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Abstract. In this paper, we define two new Schur and Kronecker-type prod-
ucts for block matrices. We present some equalities and inequalities involving
traces of matrices generated by these products and in particular we give con-
ditions under which the trace operator is sub-multiplicative for them. Also,
versions in the block matrix framework of results of Das, Vashisht, Taskara
and Gumus will be obtained.

1. Introduction and preliminaries

If we take two matrices A = (ak,j)k,j and B = (bk,j)k,j of the same size, with
entries in the complex or real field, their Hadamard product is just their element-
wise product, that is,

A ∗B = (ak,j · bk,j)k,j.

Since Schur provided the initial studies about its properties, it is widely known
also as the “Schur product”. Horn, in 1990, gave a profound insight on this
product (see [6]).

In what follows, we will denote by Mn,m(X) the space of matrices of size
n × m with entries in X. If X is also a space of matrices, we will use the
expression “block matrices” to refer to the elements of Mn,m(X). Consider now
A = (ak,j)k,j ∈ Mn,m(C) and B = (bk,j)k,j ∈ Mp,q(C). Their Kronecker product,

Date: Received: 8 October 2018; Revised: 7 January 2019; Accepted: 16 January 2019.
2010 Mathematics Subject Classification. Primary 15A45; Secondary 47A50, 47L10, 15A16.
Key words and phrases. Schur product, Kronecker product, trace, matrix multiplication,

inequalities.
40



TRACES OF SCHUR AND KRONECKER PRODUCTS FOR BLOCK MATRICES 41

denoted by A⊗B, is defined as follows:

A⊗B :=


a1,1B a1,2B · · · a1,mB
a2,1B a2,2B · · · a2,mB

...
...

. . .
...

an,1B an,2B · · · an,mB

 ∈Mnp,mq(C).

Both the Schur product and the Kronecker product are studied and applied
in fields such as matrix theory, matricial analysis or statistics. For instance, the
reader is referred to [7], where Magnus and Neudecker gave some results and
statistical applications regarding the Schur and Kronecker products and to [8],
where Persson and Popa used the Schur product as a tool in the area of matricial
harmonic analysis to develop theories of matrix spaces parallel to their scalar
counterparts.

The trace of a matrix A = (ak,j)k,j ∈ Mn×n(C) is the sum of its diagonal
elements, that is,

tr(A) =
n∑

i=1

ai,i.

The reader is referred to the papers of Das and Vashisht (see [3]) and Taskara
and Gumus (see [9]), where the authors investigated traces of Schur and Kronecker
products. One of our goals in this paper will be to generalize some of those results
in the context of block matrices, for certain versions of Schur and Kronecker
products that we shall define now.

Definition 1.1. Let A = (Tk,j)k,j ∈ MN×M(Mn×m(C)) and B = (Sk,j)k,j ∈
MN×M(Mn×m(C)). We define the Schur product of A and B as

A~B := (Tk,j ∗ Sk,j)k,j,

where Tk,j ∗Sk,j denotes the classical Schur product of the matrices Tk,j and Sk,j.

If m,n = 1 or N,M = 1, this product coincides with the classical Schur
product. Although the previous definition is natural, other options to define a
Schur product for block matrices exist, of course. For example, in [1, 2], we
worked with a definition that involved the entry-wise composition of operators
and proved some results with it in the field of matricial harmonic analysis for
infinite matrices. In this paper, we will focus on the context of finite matrices.

Consider now T ∈Mn,m(C) and B = (Bk,j)k,j ∈MN,M(Mn,m(C)). We define
a block Kronecker product of T and B as T �B = (T ∗Bk,j)k,j. Taking this into
account, we can define our Kronecker product of two block matrices as follows.

Definition 1.2. Let A = (Tk,j)k,j ∈ MN×M(Mn×m(C)) and B = (Sk,j)k,j ∈
MP×Q(Mn×m(C)). We define their Kronecker product, A�B, as

A�B := (Tk,j �B)k,j ∈MNP×MQ(Mn×m(C)).

Observe that this product is not commutative, but the Schur product for block
matrices is. Also, note that if m,n = 1, then this Kronecker product becomes the
Kronecker product of matrices with complex entries; and if P,Q,N,M = 1, then
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the classical Schur product is obtained. Again, we point out that other natural
definitions of a block Kronecker product exist (see [5]).

Some basic properties satisfied by these products are the following ones. Let
N,M,P,Q, n,m ∈ N.

• Property (1) The products ~ and � establish bilinear maps between
spaces of block matrices:

~ :MN×M(Mn×m(C))×MN×M(Mn×m(C)) −→MN×M(Mn×m(C))

and

� :MN×M(Mn×m(C))×MP×Q(Mn×m(C)) −→MNP×MQ(Mn×m(C)).

• Property (2) (Associativity).
– A~ (B~C) = (A~B)~C.
– A�(B�C) = (A�B)�C.

• Property (3) (Distributivity with respect to the sum).
– (A + B)~C = (A~C) + (B~C).
– A~ (B + C) = (A~B) + (A~C).
– (A + B)�C = (A�C) + (B�C).
– A�(B + C) = (A�B) + (A�C).

• Property (4) (Mixed associativity). For every α ∈ C,
– α(A~B) = (αA)~B = A~ (αB).
– α(A�B) = (αA)�B = A�(αB).

• Property (5) (Commutativity of ~).
– A~B = B~A.

Since the space of block matrices with the operations “+” (sum of matrices) and
“·” (product by scalar) is a vector space, it becomes an algebra when equipped
with � due to properties (2)–(4), and it becomes a commutative algebra when
equipped with ~ instead, due to properties (2)–(5).

2. On traces of block matrices

In what follows, we will study equalities and inequalities involving traces of
block matrices and the products defined above. From now on we will work in
the context of square block matrices whose entries are also square matrices, with
entries in R, and will abbreviate the notation for these matrices in the follow-
ing way: MN(Mn) := MN×N(Mn×n(R)). First of all, take into account that
the trace of a block matrix is computed by summing the traces of its diagonal
elements. That is, if A = (Tk,j)k,j ∈MN(Mn), then

tr(A) =
N∑
i=1

tr(Ti,i) =
N∑
i=1

n∑
l=1

Ti,i(l, l).

Proposition 2.1. Let A ∈MN(Mn) and B ∈MM(Mn) with A = (Tk,j)k,j and
B = (Sk,j)k,j. Then

(a) If M = N , then tr(A~B) =
N∑
i=1

n∑
l=1

Ti,i(l, l)Si,i(l, l).
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(b) tr(A�B) =
N∑
i=1

M∑
j=1

n∑
l=1

Ti,i(l, l)Sj,j(l, l).

(c) If M = N , then tr(A�B) = tr(A~B) +
N∑

i=1,j=1
i 6=j

n∑
l=1

Ti,i(l, l)Sj,j(l, l).

Proof. (a)

tr(A~B) =
N∑
i=1

tr(A~B)i,i =
N∑
i=1

n∑
l=1

(Ti,i ∗ Si,i)(l, l)

=
N∑
i=1

n∑
l=1

Ti,i(l, l)Si,i(l, l).

(b)

tr(A�B) =
N∑
i=1

tr(Ti,i�B) =
N∑
i=1

M∑
j=1

tr(Ti,i ∗ Sj,j)

=
N∑
i=1

M∑
j=1

n∑
l=1

Ti,i(l, l)Sj,j(l, l).

(c) Follows from (a) and (b). �

Remark 2.2. Observe that although we know that given A and B square block
matrices in general one has A�B 6= B�A, a glance at part (b) in Proposition 2.1
shows that tr(A�B) is always equal to tr(B�A). Of course, tr(A~B) = tr(B~A)
since the matrices coincide.

Proposition 2.3. Let A,B ∈MN(Mn). We have
(a) tr ((A+B)~ (A−B))) = tr(A~ A)− tr(B ~B).
(b) tr ((A±B)~ (A±B))) = tr(A~ A)± 2 tr(A~B) + tr(B ~B).
(c) tr ((A+B)�(A−B))) = tr(A�A)− tr(B�B).
(d) tr ((A±B)�(A±B))) = tr(A�A)± 2 tr(A�B) + tr(B�B).

Proof. The four assertions are consequence of the properties of mixed associativity
and distributivity with respect to the sum that the Kronecker and the Schur
product have, and also the linearity of the trace and Remark 2.2. �

Remark 2.4. Recall that the arithmetic mean of a sequence (αl)
m
l=1 is greater or

equal than its geometric mean, that is,∑m
l=1 αl

m
≥

(
m∏
l=1

αl

) 1
m

.

Proposition 2.5. Let p ∈ N, and consider a finite sequence of block matrices
(As))ps=1 ⊂MN(Mn). Then, we have the following inequality:

tr(~p
s=1A

s)) ≤ tr

(
~p

p∑
s=1

As)

p

)
.
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Proof.

tr

(
~p

p∑
s=1

As)

p

)
= tr

((
A1) + · · ·+ Ap)

p

)
~

p
· · ·~

(
A1) + · · ·+ Ap)

p

))

=
N∑
i=1

tr

((
A1) + · · ·+ Ap)

p

)
~

p
· · ·~

(
A1) + · · ·+ Ap)

p

))
i,i

=
N∑
i=1

n∑
l=1

(
A

1)
i,i(l, l) + · · ·+ A

p)
i,i(l, l)

p

)p

≥
N∑
i=1

n∑
l=1

p∏
s=1

A
s)
i,i(l, l) =

N∑
i=1

tr
(
~p

s=1A
s)
i,i

)
(by Remark 2.4)

=
N∑
i=1

tr
((
~p

s=1A
s)
)
i,i

)
= tr

(
~p

s=1A
s)
)
.

�

3. Trace sub-multiplicativity and the spaces MS
N(Mn) and M+

N(Mn)

Now, we will explore the relation between the value of the trace of Schur or
Kronecker products of matrices and the product of the traces of the original
matrices. First of all, recall that in the case of matrices with scalar entries, it is
known that for the Kronecker product one has tr(A ⊗ B) = tr(A) · tr(B). This
is not the case for block matrices, neither for the product � nor for the product
~, as the following example shows.

Example 3.1. Consider the following matrices from M2(M2):

A =


(
−1 0
0 5

) (
0 1
1 0

)
(

2 2
3 1

) (
1 0
0 −2

)
 , B =


(

1 1
1 −1

) (
2 0
0 −1

)
(

0 0
1 2

) (
−3 0
0 −1

)
 .

Their block Schur product is the matrix

A~B =


(
−1 0
0 −5

) (
0 0
0 0

)
(

0 0
3 2

) (
−3 0
0 2

)
 ∈M2(M2),
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and their block Kronecker product is the matrix

A�B =



(
−1 0
0 −5

) (
−2 0
0 −5

) (
0 1
1 0

) (
0 0
0 0

)
(

0 0
0 10

) (
3 0
0 −5

) (
0 0
1 0

) (
0 0
0 0

)
(

2 2
3 −1

) (
4 0
0 −1

) (
1 0
0 2

) (
2 0
0 2

)
(

0 0
3 2

) (
−6 0
0 −1

) (
0 0
0 −4

) (
−3 0
0 2

)


∈M4(M2).

Then, tr(A) = 3, tr(B) = −4, but tr(A~B) = −7 6= tr(A)·tr(B) and tr(A�B) =
−6 6= tr(A) · tr(B).

Example 3.1 also revealed that the inequalities tr(A�B) ≤ tr(A) · tr(B) and
tr(A ~ B) ≤ tr(A) · tr(B) are not true in general. However, we ask ourselves if
the trace operator might be submultiplicative for these products under certain
restrictions. The following two spaces of block matrices will be relevant for that
matter.

Definition 3.2. Given N, n ∈ N, we define the following subsets of MN(Mn):

MS
N(Mn) := {(Tk,j)k,j ∈MN(Mn) /

N∑
k=1

Tk,k(l, l) ≥ 0, ∀ 1 ≤ l ≤ n},

M+
N(Mn) := {(Tk,j)k,j ∈MN(Mn) / Tk,k(l, l) ≥ 0, ∀ 1 ≤ k ≤ N, ∀ 1 ≤ l ≤ n}.

Of course, M+
N(Mn) (MS

N(Mn).

In the next theorem, we show that the trace operator is actually submulti-
plicative when acting on matrices that fulfill conditions related to the spaces of
matrices from Definition 3.2.

Theorem 3.3. Let A = (Tk,j)k,j ∈MN(Mn) and B = (Sk,j)k,j ∈MM(Mn).
(a) If M = N , A ∈MS

N(Mn), and B ∈M+
N(Mn), then

tr(A~B) ≤ tr(A) · tr(B).

(b) If A ∈MS
N(Mn) and B ∈MS

M(Mn), then

tr(A�B) ≤ tr(A) · tr(B).

Proof. (a) First, observe that since A ∈MS
N(Mn), then we have that

N∑
k=1

Tk,k(l, l) ≤
n∑

l=1

N∑
k=1

Tk,k(l, l) = tr(A).

Also, since B ∈M+
N(Mn), we get the following estimation:

sup
i
Si,i(l, l) ≤

N∑
i=1

Si,i(l, l) ≤
n∑

l=1

N∑
i=1

Si,i(l, l) ≤ tr(B).
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Therefore,

tr(A~B)=
N∑
i=1

n∑
l=1

Ti,i(l, l)Si,i(l, l) (by Proposition 2.1(a))

≤
n∑

l=1

sup
i
Si,i(l, l)

N∑
i=1

Ti,i(l, l)

≤ tr(A) · tr(B).

(b) In a similar way, we get the estimation for the trace of the block Kronecker
product:

tr(A�B)=
N∑
i=1

M∑
j=1

n∑
l=1

Ti,i(l, l)Sj,j(l, l) (by Proposition 2.1(b))

=
n∑

l=1

(
N∑
i=1

Ti,i(l, l)

)
·

(
M∑
j=1

Sj,j(l, l)

)

≤

(
sup
l

M∑
j=1

Sj,j(l, l)

)
·

n∑
l=1

(
N∑
i=1

Ti,i(l, l)

)

≤

(
n∑

l=1

M∑
j=1

Sj,j(l, l)

)
· tr(A) ≤ tr(A) · tr(B).

�

Corollary 3.4. (a) Let A1, A2, . . . , Am ∈M+
N(Mn). Then

tr(A1~A2~ · · ·~Am) ≤
m∏
i=1

tr(Ai).

(b) Let Bi ∈M+
Ni

(Mn), 1 ≤ i ≤ m. Then

tr(B1�B2� · · ·�Bm) ≤
m∏
i=1

tr(Bi).

Proof. (a) Note that for any 1 ≤ i ≤ m, one has

(A1~A2~ · · ·~Ai)k,k(l, l) = (A1)k,k(l, l) · (A2)k,k(l, l) · . . . · (Ai)k,k(l, l) ≥ 0

for all k, l such that 1 ≤ k ≤ N and 1 ≤ l ≤ n, since by hypothesis all matrices Ai

are inM+. Therefore, A1~A2~ · · ·~Ai is inM+ for each i. Now, the inequality
follows from a combined use of this observation, part (a) of Theorem 3.3 and an
induction argument.

(b) Following the same line as in (a), since the matrix B1� · · ·�Bi is also in
M+ for each 1 ≤ i ≤ m because its diagonals are just Schur products of diagonals
of matrices that are all of them in M+ by hypothesis. This allows us to apply
part (b) of Theorem 3.3, and an induction argument concludes the proof. �
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As a small application of the previous inequality, we will take a look now at
the trace of a version of the exponential of a block matrix based on our block
Schur product. Let A ∈MN(Mn) be a block matrix. We define eA as follows:

eA :=
∞∑
j=0

~j
i=1A

j!
,

where ~0
i=1A := I ∈MN(Mn) is the identity matrix for the block Schur product,

with tr(I) = Nn. Observe that eA is well defined, since taking multiplier norms,
we have ∥∥∥∥∥

∞∑
j=0

~j
i=1A

j!

∥∥∥∥∥ ≤
∞∑
j=0

∥∥∥∥∥~j
i=1A

j!

∥∥∥∥∥ ≤
∞∑
j=0

‖A‖j

j!
= e‖A‖.

Notice that in the second inequality we used the fact that the product ~ endows
the space of multipliers fromMN(Mn) toMN(Mn) with a structure of Banach
algebra. Furthermore, it can be seen that the product ~ also endows the space of
bounded linear operators represented by elements of MN(Mn) with a structure
of Banach algebra with the operator norm (see [4]).

Now, by letting d = Nn− 1, the trace of eA can be bounded from above when
A ∈M+

N(Mn) as follows:

tr(eA) = tr

(
∞∑
j=0

~j
i=1A

j!

)
=
∞∑
j=0

tr(~j
i=1A)

j!
(3.1)

≤ Nn+
∞∑
j=1

tr(A)j

j!
= d+ etr(A). (by Corollary 3.4(a))

Proposition 3.5. Let A,B ∈ MN(Mn) such that A + B ∈ M+
N(Mn), and let

d = Nn− 1. Then
tr(eA~eB) ≤ d+ etr(A) · etr(B).

Proof. Note that, since the product ~ is commutative, we can write

eA~eB =

(
∞∑
j=0

~j
i=1A

j!

)(
∞∑
j=0

~j
i=1B

j!

)

=
∞∑

m=0

∞∑
j=0

~m
i=1A ~

j
i=1B

m!j!
=
∞∑
l=0

l∑
m=0

~m
i=1A ~

l−m
i=1 B

m!(l −m)!

=
∞∑
l=0

1

l!

l∑
m=0

l!

m!(l −m)!
~m

i=1A ~
l−m
i=1 B

=
∞∑
l=0

~l
i=1(A+B)

l!
= eA+B.

Using that and applying inequality (3.1) to A+B, we have

tr(eA~eB) = tr(eA+B)
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≤ d+ etr(A+B) = d+ e(tr(A)+tr(B)) (by 3.1)

= d+ etr(A) · etr(B).

�

As a direct consequence of applying induction to Proposition 3.5, we obtain
this corollary that gives an upper estimate for the trace of a finite Schur product
of exponentials of matrices.

Corollary 3.6. Let {Ai}mi=1 ⊂ MN(Mn) such that
∑m

i=1Ai ∈ M+
N(Mn), and

let d = Nn− 1. Then, we have

tr(~m
i=1e

Ai) ≤ d+
m∏
i=1

etr(Ai).

4. Trace inequalities combining both products

Finally, we present some results that give upper estimates for the traces of
block matrices generated by combined Kronecker and Hadamard products, in
terms of the trace of matrices where only one of the products is involved. The
utility of these lies in the fact that it is easier to compute the latter ones.

Theorem 4.1. Let Ai, Bi ∈M+
N(Mn), for 1 ≤ i ≤ m. Then

(a) tr
(

(A1�A2� · · ·�Am)~ (B1�B2� · · ·�Bm)
)
≤
∏m

i=1 tr(Ai ~Bi).

(b) tr
(

(A1 ~ A2 ~ · · ·~ Am)� (B1 ~B2 ~ · · ·~Bm)
)
≤
∏m

i=1 tr(Ai�Bi).

Proof. First, observe that direct computations show that the product ~ and the
product � are linked by the following relation, that we shall use below:

(A�B)~ (C�D) = (A~ C)�(B ~D). (4.1)

(a) We use an induction argument. For m = 1, the result is obvious. Let us
assume that the result is true for m = s, and let us prove that it is also true for
m = s+ 1. We can write

tr
(

(A1�A2� · · ·�As+1)~ (B1�B2� · · ·�Bs+1)
)

=tr
((

(A1�A2� · · ·�As)~ (B1�B2� · · ·�Bs)
)
�(As+1 ~Bs+1)

)
. (by (4.1))

Now, by hypothesis, As+1 ~Bs+1 is in a space M+. The matrix

(A1�A2� · · ·�As)~ (B1�B2� · · ·�Bs)

also belongs to the same space, since all of its diagonal entries are Schur products
of the diagonal entries of the matrices Ai, Bj which all of them were in M+

by the hypothesis. Therefore, by using part (b) of Theorem 3.3 and induction
hypothesis, we conclude

tr
((

(A1�A2� · · ·�As)~ (B1�B2� · · ·�Bs)
)
�(As+1 ~Bs+1)

)
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≤tr
(

(A1�A2� · · ·�As)~ (B1�B2� · · ·�Bs)
)
· tr(As+1 ~Bs+1)

(by Theorem 3.3(b))

≤
s∏

i=1

tr(Ai ~Bi) · tr(As+1 ~Bs+1) =
s+1∏
i=1

tr(Ai ~Bi).

(b) By using part (a) of Theorem 3.3, the proof is analogous. �

Corollary 4.2. Let Ai, Bi ∈M+
N(Mn), for 1 ≤ i ≤ m. Then

(a) tr
(

(A1 ~ A2 ~ · · ·~ Am)� (B1 ~B2 ~ · · ·~Bm)
)
≤ tr(~m

i=1Ai)·tr(~m
i=1Bi).

(b) tr
(

(A1�A2� · · ·�Am)~ (B1�B2� · · ·�Bm)
)
≤ tr(�m

i=1Ai) · tr(�m
i=1Bi).

Proof. (a)

tr
(

(A1 ~ A2 ~ · · ·~ Am)� (B1 ~B2 ~ · · ·~Bm)
)

= tr
((

(A1 ~ A2 ~ · · ·~ Am−1)~ Am

)
�
(

(B1 ~B2 ~ · · ·~Bm−1)~Bm

))
=tr
((

(A1 ~ A2 ~ · · ·~ Am−1)� (B1 ~B2 ~ · · ·~Bm−1)
)
~ (Am�Bm)

)
(by (4.1))

≤tr(A1 ~ · · ·~ Am−1 ~ Am) · tr(B1 ~ · · ·Bm−1 ~Bm)
(by Theorem 4.1(a))

= tr(~m
i=1Ai) · tr(~m

i=1Bi).

(b) Follows by the same argument, but using part (b) of Theorem 4.1 instead.
�
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