2.5. Let T € B(H) and x,y € F be any vectors.

(i) If a, 8 > 0 such that a + B =1, then | (Tz,y) > < (|T|*z,z) (|T|*y,y).
(ii) If f and g are nonnegative continuous functions on [0,00) satisfying

fg(t) =t (t =0), then [(Tx,y) | < [ F(TD [ [lg(1TNyll-

Theorem 2.6. Let T € B(H) be self-adjoint. Then for each nonnegative non-
decreasing convez function h on [0,00), we have

h(w*(T)) < % (A(w(T?)) + R(ITI%)) - (2.2)

Proof. We recall the following refinement of the Cauchy-Schwarz inequality ob-
tained by Dragomir in [2]. It says that

lull loll = 1w, v) = Cu, 2) (2,0) | + [ (u, 2) {z,0) | = [ {u, 0} ], (2.3)
where u, v, z are vectors in ¢ and ||z|| = 1. From inequality (2.3), we deduce
that

[ (u, 2) (z,0) | < %(HUH [l + | {w, 0} [) .
Put z = z with ||z|| = 1, u = Tz, and v = T"*z in the above inequality and use

part (i) of Lemma 2.1 to get

|(Ta,2) |* < = (|| Tz||” + (T, z)) .

| —

Now by convexity of h, we have

W (T, ) ) < 5 (WTlP) + h((T,2))) (2.4)

N | —

Taking the supremum over x €  with ||z|| = 1 in inequality (2.4), we obtain
the desired result. O]
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Theorem 2.7. Let T' € B(H), and let f,g be nonnegative continuous functions
on [0,00) satisfying f(t)g(t) =t,(t > 0). Then for all nonnegative nondecreasing
convez functions h on [0, 00), we have

) < g (BT + Sz + ) |) - es)

forallp>qg>1 withz—l)—l-é:l.

Proof. Let x € 7 be a unit vector. We have

(42| lg (2] (by Lemma 2.5(b))
(AT, 2)? (g*([(T*)* ), 2)?)

< R P(T2)e, ) ) + %h«g%r(T*)?\)w,wﬁ)
(by Lemma 2.1(b))

h(| <T2x,x> ) <

> S

i

< CHU(PT o) + (g Da,a)) - (by Lemma 2.3)
! P 2 1 q *)2
= ((Grr ey, e + (PO ) o)

It follows from inequality (2.4) that
2 1 *
W([(Tz,z) [F) < 5 | R T[] [ T"2])

1 1 .
#((GRU AT, + b (T D) ) ) )
Taking the supremum over x € # with [|z|| = 1 in the above inequality, we
obtain the desired result. O

Theorem 2.8. Let T' € B(H), let T = U|T| be the polar decomposition of
T, and let Ts; = |T|PU|T|" be the generalized Aluthge transformation of T with
s+t=1. Then

T 1 TS * |27
W (T) < 5 [T+ e (2.6)
for every r > 1.
Proof. Using the Schwarz inequality in the Hilbert space, we have

(T, 2) | = [T, [TIU"2) | < TP |70 ] 2.7)
= <\T\25x,x>l/2 <]T*]2’”x,x>l/2, x €.
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Utilizing the arithmetic-mean geometry mean inequality and then the convexity
of the function h(u) = u", r > 1, we have successively,

T2s T* 2t
<|T|2sx,x>1/2<|T*|2Tx,x>1/2 < <| | x,x);ﬂ | 9U7$>

< <<rT|28x, 2) o+ {|T* e, ) > T

(2.8)

|=

2

for every x € 7. It is known that if @) is positive operator, then for every r > 1
and z € S with ||z|| = 1, we have the inequality

Qo2 < (@0 3). (29)
Applying this property to the positive operators |T|?* and |T*|*, we deduce that

1 1

(<!T|2556756>T+ <|T*|2tx,x>r>T < ((ITP”S%%) + (\T*|2”x,fc>)r (2.10)

2 2

- (s g*\%")x,w)i 2.11)

for any x € 2, ||z| = 1.
Now, on making use the inequalities (2.7), (2.8), and (2.10), we get the inequality

r 1 TS * | 2tr
[(Twa) | < 5 (TP + TP, ) (212)

for any x € 2, ||z| = 1.
Taking the supremum over z € % with ||z|| = 1 in inequality (2.12) and
since the operator |T|?" + |T*|?*" is self-adjoint, we deduce the desired inequality

(2.6). 0

Theorem 2.9. Let T € B(), let T = U|T| be the polar decomposition of
T, and let Tsy = |T|°U|T|" be the generalized Aluthge transformation of T with
s+t =1. Then for each o € (0,1) and r > 1, we have

2rt

w?(T) < ||al T + (1 = )|

(2.13)

Proof. Using the Schwarz inequality, we have
[Tz, z) |” < (T2, z) (|T* "z, x)

< ((T/%)°2,2) (T [™%)' 22, 2) (2.14)

for any x € .
It is well-known that if @ is a positive operator and k € (0, 1], then for any
u € H, ||lul| =1, we have

(Q u,u) < (Qu,u)". (2.15)

Applying this property to the positive operators |T|% and \T*[l% (a € (0,1)),
we have

s t 5 e " -«
<(|T|%)%;,x> . <<|T*|ﬁ7)1—ax,x> < <|T|%x,x> .<|T*|1%x,x> (2.16)
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for every x € 22, ||z|| = 1.
Now, utilizing the weighted arithmetic mean-geometric mean inequality, that
is, a®b'~* < aa + (1 —a)b, a € (0,1),a,b > 0, we obtain

((T1%)ew, o) ((T7[25) w2 ) <o

for every x € 22, ||z|| = 1.
Moreover, by the following elementary inequality from the convexity of h(v) =
v", r > 1, namely,

%x,x> +(1—a) <|T*|1%x,x>
(2.17)

aa+(1—a)b§(aar+(1—a)br)% a€ (0,1),a,b>0,

we deduce that

1
T

2s _2t 2s T _2t T
a<m:x,x> +(1-a) <\T*ymx,x> < <a<]T\Ux,m> +(1-a) <]T*]1wx,x> )

< <a <|T\2crzsx :1:> +(1—-a) <]T*|12rixzc,:n>)
(2.18)

3=

for any x € 2, ||z|| = 1.
Now, by making use of the inequalities (2.14), (2.16), (2.17), and (2.18), we
obtain

(T, z) | < <(a|T\% +(1- a)|T*]1%) xx> (2.19)

for any x € S with ||z| = 1.
Taking the supremum over x € .7 with ||z|| = 1 in inequality (2.19), we obtain
the desired inequality. O

Corollary 2.10. Let T' € B(H), let T = U|T| be the polar decomposition of

T, and let T,y = |T|*U|T|* be the generalized Aluthge transformation of T with
s+t=1. Then for everyr > 1 and p,q > 1 wz’th%%—% =1, we have

1 1
w2r(T) S H§|T‘2pm + 5‘T*‘2rqt (2_20)

Theorem 2.11. Let T € B(H), let T = U|T| be the polar decomposition of

T, and let Tvs,t = |T|*U|T|" be the generalized Aluthge transformation of T with
s+t=1. Then for every a € (0,1) and r > 1, we have

w(1) < 5 (I + el + (1 - @)l(r)

i ) . (2.21)
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Proof. Let x € ¢ be a unit vector. We get
| (T?z,2)|" < ||]T2]3xHT H\(TQ)*]‘SJJHT (by Lemma 2.5(i))
= ([T, 2) (| (T*)"[*z, 2)?

< a(ITPoz,2) + (1 - ) (|(1°) e, )70
(by Lemma 2.1(i))

a,r) 4 (1-a) <|(T2)*|%x, :v> (by Lemma 2.4)

<« <|T2
< ((alT?% + (1 = Q)17 2,2)
It follows from inequality (2.4) with the convex function h(u) = u", (r > 1) that
S (- a)|(T2)*|%> m>) .

Taking the supremum over z € S with ||z|| = 1 in the above inequality, we
deduce the desired inequality (2.21). O

s 1 I8 * T
[(Tw,2) [ < 5 (1Tl 17"l + ( (al?

Inequality (2.21) induces several numerical radius inequalities as special cases.
For example, the following result may be stated as well.

Corollary 2.12. If we take o = 1/2 in inequality (2.21), then
T 1 T 1 ST * T
w(1) < 5 (I + 3 izt + )

foranyr>1ands+t=1.
In addition, by choosing ¢t = s = 1/2, we obtain w? (T) < HTH% for any r > 1.

Theorem 2.13. Let T,5, X € AB(H), and let f,g be nonnegative continuous
functions on [0,00) satisfying f(t)g(t) = t,(t > 0) and « € (0,1). Then for all
nonnegative nondecreasing convex functions h on [0,00), we have

1

. (2.22)

P(w(TXS)) < [la(T 20X YT + (1= a)[A(S"g*(| X)) )]0
Corollary 2.14. Let T, S € B(H). Then

A(w(S"T)) < ah(IT17) + (1 = a)(1s| ™)
holds for any o € (0,1).

Corollary 2.14 is deduced by putting X = I and f(t) = g(t) = v/t in Theorem
2.13. In fact, Corollary 2.14 and Theorem 2.13 are equivalent.

Proof of Theorem 2.13. Let X = U|X| be the polar decomposition of X. Put
B = f(|X|)U*T and A = g(|X])S. Then by Corollary 2.14, we have

h(w(B"A)) < [|ah(T[5) + (1 = a)h(77)

h((TXS)) < [ala(T XN + (1= a)[A(S (1 X])S)] 0

O
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The following theorem gives an upper bound for w(S*T).
Theorem 2.15. Let T,S € (). Then for all nonnegative nondecreasing
convez functions h on [0, 00), we have

h(w(S*T))giHh(lT*l )+ h(]S*? ||+ h (w(TS%)).

Proof. First of all, we note that
w(A) = sup ||Re( (e?A)|l,

(SN

(2.23)

where Re(Y") denotes the real part of the operator Y.
For every unit vector z € 7, we have

Re <ewS*Tx, x> = Re <€i9T£L‘, Sx>

1, 1y, .
= Her s sl - 310 - e
(by Polarization Identity)

< T+ 8)al < § e + 5|
1 . '

=l + 57| (Since [[Y]| = | Y*)
1, | _

=1 H(e’leT* + S*)* (e T + S*)H (Since ||Y]]* = ||[Y*Y|)
1

HTT* +58% +€"TS* + e ST

< ?1 |TT* + SS*|| + 3 HRe(e“’TS*)

1 1
< 1 |TT™ + SS™|| + éw(ST*). (by (2.23))

Taking the supremum over z € S with ||z|| = 1 in the above inequality, we
obtain

1 1
w($'T) < 4 1T + |S*?|| + F0(TS").

Now since A(-) is a nondecreasing convex function, we have
. Ly . 1 .
h(w(S*T)) < h (— 1T + |S*?]| + Su(TS ))

< Qh(’”T*’ IS ”) + 3h(w(TS"))

2
* |2 *|2
<L [T D Ly
2 2
1 ) . 1 .
=1 |A(T*1%) + h(|S*?)|| + 2h w(TSY)).
This completes the proof. O]

The next corollary is an extension of [12, Corollary 2.11].
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Corollary 2.16. Let A € B(I), let A = U|A| be the polar decomposition of
T, let f,g be nonnegative continuous functions on [0,00) satisfying f(t)g(t) =t

(t>0), and let A;, = f(|A|)Ug(|A|) be the generalized Aluthge transformation
of T. Then we have

1

W (4) < 104D + 7 (AD] + 1w (Ayy).

Proof. Put T = f(]A]), S = ¢g(|A|)U*, and h(u) = u" (r > 1) in Theorem 2.15.
Then, we have
1
h(w(S*T))g—Hh IT*%) + h(|S*]? ||+ h (w(T'S*)) <=
w'(4) < 4 ||f2r AD + g (A + wr ().
O

Our next result is to find an upper bound for power of the numerical radius of
1 1
T» X S« under assumption p,q > 1 with 110 + % =1.

Theorem 2.17. Suppose that T, S, X € B(H) and that T and S are positive.
Then

w'(T» X S9) <

1 1
T —TT—F—ST
p q

for everyr > 1 and p,q > 1 with%%—é:l.

Proof. Let x € S be a unit vector. Then

‘<T%X5’%x,x> ‘<Xqu Tpx>
ol el
v/ a2 3 /,.2 2
< |1 X]| <qu,x> <Tpa:,x>
< |IX|" (S"z, )1 (T"z, z)7 (by Lemma 2.4)
1 1
< |IX|II < <—ST + —TT) x,x> . (by Lemma 2.2)
p q
Taking the supremum over z € S with ||z|| = 1 in the above inequality, we
obtain the desired inequality. O

Corollary 2.18. Let A = |A[zU|A|z be the Aluthge transformation of A such
that U s a partial isometry. Then

w(A) < || All.

Proof. If we taker =1, p=q=2,T =S5 = |A], and X = U in Theorem 2.17,
then

~ 1 1
() < 3141+ glal] = = .
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Theorem 2.19. If T € B(H), then

1 —
w1 < Gur ) + (5 ) I
for everyr > 1 and 0 < a < 1.

Proof. We recall the following refinement of the Cauchy—Schwarz inequality ob-
tained by Dragomir in [2]. It says that

[ (a,e) (e, 0) | < al(a,b) | + (1 = a) [la][ [[o]],

where a, b, e are vectors in S and |le]| = 1.
Put e = x with ||z|| =1, a = Tz and b = T"*x in the above inequality and use
Lemma 2.1(i) with h(u) = u” (r > 1) to get

l—«

Q *
|(Fo) P < ST ) |+ (52 ) 1Tl 7l

1
aQ r l -« r * T v
(G2 e (S5 ) el ralr)

<
Hence
2r o 2 r l—a r * (|7
(T, ) [ < ST, ) [+ ( —— | ITl" 1 T])" (2.24)
Taking the supremum over x € .7 with ||z|| = 1 in inequality (2.24), we get the
desired inequality. OJ

Corollary 2.20. Let T € B(I), and let f,g be nonnegative continuous func-
tions on [0,00) satisfying f(t)g(t) =t, (t > 0). Then

l—«

w”ms( _ )HTHM(%) lassqren + a —aygsq@yn| - @29)

forallr>1 and 0 < a < 1.

Proof. Let x € 7 be a unit vector. We have
(T, ) [" < || FAT* || la(1(T?) D]
= (T2, 2)? (P((T?) )2, )

< a {27z, 2)% + (1 — ) (((TV)*])z, 2) T
(by Lemma 2.2)

< a(fE(T*)z,2) + (1 - ) (g7 (|(T?)"|)z,2) (by Lemma 2.4)
= ((af5(T2) + (1 = Q)g ™= (I(T%)"]) ) 2. 2)
It follows from (2.24) that
[Ty < 5 ((af T2 + (L= @)™ D) o)

Taking the supremum over z € . with ||z|| = 1 in the above inequality, we
deduce the desired inequality. O

(by Lemma 2.5(ii))

11—«

) I Tl 72|
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Inequality (2.25) induces several radius inequalities as special cases. For exam-
ple, the following result reads as follows.

Corollary 2.21. If we take f(t) = t",g(t) =t? withp+q =1 and a = 1/2 in
inequality (2.25), then

w?(T) < 2 (1717 + [[IT1" + 1T

|

for every r > 1.

3. Numerical radius and strongly convex function

Let J C R be an interval and let ¢ be a positive number. By following Polyak
[11], a function f : J — R is called strongly convex with modulus c¢ if

fOz+ (1 =Ny) SAf(2) + (1 =Nfly) —eAL =Nz —-y)?*  (3.1)
for all x,y € J and A € [0,1]. The function f is called strongly concave with
modulus ¢ if —f is strongly convex with modulus c.

Since strong convexity is a strengthening of the notion of convexity, some prop-
erties of strongly convex functions are just stronger versions of known properties
of convex functions. For instance, a function f : J — R is strongly convex with
modulus ¢ if and only if for every xy € int(J) (the interior of J) there exists a
number [ € R such that

ol — x0)® + l(z — x0) + f(20) < fz), z €L (3.2)

In other word, f has a quadratic support at xg.
The differentiable function f is strongly convex with modulus c if and only if

(f'(@) = f' W) —y) = 2c(z — y)” (3.3)

for each x,y € J. For more properties of this class of functions, see [6].

Theorem 3.1. Let f : J — R be strongly convex with modulus ¢ and differentiable
on int(J). If T is a self-adjoint operator on the Hilbert space F with o(T) C
int(J), then

fw(T)) + cw(T?) < w(f(T)) + cw*(T) (3.4)
for each x € 7, with ||z|| = 1.

Proof. 1t follows from (3.2) by utilizing functional calculus that
o(T? + 251 — 220T) + 1T — Izl + f(20)I < f(T), (3.5)
which is equivalent to
c((T?z,x) + x5 — 2x0) + [ (T, x) — lxg + f(z0) < (f(T)z, z) (3.6)
for each x € 7, with ||z| = 1.
Now, applying (3.6) for g = (T'x,z), we obtain
F((Tw.2)) < (f(T)a,x) - e((T?2,2) — (Ta,2)?) (37)

and so

[Tz, z)) + c(T?x,x) < (f(T)z,z) + ¢ (T, )% (3.8)
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Taking the supremum over z € . with [|z|| = 1 in inequality (3.8), we deduce
the desired inequality. O

Remark 3.2. Notice that the quantity w(T?) — w?(T) is positive, therefore we
have

Fw(T)) < w(f(T)) — e (w(T?) —w*(T)) < w(f(T))
for each x € 7, with ||z| = 1.

Remark 3.3 ([?7, Proposition 1.1.2]). The function f : J — R is strongly convex
with modulus ¢ if and only if the function g : J — R defined by g(z) = f(z) — cz?
is convex. Consider the function f : (1,00) — R, given by f(x) = 2" with
r > 2. It can be easily verified that, this function is strongly convex with modulus
r?—r

2

c= . Based on this fact, from Theorem 3.1, we obtain

T‘Q—

——(w(T?) — (1))

for each positive operator T" and x € 5 with ||z| = 1.
It is readily checked that the function f : (0,1) — R given by f(x) = —2" with
2

w(T) <w(T") —

0 <7 < 1is astrongly convex function with modulus ¢ = — - Similar to the

above argument, by using Theorem 3.1, we get

T—T2

w(T") <w'(T) + (w*(T) — w(T?)),

for each positive operator T" and = € J with ||z|| = 1.
The following theorem is a generalization of Theorem 3.1.

Theorem 3.4. Let all the assumptions of Theorem 3.1 be satisfied. Moreover,
let f(0) <0. Then

(T < w(f(T)) — ¢ (w(T?) - 2w<T>2>

]

for each x € F with ||z|| < 1.

Proof. Let y = so that ||y|| = 1. We have

|| [
F(Tz,z)) = f(ll® f(Ty,y) + (1 = [|=]*.0)

<zl f((Ty, y)) + (1 — ||z||* £(0) (by (3.1))
< ||z||* f((Ty,y)) (since f(0) <0)
< |lz|* ((f(D)y, y) — c({T?y,y) — (Ty,y)*)) (by inequality (3.8))

= (f(T)z,z) — c ((T%, x) — H;HQ (T, :1:>2) .

Taking the supremum over z € 5 with |z|| < 1 in the above inequality, we
deduce the desired inequality. O
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In what follows, we make use of Lemma 2.1 from [, Theorem 3.1.2] which we
cite here.

Lemma 3.5. Let ® be a unital completely positive linear map from a C*-sub-
algebra A of M, (C) into M,,(C). Then there ezist a Hilbert space £, an isometry
V. C"™ — #, and a unital x-homomorphism © from A into the C*-algebra
B(H) such that P(A) = V*r(A)V.

In the next theorem, we extend Theorem 3.1 to all positive linear maps.

Theorem 3.6. Let all the assumptions of Theorem 3.1 be satisfied, and let ® :
M, (C) = M,,(C) be a unital positive linear map. Then

Flw(®(A)) + ¢ [[@(A)* < w((f(A)) + cw?(D(A)) (3.9)
for every Hermitian matrix A € M, (C) and every unit vector x € C™.

Proof. We may assume that A is the unital C*-algebra generated by a single
positive operator A. Hence by a classical dilation theorem of Naimark (see [10,
Theorem 3.10]), our maps ¢ will be automatically completely positive. So, by
Lemma 3.5, there exist a Hilbert space ", an isometry V : C™ — J# and a
unital *-homomorphism 7 from A into the C*-algebra (") such that ®(A) =
V*r(A)V. Clearly,

f(x(A)) = =(f(A)). (3.10)

Taking into account that ||[V|| =1 (V is an isometry), we observe that
f(@(A)z, z)) = fF((V'm(A)Vz, x))
= [(m(A)Vz, V)
< (f(w(A)Va,Va) = c({(n(A)*Va,Va) — (r(A)Vz, Va)?)
(by Theorem 3.1)
= (n(f(A))Va,Vz) — c({r(A)?*Vz,Vz) — (r(A)Vz, Vi)?)
(by (3.10))
= (V*n(f(A)Vz,z) — c((Vm(A)V )z, 2) — (V*r(A)Vz, z)?)
= (D(f(A)z,z) — c((P(A)x,z) — (D(A)z, z)?).
Hence

FUR(A)z,2)) + ¢ [|[D(A)x|* < (R(f(A))z,x) +c(B(A)z,z)".

Taking the supremum over z € S with ||z|| < 1 in the above inequality, we
deduce the desired inequality. OJ

Theorem 3.7. Let f : J — R be strongly convex with modulus ¢ and differentiable
onint(J), and let the derivative of [ be continuous on int(J). If T is a self-adjoint
operator on the Hilbert space 7 with o(T') C int(J), then

(T°z,z) — (Tx,z)* < %((f’(T)Tx,x) —(Tz,z) (f(T)x,x)) (3.11)

for each x € F, with ||z|| = 1.
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Proof. 1t follows from (3.3) by utilizing functional calculus that
2e(T* —y*I +2T%) < f(T)T —yf'(T) — f'W)T +yf'(»)1
which is equivalent to
2T, 2)+y* =2y (Tw,x)) < (f (D) Tz, 2)—y (f(T)z, )~ f'(y) (Tz,2)+yf (y)
for each x € 2, with ||z| = 1.
Now, applying the last inequality with y = (T'z, z), we have
2c((T?x,2) — (Tx,2)?) < (f(T)Tx,2) — (Tz,z) (f (T)z,x).
Hence the desired inequality is obtained. 0

By replacing c¢(z — y)? with a nonnegative real valued function G(z — ), we
can define G-strongly convex functions as follows:

fOr+ (1 =Ny) <Af(2) + (1= Nf(y) — A1 = NGz —y) (3.12)

for each A € [0,1] and z,y € J. (Very recently, this approach has been investi-

gated by Adamek in [?]).
We should note that, if G is G-strongly affine, then the function f is G-strongly
convex if and only if g = f — G is convex (see [?, Lemma 4]).

Theorem 3.8. Let f : J — R be an G-strongly convex and differentiable function
on int(J), and let G : J — [0,00) be a continuous function. If T is a self-adjoint
operator on the Hilbert space 7 with o(T) C int(T), then

f(Tx,x)) < (f(T)w,2) = (G(T = (T'w, z))x, x) (3.13)
for each x € F, with ||z|| = 1.
Proof. From (3.12), we infer that
fA@ =y)+y) = fly) + ML= NG(z —y) < A(f(x) = fy)).
By dividing both sides by A, we obtain
Oz —y) +y) = fy)

- FL= NF(E —y) < f(&) - fo)
Notice that if f is differentiable, then, letting A — 0, we have
fe—y) +Gl@—y)+ fly) < f(2), (3.14)

for all z,y € J and A € [0, 1].

It follows from (3.14) by utilizing functional calculus that

FT —yl) +G(T —y) + fy)] < [(T)
which is equivalent to
F((Tz,x) —y) +(G(T —y)z,z) + f(y) < (f(T)z,x).

for each x € 2, with ||z| = 1.

Now, by applying the last inequality with y = (T'z, z), we have

<G<T - <T£L’,ZE>)ZE, I> + f(<T:L‘, CL’>) < <f(T):L’, J]> )

so the result is obtained. O
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