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ABSTRACT. As a generalization of semi-invariant Riemannian submersions,
we introduce conformal semi-invariant submersions from almost contact met-
ric manifolds onto Riemannian manifolds and study such submersions from
Cosymplectic manifolds onto Riemannian manifolds. Examples of conformal
semi-invariant submersions in which structure vector field is vertical are given.
We study geometry of foliations determined by distributions involved in defi-
nition of conformal anti-invariant submersions. We also study the harmonicity
of such submersions and find necessary and sufficient conditions for the distri-
butions to be totally geodesic.

1. INTRODUCTION

Let (M, gnr) and (N, gn) be two Riemannian manifolds of dimension m and n
respectively. A differentiable map f : M — N is called a Riemannian submersion
if f has maximal rank and f, preserves the lengths of horizontal vectors. Rie-
mannian submersions between Riemannian manifolds were introduced by O’Neill
[18] and Gray [10]. Firstly, Watson studied Riemannian submersions between
Riemannian manifolds equipped with an additional structure of almost complex
type [24].

Several geometers studied almost contact metric submersions [5], locally con-
formal Kéhler submersions [16], Riemannian submersions and related topics [8],
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Riemannian submersions from quaternionic manifolds [12], h-semi-invariant sub-
mersions [19], mixed para-quaternionic 3-submersions [23], anti-invariant £+ Rie-
mannian submersions from almost contact manifolds [14], on para-quaternionic
submersions between para-quaternionic Kéhler manifolds [4] etc.

As a generalization of holomorphic submersions [11] and anti-invariant sub-
mersions [21], semi-invariant submersions from almost Hermitian manifolds onto
Riemannian manifolds were introduced by Sahin [22]. We see that a Riemannian
submersion f from an almost Hermitian manifold (M, Jy, gar) onto a Riemannian
manifold (N, gy) is called a semi-invariant submersion, if the fibers have differ-
entiable distributions D and D+ such that D is invariant with respect to Jy;
and its orthogonal complement D+ is totally real distribution. Moreover, almost
Hermitian submersions [24] and anti-invariant submersions [21] are semi-invariant
submersions with D = {0} and D+ = {0}, respectively.

Gudmundsson and Wood introduced conformal holomorphic submersions as a
generalization of holomorphic submersions [11] and obtained necessary and suf-
ficient conditions for conformal holomorphic submersions to be a harmonic mor-
phism. The harmonicity of conformal holomorphic submersions is also discussed
i ([6L,[7])-

A horizontally conformal submersion is generalization of Riemannian submer-
sions defined as follows [3]: Let f : (M, gn) — (N, gn) be a smooth submersion
between Riemannian manifolds, we call f a horizontally conformal submersion,
if there is a positive function A such that

o(U.V) = 5505(£0 £.V) (1.1

for every U,V € T'(ker f,)t. It is clear that every Riemannian submersion is a
particular horizontally conformal submersion with A = 1. We note that horizon-
tally conformal submersions are special horizontally conformal maps that were
studied independently by Fuglede [9] and Ishihara [13]. Next, a horizontally con-
formal submersion f : (M, gy) — (IV,gn) is said to be horizontally homothetic
if the gradient of its dilation is vertical, that is,

H(grad\) =0, (1.2)

where H is the projection on the horizontal space (ker f.,)*.

Conformal anti-invariant submersions [I] and semi-invariant submersions [2]
from almost Hermitian manifolds onto Riemannian manifolds were studied by
Akyol and Sahin. We introduce here the notion of conformal semi-invariant sub-
mersions from almost contact metric manifolds onto Riemannian manifolds and
study some geometric properties.

In this paper, we study conformal semi-invariant submersions as a generaliza-
tion of semi-invariant Riemannian submersions. We investigate the geometry of
total space and the base manifold for the existence of such submersions. The
paper is organized as follows:

In Section 2, we collect the main notions and formulae for other sections. In
Section 3, we introduce conformal semi-invariant submersions from almost contact
metric manifolds onto Riemannian manifolds admitting the vertical structure
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vector field and investigate the geometry of leaves of the horizontal distribution
and the vertical distribution. We also find the necessary and sufficient conditions
for a conformal semi-invariant submersion to be harmonic and totally geodesic
and give some examples.

2. PRELIMINARIES

A (2n+1)-dimensional Riemannian manifold M is said to be an almost contact
metric manifold [25], if there exist on M, a (1,1) tensor field ¢, a vector field &,
a 1-form 7, and a Riemannian metric g such that

P*=—-T+n®E ¢E=0, nog=0, (2.1)
9(X, &) = n(X), (2.2)
n(€) =1, 2
and
9(0X,9Y) = g(X,Y) —n(X)n(Y),  g(¢X,Y)=—g(X,¢Y) (2.4)

for any vector fields X,Y on M.

Such a manifold is said to be a contact metric manifold, if dnp = ®, where
P(X,Y) = g(X,¢Y), is called the fundamental 2-form on M. On the other hand,
the almost contact metric structure of M is said to be normal, if [¢, ¢](X,Y) =
—2dn(X,Y)E, for any vector fields X, Y on M, where [¢, ¢| denotes the Nijenhuis
tensor of ¢ given by

[6,0] (X,Y) =¢"[X, Y]+ [0X,0Y] — 0[0X,Y] - ¢[X, 0Y]. (2.5)
A normal contact metric manifold is called a Cosymplectic manifold, if
(Vxd)Y =0, (2.6)

for any vector fields X,Y on M [15]. Moreover, for a Cosymplectic manifold the
following equation satisfies:

Vx&=0. (2.7)
Example 2.1. [17]. We consider R**! with Cartesian coordinates (z;,y;, 2)
(t=1,...,k) and its usual contact form n = dz.

The characteristic vector field ¢ is given by %, and its Riemannian metric g
and tensor field ¢ are given by

:Z ((dzy)? + (dys)?) + (d2)?, o= |—6; 0 0|, i,j=1,... k
i=1 0 0 0

This gives a Cosymplectic structure on R?**1. The vector fields E; = a%,, By =
%,f = % form a ¢-basis for the Cosymplectic structure. On the other hand, it
can be shown that (R?**1 ¢ & 1, g) is a Cosymplectic manifold.

Definition 2.2. [3]. Let f : (M,gy) — (IN,gn) be a smooth map between
Riemannian manifolds and let x € M. Then f is called horizontally weakly
conformal or semi-conformal at x if either
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(i) df, =0, or
(44) df, maps the horizontal space H, = (ker(df,))* conformally onto Ty, N;
that is, df, is surjective and there exists a number A(x) # 0 such that

gy (dfU,df V) = A(z)gn (U, V), (U, V € Hy). (2.8)
Note that we can write the last equation more succinctly as

(f79N)alptexr. = M@)(900) ]340 031,
The fundamental tensors of a submersion were introduced in [1&]. They play
a similar role to that of the second fundamental form of an immersion. More
precisely, O’Neill’s tensors 7 and A defined for vector fields E, F on M by
ApF = VY HF + HVY,VF, (2.9)

TeF = HV YL VE + VVYLHE, (2.10)
where V and H are the vertical and horizontal projections [9], respectively.

It is easy to see that T is vertical, Tz = Tyr and A is horizontal, Ap = Ayg.

On the other hand, from equations (2.9) and (2.10), we have

VEY = TxY + VyY, (2.11)
VYV = HVYV + TV, (2.12)
VX = Ay X + VWV X, (2.13)
VIV = HVIV + ALV, (2.14)

for XY € I(ker f,) and U,V € D(ker f,)*, where VVxY = VY. If X is basic,
then AxV = HVyX.
For U,V € T'(ker f,) and X,Y € I'(ker f,)*, the tensors T, A satisfy:

TV = ToU, AxY = —Ay X = %V[X, Y).

It is easily seen that for x € M, X € V, and U € H, the linear operators
Av, Tx :T.M — T, M
are skew-symmetric; that is,
(A E,F) = —gy(E, Ay F) and gy (Tx E, F) = —gu (E, Tx F) (2.15)

for all E,F € I'(T,M). We also see that the restriction of T to the vertical
distribution 7T |y is exactly the second fundamental form of the fibers of f.
Since Ty is skew-symmetric, we get that f has totally geodesic fibers if and only
it T =0.

Now we recall the notion of harmonic maps between Riemannian manifolds
(M, gyr) and (N, gn). Let f: (M, gy) — (N, gn) be a smooth map. Then differ-
ential f, of f can be observed as a section of the bundle Hom(T M, f~'TN) — M,
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where f~!'TN is the bundle which has the fibers (f'TN), = Ty, N, p € M.
Hom(TM, f~'TN) has a connection V induced from the Riemannian connec-
tion (Levi-Civita connection) VM and the pullback connection. Then the second
fundamental form of f is given by

(VLU V) = VELV) = L(VHV), (2.16)

for vector fields U,V € T'(TM), where V7 is the pullback connection. It is
known that the second fundamental form is always symmetric. A smooth map
f o (M,gn) — (INV,gn) is said to be harmonic if trace(V f.) = 0. On the other
hand, the tension field of f is the section 7(f) of T'(f~'TN) defined by

T(f) =divf. =) (V) (e e), (2.17)

=1

where {ej,..., ey} is the orthonormal frame field on M. Then it follows that f
is harmonic if and only if 7(f) = 0; for these facts, see [3].
Lastly, we recall the subsequent lemma from [3].

Lemma 2.3. Let f: M — N be a horizontally conformal submersion. Then for
any horizontal vector fields U,V and vertical vector fields X,Y, we have

() (Vaf)(U, V) = U(nN)df(V)+ V(In\)df(U) — gu(U, V)df (H(gradin))),
(@) (Vdf)(X,Y) = —df(TxY),
(iid)(Vdf) (U, X) = —df(V{/X) = —df (A");X),

where (A™);; is the adjoint of ( A™) characterized by

(A" E,F)=(E,A"F)  for all E,F € T(TM).

3. CONFORMAL SEMI-INVARIANT SUBMERSIONS ADMITTING VERTICAL
STRUCTURE VECTOR FIELD

In this section, we define a conformal semi-invariant submersion from an almost
contact metric manifold onto a Riemannian manifold admitting vertical structure
vector field. We investigate the geometry of foliations and integrability of distri-
butions. Moreover, we also study the harmonicity of such submersions and find
necessary and sufficient conditions for a conformal semi-invariant submersion to
be totally geodesic.

Definition 3.1. Let M be an almost contact manifold with Riemannian metric
gu and let N be a Riemannian manifold with Riemannian metric gn. A horizon-
tally conformal submersion f : (M, ¢,&,n, g ) — (N, gn) with dilation A is called
a conformal semi-invariant submersion if there is a distribution Dy C (ker f,) such
that

(ker f*) = D1 D DQ@ < f >, (31)

and ¢(D1) = Dy, ¢(Ds) C (ker f,)*, where Dy, Dy and < £ > are mutually
orthogonal distributions in ker f,.
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Now, we shall give an example of a conformal semi-invariant submersion from
an almost contact metric manifold onto a Riemannian manifold.

Note that for a Euclidean space R***1 with coordinates (z1, s, .. ., Ton, Tons1),
we can canonically choose an almost contact metric structure (¢,&, 7, gar) on
R2"+1 as follows:

0 0 0 0 0
¢(ala_x1 + a28_q:2 Tt a2n718x2n,1 + Gzn@ + G2n+1m>
0 0 0
= <_a28_a:1 + ‘“a_:cz +e - a2n8x2n,1 + a2nflax2n)a
where ¢ = azfnﬂ and ay,as, as, ..., ay,, az,11 are C'°-real valued functions in
R Let n = dxgny be a 1-form, {8%1, ce %, amfﬂ, o 652”, aziﬂ} an

orthonormal frame field and g, R?*"™! a Euclidean metric on R?"*!,

Example 3.2. Let R7 have an almost contact metric structure defined above.
Let f: R" — R? be a Riemannian submersion defined by

f(xl)x27'r37 Ty, Ts5, T, $7) = (613 sin T, e™ cos 1'2),
where 19 € R — {%’r, kr}, k € R. Then,
0 0 0 0 0

ker f.) = B=2E5-28B="2REB=" F=2"\
(ker f.) =span{Fy dxy’ "t Qx0T Bxy 0 Omg 3x7}
(ker f,)* =span{E, = ¢ cos mga—xQ + "3 sin xza—xg,
0
Es = —e®sin x28_902 + €™ cos x28_x3 )

Thus it follows that Dy = span{Es, Es} and Dy = span{FE1, E4}. Let y1,y2 be
local coordinates in R2. Also by direct computations, we get

0 0
Fy = (e5) — f.Ey = (e®)*—.
fQ()a?/lfS()ayz
Hence, we have
92(fuBa, fuBs) = (€7)?g1(Ea, E), go(fuEs, fuEs) = (™)?g:(Es, Es),

where g; and go denote the Euclidean metrics on R” and R? respectively . Thus
f is a conformal semi-invariant submersion with \ = e*3.

Let (M, ¢,&,m, gar) be an almost contact metric manifold and (N, gy) a Rie-
mannian manifold. Let f : (M, ¢,&,m,9m) — (N, gn) be a conformal semi-
invariant submersion. Then there is a distribution D; C (ker f,) such that

(ker f*) = D1 D DQ@ < f >, (b(Dl) = D17 (32)
¢(D2) - (ker f*)l’ (ker f*)J_ = ¢<D2) @ p.

We denote the complementary distribution to ¢(Ds) in (ker fi)* by pu. Then for
X € I'(ker f,), we get
X = PX + QX +n(X), (3.3)
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where PX € I'(D;) and QX € I'(Dy).
For Y e I'(ker f.), we get

oY =¢Y +wY, (3.4)
where ¥Y € I'(D;) and wY € ['(¢D,). Also, for U € T'(ker f,)*, we have
¢U = BU + CU, (3.5)

where BU € I'(D3) and CU € I'(p).
For X,Y e I'(ker f,), define

(VE)Y = VxyY — §pVyY, (3.6)
(VMw)Y = HVM WY —wV Y. (3.7)

Then it is easy to obtain the following result.
Lemma 3.3. Let (M, ¢,&,m, ga) be a Cosymplectic manifold and (N, gn) a Rie-

mannian manifold. If f: (M, ¢, &, 1, 90m) — (N, gn) is a conformal semi-invariant
submersion, then

(VMY = BTxY — TxwY, (3.8)
(VYWY = CTxY — TxvY, (3.9)
for X,Y € I'(ker f,).
Lemma 3.4. Let (M, ¢,&,m, gar) be a Cosymplectic manifold and (N, gn) a Rie-
(

mannian manifold. If f = (M, ¢,&,m, gvr) — (N, gn) is a conformal semi-invariant
submersion, then

() the distribution Dj is integrable if and only if (V f,)(V, ¢U)—(V f) (U, ¢V) €
U(fop), for U,V € I'(Dy).
(1) the distribution Dy is always integrable.

Lemma 3.5. Let (M, ¢,&,m, ga) be a Cosymplectic manifold and (N, gn) a Rie-
mannian manifold. If f : (M, ¢, &, 1, gym) — (N, gn) is a conformal semi-invariant
submersion, then

gu(BV,6X) =0, gu(BV,¢Y) =0, gu(BV,¢Z)=0, (3.10)
and
9 (Vif BV, 6 X) = —gu(BV, Vi/ 9X), (3.11)
gM(VJI\J/[B‘/a oY) = —gu(BYV, VZI‘JJ¢Y
9u(Vif BV, ¢Z) = —gu(BV, Vil Z
for X e T(Dy), Y € T'(Dy), Z € T(ker f.) and U,V € (T'(ker f,)F).

Proof. For X € I'(Dy), Y € I'(Dy), Z € T'(ker f.) and U,V € (I'(ker f,)*), since
¢X € I(Dy), ¢V € D(ker £,)*, BV € T(Dy), ¥Z € (D) and wZ € T(¢Dy),
using equations (3.4) and (3.5), we get equation (3.10).

Now, using equations (3.10), (2.15), and (2.16), we get equation (3.11). O

)7
)
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Theorem 3.6. Let (M, ¢,&,m,90m) be a Cosymplectic manifold and (N, gn) a
Riemannian manifold. If f : (M,¢,&,n,9m) — (N,gn) is a conformal semi-
invariant submersion, then the distribution (ker f,)* is integrable if and only if

AywBU — AywBV + ¢(AyCU — AyCV') ¢ T'(Dy),
and
N (VLL.CU = V1OV, .67)
= gu(AyBU — AyBV — CV (In\)U
+CU(InN)V + 290 (U, CV)Hgradin\, ¢pZ)
for Z € T'(Dy) and U,V € T(ker f,)*.
Proof. Let U,V & T'(ker f,)*. Now consider

gM([U7 V]v f) = gM(Vg/[V> 5) - 9M<V€/4Uv é)?
= —gu(V, V&) + gu(U, V).
Using equation (2.7), we have
The distribution I'(ker f,)* is integrable if and only if
gu([U,V],X) =0,and gu([U,V],Z) =0,

for X € T(Dy),Z € T(Dy) and U,V € T'(ker f,)*. Using equations (2.4), (2.6),
and (3.5), we get

au([U V], X) = gu(Vi) BV, ¢X) + gu(Vi/ OV, 6X)
(V¥ BU, 6X) — gy (VI BV, 6X).
From equations (2.6), (3.11), and (2.14), we have
gu([U V], X) = —gu(BV, ¢V X) + gu(AuCV, ¢X)
91 (BU, 6V X) = a1 (Ay CU, 6).
Using equation (2.4), (2.6), and (3.4), one has that
aae([U, V], X) = gar(AvwBU — AgwBV — ¢ AyCV + ¢ AyCU, X).  (3.12)
On the other hand, equations (2.4), (2.6), and (3.5), imply that
(V). 2) = (VY BV,62) + gu(VYCV,62)
—gm(Vy BU,¢Z) — gu (Vi CU, ¢ Z).

Since f is a conformal submersion, by equations (2.11), (2.16), and (3.10) and
Lemma 2.3(i), we get

on([U V], Z) = gai(AvBU — AyBV — CV(In\U + CU(InN)YV — (3.13)
+ 290 (U, CV)Hgradln\, ¢Z)

1
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Theorem 3.7. Let f be a conformal semi-invariant submersion from a Cosym-
plectic manifold (M, ¢,&,n,gn) onto a Riemannian manifold (N, gn) with inte-
grable distribution (ker f,)*. Then f is a horizontally homothetic map if and only
of

1
1308 (V1 £.CU = Vi f.OV. £.62) = gu(AvBU — AyBV,¢Z),  (3.14)

for Z € T(Dy) and U,V € T(ker f,)*.
Proof. For Z € T'(Dy) and U,V € I'(ker f,)*, from equation (3.13), we have
(U V], Z) = gu(AvBU — Ay BV — CV(In\U + CU(In\)V
+2g0 (U, CV)Hgradin\, ¢ 2)
30N (VL .U VL.V, .07)
If f is a horizontally homothetic map, then
%gN(V{, £.CU =V £.CV, f.0Z) = gu(AvBU — AyBV, ¢Z).
Conversely, if (3.14) is satisfied, then
0=gm(V,0Z2)gn(Hgradin\, CU) — gy (U, ¢Z)gp (HgradinA,CV)  (3.15)
+ 290 (U, CV) g (Hgradin, 7).
Now, putting V' = ¢Z, for Z € I'(D,) in equation (3.15), we have
g (0Z, 6 Z) gy (Hgradin,CU) = 0.

Thus A is constant on I'(x). On the other hand, taking V = CU, for U € I'(u) in
(3.15), we have

gv (U, U) gy (Hgradin, ¢Z) = 0.

From the above equation, A is constant on I'(¢Ds). O

As a conformal version of anti-holomorphic semi-invariant submersion [20], a
conformal semi-invariant submersion is called a conformal anti-holomorphic semi-
invariant submersion if Dy = (ker f,)*.

Corollary 3.8. Let (M, $,&,n,90m) be a Cosymplectic manifold and (N, gn) a
Riemannian manifold. If f : (M,¢,&,m,9m) — (N, gn) is a conformal anti-
holomorphic semi-invariant submersion, then the following assertions are equiv-
alent to each other:

(1) (ker f.)* is integrable,
(i) gn(fo0U, (V[ )(Z,0V)) = gn(fidV, (Vf)(Z, ¢U)), for U,V € I'(D;) and
Z e I'(ker f,).

Proof. For U,V € T'(D;) and Z € T'(ker f,), using equations (1.1), (2.4), (2.6) and
(2.7), we have

g ([9U, ¢V, Z) = —gu(¢V, Vi ¢U) + gur(8U, V5 6V)).
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Since f is a conformal subnersion by using Lemma 2.3, we have

o190, 0V], 2) = 15 {on(f.0U, (VL)(Z,0V)) — gu (0, (V£)(Z,0U))},
which completes the proof. |

Theorem 3.9. Let (M,¢,&,m,gn) be a Cosymplectic manifold and (N, gn) a
Riemannian manifold. If f : (M,¢,&,n,9m) — (N,gn) is a conformal semi-
invariant submersion, then the distribution (ker f.): defines a totally geodesic
foliation on M if and only if

AyCW + VYV BW € T(D,), (3.16)

and

1

13N (Vi [.0Z, L.CW) (3.17)
= gu(AvBW — CW(In\)V + ga(V, CW YHgradin), ¢Z)

for X € T(Dy),Z € T(Dy) and V,W & T'(ker f,)*.

Proof. Let U,V € T'(ker f,)*. Similarly to as in the proof of Theorem 3.6, we
have

The distribution (ker f,)* defines a totally geodesic foliation on M if and only if

(VW X) = 0, and gu (VI W, Z) = 0,

for X € I'(Dy), Z € T(Dy) and V, W € T'(ker f.)*. Then by using equations (2.1),
(2.4), and (2.6), we get

g (VIW, X) = —gu (6V I 6, X).
Equations (3.4), (3.5), (2.15), and (2.16), imply that
g (VIW, X) = —gu (¥ (AyCW + VWY BW), X). (3.18)
On the other hand, from equations (2.4), (3.5), and (3.11), we have
QM(V]\yWa Z) = —gu(BW, v%st) — gu(CW, V\I/W¢Z)-

Since f is a conformal semi-invariant submersion, equations (2.13), (2.16), and
(3.10) and Lemma 2.3(i), ensure that

gu(VYW, Z) = gu(AyBW — CW (In\)V + ga(V, CW)Hgradin\, ¢Z)
1
—3zIN (V.02 f.OW).
O

Definition 3.10. Let f be a conformal semi-invariant submersion from a Cosym-
plectic manifold (M, ¢,&,n, gar) onto a Riemannian manifold (N, gy). Then we
say that Dy is parallel along (ker f,)* if VM Z € T'(Dy), for Z € I'(Dy) and
U € T(ker f,)*.
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Corollary 3.11. Let (M, ¢,&,m,gum) be a Cosymplectic manifold and (N, gn) a
Riemannian manifold. If f : (M,¢,&,n,9m) — (N,gn) is a conformal semi-
wmvariant submersion, then f is a horizontally homothetic map if and only if

%gN(Vé £.67, £.CV) = gui (Ay BV, 6.2) (3.19)
for Z € T'(Dy) and U,V € T'(ker f.)*.

Proof. For Z € T'(Dy) and U,V € T'(ker f.)*, using equations (3.16) and (3.19),
we have

— gu(Hgradin\, CV) gy (U, 0 Z) + g (U, CV) g (Hgradin, ¢Z) = 0. (3.20)

Now, putting U = ¢Z, for Z € I'(D;) in the equation (3.19) and using equation
(3.10), we get
grt(Hgradin), CV)gu (67, 67Z) = 0.

Thus A is constant on I'(x). On the other hand, putting U = CV in equation
(3.19) for U € I'(1) and using equation (3.10), we have

gyv(Hygradin, ¢ Z) gy (CV,CV) = 0.
From the above equation, A\ is constant on I'(¢Ds). O

Corollary 3.12. Let f be a conformal antiholomorphic semi-invariant submer-
sion from a Cosymplectic manifold (M, ¢,&,m,gy) to a Riemannian manifold
(N, gn). Then the following assertions are equivalent to each other:

(i) (ker f.)* defines a totally geodesic foliation on M,
(ii) (Vf)(Z,¢X) € T fu(u) for X € T(Dy) and Z € T'(ker f,)*.

Theorem 3.13. Let (M, ¢,&,m,gnm) be a Cosymplectic manifold and (N, gn) a
Riemannian manifold. If f : (M, ¢,&§,n,9m) — (N, gn) is a conformal semi-
invariant submersion, then the distribution (ker f.) defines a totally geodesic fo-
liation on M if and only if

1
= gu(CTxVY + Ay v X + gy (wX, wY)(HgradinA),U),

and R
vaY -+ TXwY I~ F(Dl),
X,Y e U(ker f,),U € I'(n) and Z € I'(Dy).

Proof. For X, Y € I'(ker f,),U € I'(i) and Z € I'(Ds), the distribution (ker f.)
defines a totally geodesic foliation on M if and only if

gu(VYY,U) = 0 and gy (VYY, 0Z) = 0.
Using equations (2.4), (2.6) and (3.4), we have
g (VY. U) = gu(VYOY, ¢U) + g (VY WY, ¢U).
Since [ X,wY] € I'(Dy), hence
gm(VXY.U) = gu (VXYY 0U) + g (Viy X, ¢U).
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From equations (2.6), (2.4), (3.4), and (3.10), we get
g (VXY,U) = gu(VX VY, 0U) + gu (0 X, VIR U) + gur(wX, VIR U).

Since f is a conformal submersion, from equations (2.12), (2.13), (2.16) and
Lemma 2.3(i), we have

= gu(TxY, ¢U) + gu (¥ X, Auy U)
1
_pgN(f*WX, £:U0)gu (Hgradin, wY')
1
_ﬁgN(f*WX, fswY) gy (Hgradin, U)

1 1
+ng(U, wY)gn(feHgradlnA, fiwX) + pgN(f*wX, Viyf*U).
Hence, we obtain:

g (VY U) =gp(—CTxY — Ay v X — gu(wX, wY)(Hgradin)),U) (3.21)
1
+ ﬁgN(f*WXv v({JYf*U)

On the other hand, since [X, Y] € I'(ker f.) and using equations (2.1), (2.6), and
(3.5), we get
(VY 67) = — gu(@VIY, 67) — gu(wVYwY,67).
Again using equations (2.13) and (2.14), we have
(VXY 0Z) = — gu(wVxvY,0Z) — gu(wTxwY, ¢Z). (3.22)
0J

Next, we give certain conditions for dilation A to be constant on u. We first
give the following definition.

Definition 3.14. Let f be a conformal semi-invariant submersion from a Cosym-
plectic manifold (M, ¢,&,n, gy) onto a Riemannian manifold (N, gy). Then we
say that p is parallel along (ker f.), if VHU € TI'(u), for U € T'(u) and X €
[(ker f,).

Corollary 3.15. Let f be a conformal semi-invariant submersion from a Cosym-
plectic manifold (M, ¢,&,m, gar) to a Riemannian manifold (N, gy) such that p is
parallel along (ker f.). Then f is constant on p if and only if

1
1398 (Vi LU, fX) = gus (CTWY + Auy X, U) (3.23)

for U e I'(p) and X, Y € I'(ker f,).
Proof. For U € I'() and X,Y € I'(ker f.), from equation (3.21), we have
gu(V¥Y. U) = gu(=CTxvY — Ay X — gy(wX, wY)(Hgradin)),U)

1
+3aon (FwX, Vi L.U).
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Using equation (1.1), we get
gu (WX, wY ) gy (HgradinA, U) = 0.

From the above equation A is constant on I'(11). The converse comes from equation
(3.21). O

By Theorems 3.9 and 3.13, the following theorem can be followed.

Theorem 3.16. Let (M, ¢,&,m,gy) be a Cosymplectic manifold and (N, gn) a
Riemannian manifold. If f : (M,¢,&,m,9m) — (N,gn) is a conformal semi-
invariant submersion, then M is a locally product manifold of the form Mey 7,) X
Mer g, if and only if

AyCV + VVY BV € T(D,),

1
ﬁgN(V{]f*qbZ, f:CV) = gu(Ay BV — CV(In\)U + gp (U, CV ) Hgradln\, 9 Z),
and

1
EQN(f*WXa Vﬁyf*U)
= gu(CTxVY + Ay v X + gy (wX, wY ) (Hgradin),U),
Vx¥Y + TxwY € I'(Dy)
for all vector fields X,Y,Z € T(ker f.) and V,U € T'(ker f.)*.

Theorem 3.17. Let (M, ¢,&,m,gn) be a Cosymplectic manifold and (N, gn) a
Riemannian manifold. If f : (M,¢,&,m,9m) — (N,gn) is a conformal semi-
wmvariant submersion, then Dy defines a totally geodesic on M if and only if

(VE)(X,0Y) € Tf.(p),
and .
2 IN (VL)X 0Y), £.CU) = gu (Y, TxwBU)
for X, Y € T'(Dy) and U € T'(ker f,)*.
Proof. Let X, Y € I'(D;). Similarly to as in the proof of Theorem 3.6, we have
The distribution D; defines a totally geodesic foliation on M if and only if
gu(VYY,Z) =0, and gu(VYY,U) =0,

for X,Y € I'(Dy),Z € T'(Dy) and U € T'(ker f,)*.
From equations (2.4), (2.6) and (2.14), we get

am(VXY, Z) = gu(HVY ¢Y, 6 2).

Since f is a conformal semi-invariant submersion, using equation (2.16), we have

(VXY 7) = —gon(VE)(X, 6Y), £.67).

On the other hand, by using equations (2.4), (2.6), (3.5), and (2.13), we get
gu (VXY U) = gu (Y, VY ¢BU) + gu (VY Y, CU).
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Since f is a conformal semi-invariant submersion, using equations (3.4), (2.12),
and (2.16), one has
1
(VXY U) = gu (Y, TxwBU) = 559n (VL)(X, 6Y), £.CU).
O]

Theorem 3.18. Let (M, ¢,&,m,9m) be a Cosymplectic manifold and (N, gy) a
Riemannian manifold. If f : (M, ¢,&,n,9m) — (N,gn) is a conformal semi-
wmvariant submersion, then Do defines a totally geodesic on M if and only if

(VY 0X) € T i),

and

1
—ﬁgN(Vézf*ch, foCU) = gu(Z, BTy BU) + gu (Y, Z) g (Hgradin, ¢CU)

for X e T(Dy),Y,Z € T(Dy) and U € T'(ker f,)*.
Proof. Let Y, Z € T'(Ds). As in Theorem 3.6, we have
gu (Y, Z],§) = 0.
The distribution Dy defines a totally geodesic foliation on M if and only if
gn (VI Z,X) = 0, and gy (VY Z,U) = 0,

for X € I'(D,),Y,Z € I'(Dy) and U € T'(ker f,)*. Using equations (2.4), (2.6),
and (3.11), we get

QM(Vyza X) = QM(VbeZa ¢X).
Since f is a conformal submersion, from equation (2.16), we get

1
9M<V¥Za X) = _EQN«VJC*)(Y; ¢X)7 f*¢Z)
On the other hand, equations (2.4), (2.5), and (3.11), imply that
gu(VY' Z,U) = —gu(¢Z, V' BU) + gu(V350Y, ¢CU).

Since f is a conformal submersion, from equation (2.16) and Lemma 2.3(i), we
get

gu (V¥ Z,U) = gu(Z, BTy BU) + gu(Z,Y ) gu(Hgradink, ¢CU)
1
+3398 (Vi 10, L6CU).

By Theorems 3.17 and 3.18, we get the following result.

Theorem 3.19. Let (M, ¢,&,n,9m) be a Cosymplectic manifold and (N, gy) a
Riemannian manifold. If f : (M,¢,&,n,9m) — (N,gn) is a conformal semi-
wmvariant submersion, then the fibers of f are locally product manifold if and only
if

(VE(X,8Y) € T fi(n),

SN (VE)(X, 6Y), £.CU) = gui (Y, TxwBU),
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(VL)W oV) € T fi(n),

39 (Vi .0V, £.6CU) = gas(W, BT BU) + g (W, V )gas (Hgradin), 6CU)
for X, Y € T'(Dy),V,W € T'(Dy) and U € T'(ker f.)*.

Since (ker f.)* = ¢(Ds) @ p and f is a conformal semi-invariant submersion
from an almost contact metric manifold (M, ¢, &, n, gar) onto a Riemannian man-
ifold (N, gn), for X € I'(Dy) and Y € I'(u), we get

SV U0X, LY) = g (9%, Y) = 0.

This implies that the distributions f,(¢Ds) and f.(u) are orthogonal. Now, we
investigate the geometry of the leaves of the distribution Dy and Ds.

Lemma 3.20. Let f be a conformal semi-invariant submersion from a Cosym-
plectic manifold (M?PT24T27+1 ¢ € n gar) onto a Riemannian manifold (N7 gy).
Then the tension field T of f is T(f) = —(2p+q) fo (1 ) +(2—q—2r) f.(Hgradin)),
where X7+ is the mean curvature vector field of the distribution of (ker f.).

Theorem 3.21. Let f be a conformal semi-invariant submersion from a Cosym-
plectic manifold (M?PT24T2r+1 ¢ € n gar) onto a Riemannian manifold (N9 gy).
If g+ 2r # 2, then any two conditions below imply the third:

(¢) f is harmonic,

(#7) The fibers are minimal,

(24i) f is a horizontally homothetic map.
We also have the following result.

Corollary 3.22. Let f be a conformal semi-invariant submersion from a Cosym-
plectic manifold (M?*PT23+2r+1 ¢ € 0 gur) onto a Riemannian manifold (NT72" gn).
If g+ 2r = 2, then f is harmonic if and only if the fibers are minimal.

Now, we obtain necessary and sufficient condition for a conformal semi-invariant
submersion to be totally geodesic. We recall that a differentiable map f between
Riemannian manifolds is called totally geodesic if

(VU V)=0, forallUV eT(TM).

A geometric interpretation of a totally geodesic map is that it maps every geodesic
in the total manifold into a geodesic in the base manifold in proportion to arc
lengths. We now present the following definition.

Definition 3.23. Let (M, ¢,£,n, gy ) be an almost contact metric manifold and
(N, gn) a Riemannian manifold. If f: (M, ¢,&,m,gr) — (IV, gn) is a conformal
semi-invariant submersion, then f is called a (¢Ds, p1)-totally geodesic map if

(V) (U, X) =0, forall UecT(D,)and X € I'(ker f,)*.

In what follows, we show that this notion has an important effect on the geometry
of the conformal submersion.



92 R. PRASAD, S. KUMAR

Theorem 3.24. Let (M, ¢,&,n,9u) be a Cosymplectic manifold and (N, gy) a
Riemannian manifold. If f : (M,¢,&,n,9m) — (N,gn) is a conformal semi-
invariant submersion, then f is a (¢Do, p)-totally geodesic map if and only if f
18 a horizontally homothetic map.

Proof. For U € I'(Ds) and X € I'(u), from Lemma 2.3(i), we get
(V)(0U, X) = X(InA) f.0U + oU(InA) £ X = g (60U, X) f-(Hgradin).

From the above equation, if f is horizontally homothetic, then (V f,)(¢U, X) = 0.
Conversely, if (Vf,)(¢U,X) = 0, for U € I'(Dy) and X € T'(u), since ¢U €
['(¢Ds), we get

X(In\) f.oU + ¢U(In)) f.X = 0. (3.24)

Taking inner product in equation (3.24) with f,¢U, we have
gu(Hgradin, oU)gn ([ X, fo0U) + gu(Hgradin, X)gn (f U, fi¢U) = 0.
Since f is a conformal submersion, hence
gr (Hgradin, X) g (oU, oU) = 0.

Above equation, it follows that A is constant on I'(x). On the other hand, taking
inner product in equation (3.24) with f,X and since f is a conformal submersion,
we get

gu (HgradinX, oU) gy (fo X, foX) + g (Hgradinh, X)gn(f.oU, f.X) = 0.

From the above equation, it follows that A is constant on I'(¢D,). Thus A is
constant on I'(ker f,)*. O

Theorem 3.25. Let (M, ¢,&,m,gn) be a Cosymplectic manifold and (N, gn) a
Riemannian manifold. If f : (M, ¢,&,n,9m) — (N, gn) is a conformal semi-
wmvariant submersion, then f is totally geodesic map if and only if

(i) CTuoV +wVyeV =0, for U,V € T'(Dy),
(i1) wTydW + CHVM oW, for W € T'(D,) and U € T'(ker f,),
(#4i) f is a horizontally homothetic map,

(iv) To BZ+HVMCZ € T(¢Dy) and YWy BZ+TyCZ € T(Dy), U € T(ker £.), Z €
['(ker f,)*.

Proof. (i) For U,V € I'(Dy), using equations (2.1), (2.6), (2.11), (3.4), and (3.5),
we get

(Vf*)(U, V) = _f*(vUV)
= fu(BTuoV + CTuoV + VoV + wVpeV).
Since BTy¢V + CTyoV € T'(ker f,), we get
(VLU V) = f(CTuoV + wVyoV).

Since f is a linear isometry between I'(ker f,)* and TN, (V f.)(U,V) = 0 if and
only if CTyoV + wVyeV = 0.



CONFORMAL SEMI-INVARIANT SUBMERSIONS 93
(i1) For U € DI'(ker f,) and W € T'(Ds), using equations (2.1), (2.6), (2.12),
(2.17), (3.4), and (3.5), we get
(VU W) = f(TooW + wTu¢W + BV oW + CHV oW).
Since ¥ Ty¢W + BVM oW € T'(ker f.), we derive
(VENU W) = f(wTuoW + CHVy oW).
Since f is a linear isometry between I'(ker f,)* and TN, (Vf,)(U,V) = 0 if and
only if wTyeW + CHVM oW = 0.
(27i) For X, Y € I'(u), from Lemma 2.3(i), we get
(VL)X Y) = X(UnN) Y + Y (InN) f. X — gu(X,Y) f(Hgradin)).
From the above equation taking Y = ¢ X, for X € I'(u), we get
(V£)(X,6X) = X(In\) f.6X + 6X (In\) . X.
If (Vf)(X,0X) =0, we get
X(InA) fud X + X (InX) f. X = 0. (3.25)

Taking inner product in equation (3.25) with f,X and by the fact that f is a
conformal submersion, we get

gu(Hgradin, ¢ X)gn ([0 X, f X) + gy (Hgradin, ¢ X)gn ([ X, f2.X) = 0.

Above equation, it follows that A is constant on I'¢(x). On the other hand, taking
inner product in equation (3.25) with f,¢X and since f is a conformal submersion,
we get

gu(Hgradin\, X)gn (f¢ X, [0 X) + gu(Hgradin, X )gn (f. X, fo0X) = 0.

Above equation implies that A is constant on I'(x). In a similar way, for U,V €
['(Ds), using Lemma 2.3(i), we get

(VI)(@U, oV) = U (InA) fdV + ¢V (InA) fioU — gu (9U, #V') fi(Hgradin).
From the above equation taking V = U, we get

(Vf)(eU, oU) (3.26)
= QU (InN) £.0U + $U(InN) .U — gas (6U. §U) f.(Hgradin).

Taking inner product in equation (3.26) with f.¢U and since f is a conformal
submersion, we obtain

From the above equation, it follows that A is constant on I'¢(U). Thus A is con-
stant on I'(ker f,)*. If f is a horizontally homothetic map, then f,(Hgradin))
vanishes; thus the converse is clear; that is, (Vf,)(X,Y) = 0, for XV €

[ (ker f.)*.

(iv) In the same way with the proof of Theorem 4.3(d) in [2], we can show
ToBZ+HVYCZ € T(¢Ds) and VVyBZ+TyCZ € I'(Dy), U € T(ker f,), Z
[ (ker f.)*.
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Example 3.26. Let R” have got a Cosymplectic structure as in Example 2.1.
Let f: R" — R? be a submersion defined by
f(@1, 2, 23,91, Y2, Y3, 2) = (€72 cos ya, € sinyp),
where y» € R — {¥,kn}, k € R. Then
0 0 0 0 0

T(ker f.) = By=—- FE3=—-E = ,F=—— E=_—},
(el"f> Span{ ! 8y1 3 8y3 4 0901 > (%g T 82}

0 0
T(ker f,)* = span{E, = —e"*sin yQa—yQ + €™ cos y28_a:3’

E6 = €3 cos yQ@ + e™ sin yQ%}
2 3

Hence we have ¢oF, = Ey, ¢oFE3 = Fg,0Fy = —F,,pFE5 = —F,. Thus it follows
that Dy = span{F1, E4} and D; = span{FEj3, E;5}. Let uy, us be local coordinates
in R?. Also by direct computations, we get

0
_ (,%3)\2
By = ()5

0

and f,Eg = (e“)Qa—UQ.

Hence, we have

92(fuBa, fuBs) = (€7)?g7(Es, Eo) and go(f.Ee, fEs) = (€")?g7(Ee, Es),

where g; and g, denote the Euclidean metrics on R and R? respectively. Thus
f is a conformal semi-invariant submersion with \ = e*3.
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