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Abstract. As a generalization of semi-invariant Riemannian submersions,
we introduce conformal semi-invariant submersions from almost contact met-
ric manifolds onto Riemannian manifolds and study such submersions from
Cosymplectic manifolds onto Riemannian manifolds. Examples of conformal
semi-invariant submersions in which structure vector field is vertical are given.
We study geometry of foliations determined by distributions involved in defi-
nition of conformal anti-invariant submersions. We also study the harmonicity
of such submersions and find necessary and sufficient conditions for the distri-
butions to be totally geodesic.

1. Introduction

Let (M, gM) and (N, gN) be two Riemannian manifolds of dimension m and n
respectively. A differentiable map f : M → N is called a Riemannian submersion
if f has maximal rank and f∗ preserves the lengths of horizontal vectors. Rie-
mannian submersions between Riemannian manifolds were introduced by O’Neill
[18] and Gray [10]. Firstly, Watson studied Riemannian submersions between
Riemannian manifolds equipped with an additional structure of almost complex
type [24].

Several geometers studied almost contact metric submersions [5], locally con-
formal Kähler submersions [16], Riemannian submersions and related topics [8],
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Riemannian submersions from quaternionic manifolds [12], h-semi-invariant sub-
mersions [19], mixed para-quaternionic 3-submersions [23], anti-invariant ξ⊥ Rie-
mannian submersions from almost contact manifolds [14], on para-quaternionic
submersions between para-quaternionic Kähler manifolds [4] etc.

As a generalization of holomorphic submersions [11] and anti-invariant sub-
mersions [21], semi-invariant submersions from almost Hermitian manifolds onto
Riemannian manifolds were introduced by Sahin [22]. We see that a Riemannian
submersion f from an almost Hermitian manifold (M,JM , gM) onto a Riemannian
manifold (N, gN) is called a semi-invariant submersion, if the fibers have differ-
entiable distributions D and D⊥ such that D is invariant with respect to JM
and its orthogonal complement D⊥ is totally real distribution. Moreover, almost
Hermitian submersions [24] and anti-invariant submersions [21] are semi-invariant
submersions with D = {0} and D⊥ = {0}, respectively.

Gudmundsson and Wood introduced conformal holomorphic submersions as a
generalization of holomorphic submersions [11] and obtained necessary and suf-
ficient conditions for conformal holomorphic submersions to be a harmonic mor-
phism. The harmonicity of conformal holomorphic submersions is also discussed
in ([6],[7]).

A horizontally conformal submersion is generalization of Riemannian submer-
sions defined as follows [3]: Let f : (M, gM) → (N, gN) be a smooth submersion
between Riemannian manifolds, we call f a horizontally conformal submersion,
if there is a positive function λ such that

gM(U, V ) =
1

λ2
gN(f∗U, f∗V ) (1.1)

for every U, V ∈ Γ(ker f∗)
⊥. It is clear that every Riemannian submersion is a

particular horizontally conformal submersion with λ = 1. We note that horizon-
tally conformal submersions are special horizontally conformal maps that were
studied independently by Fuglede [9] and Ishihara [13]. Next, a horizontally con-
formal submersion f : (M, gM) → (N, gN) is said to be horizontally homothetic
if the gradient of its dilation is vertical, that is,

H(gradλ) = 0, (1.2)

where H is the projection on the horizontal space (ker f∗p)
⊥.

Conformal anti-invariant submersions [1] and semi-invariant submersions [2]
from almost Hermitian manifolds onto Riemannian manifolds were studied by
Akyol and Sahin. We introduce here the notion of conformal semi-invariant sub-
mersions from almost contact metric manifolds onto Riemannian manifolds and
study some geometric properties.

In this paper, we study conformal semi-invariant submersions as a generaliza-
tion of semi-invariant Riemannian submersions. We investigate the geometry of
total space and the base manifold for the existence of such submersions. The
paper is organized as follows:

In Section 2, we collect the main notions and formulae for other sections. In
Section 3, we introduce conformal semi-invariant submersions from almost contact
metric manifolds onto Riemannian manifolds admitting the vertical structure
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vector field and investigate the geometry of leaves of the horizontal distribution
and the vertical distribution. We also find the necessary and sufficient conditions
for a conformal semi-invariant submersion to be harmonic and totally geodesic
and give some examples.

2. Preliminaries

A (2n+1)-dimensional Riemannian manifold M is said to be an almost contact
metric manifold [25], if there exist on M , a (1, 1) tensor field φ, a vector field ξ,
a 1-form η, and a Riemannian metric g such that

φ2 = −I + η ⊗ ξ, φξ = 0, η ◦ φ = 0, (2.1)

g(X, ξ) = η(X), (2.2)

η(ξ) = 1, (2.3)

and

g(φX, φY ) = g(X, Y )− η(X)η(Y ), g(φX, Y ) = −g(X,φY ) (2.4)

for any vector fields X, Y on M .
Such a manifold is said to be a contact metric manifold, if dη = Φ, where

Φ(X, Y ) = g(X,φY ), is called the fundamental 2-form on M . On the other hand,
the almost contact metric structure of M is said to be normal, if [φ, φ](X, Y ) =
−2dη(X, Y )ξ, for any vector fields X, Y on M, where [φ, φ] denotes the Nijenhuis
tensor of φ given by

[φ, φ] (X, Y ) = φ2[X, Y ] + [φX, φY ]− φ[φX, Y ]− φ[X,φY ]. (2.5)

A normal contact metric manifold is called a Cosymplectic manifold, if

(∇Xφ)Y = 0, (2.6)

for any vector fields X, Y on M [15]. Moreover, for a Cosymplectic manifold the
following equation satisfies:

∇Xξ = 0. (2.7)

Example 2.1. [17]. We consider R2k+1 with Cartesian coordinates (xi, yi, z)
(i = 1, . . . , k) and its usual contact form η = dz.

The characteristic vector field ξ is given by ∂
∂z

, and its Riemannian metric g
and tensor field φ are given by

g =
k∑
i=1

((dxi)
2 + (dyi)

2) + (dz)2, φ =

 0 δij 0
−δij 0 0

0 0 0

 , i, j = 1, . . . , k.

This gives a Cosymplectic structure on R2k+1. The vector fields Ei = ∂
∂yi
, Ek+i =

∂
∂xi
, ξ = ∂

∂z
form a φ-basis for the Cosymplectic structure. On the other hand, it

can be shown that (R2k+1, φ, ξ, η, g) is a Cosymplectic manifold.

Definition 2.2. [3]. Let f : (M, gM) → (N, gN) be a smooth map between
Riemannian manifolds and let x ∈ M . Then f is called horizontally weakly
conformal or semi-conformal at x if either
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(i) dfx = 0, or
(ii) dfx maps the horizontal space Hx = (ker(dfx))

⊥ conformally onto Tf(x)N ;
that is, dfx is surjective and there exists a number Λ(x) 6= 0 such that

gN(dfU, dfV ) = Λ(x)gM(U, V ), (U, V ∈ Hx). (2.8)

Note that we can write the last equation more succinctly as

(f ∗gN)x|Hx×Hx = Λ(x)(gM)x|Hx×Hx .

The fundamental tensors of a submersion were introduced in [18]. They play
a similar role to that of the second fundamental form of an immersion. More
precisely, O’Neill’s tensors T and A defined for vector fields E,F on M by

AEF = V∇M
HEHF +H∇M

HEVF, (2.9)

TEF = H∇M
VEVF + V∇M

VEHF, (2.10)

where V and H are the vertical and horizontal projections [9], respectively.

It is easy to see that T is vertical, TE = TVE and A is horizontal, AE = AHE.

On the other hand, from equations (2.9) and (2.10), we have

∇M
X Y = TXY + ∇̂XY, (2.11)

∇M
X V = H∇M

X V + TXV, (2.12)

∇M
V X = AVX + V∇M

V X, (2.13)

∇M
U V = H∇M

U V +AUV, (2.14)

for X, Y ∈ Γ(ker f∗) and U, V ∈ Γ(ker f∗)
⊥, where V∇XY = ∇̂XY. If X is basic,

then AXV = H∇VX.
For U, V ∈ Γ(ker f∗) and X, Y ∈ Γ(ker f∗)

⊥, the tensors T ,A satisfy:

TUV = TVU,AXY = −AYX =
1

2
V [X, Y ].

It is easily seen that for x ∈M , X ∈ Vx and U ∈ Hx the linear operators

AU , TX : TxM → TxM

are skew-symmetric; that is,

gM(AUE,F ) = −gM(E,AUF ) and gM(TXE,F ) = −gM(E, TXF ) (2.15)

for all E,F ∈ Γ(TxM). We also see that the restriction of T to the vertical
distribution T |V×V is exactly the second fundamental form of the fibers of f .
Since TX is skew-symmetric, we get that f has totally geodesic fibers if and only
if T ≡ 0.

Now we recall the notion of harmonic maps between Riemannian manifolds
(M, gM) and (N, gN). Let f : (M, gM)→ (N, gN) be a smooth map. Then differ-
ential f∗ of f can be observed as a section of the bundle Hom(TM, f−1TN)→M,
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where f−1TN is the bundle which has the fibers (f−1TN)p = Tf(p)N, p ∈ M .
Hom(TM, f−1TN) has a connection ∇ induced from the Riemannian connec-
tion (Levi-Civita connection) ∇M and the pullback connection. Then the second
fundamental form of f is given by

(∇f∗)(U, V ) = ∇f
Uf∗(V )− f∗(∇M

U V ), (2.16)

for vector fields U, V ∈ Γ(TM), where ∇f is the pullback connection. It is
known that the second fundamental form is always symmetric. A smooth map
f : (M, gM) → (N, gN) is said to be harmonic if trace(∇f∗) = 0. On the other
hand, the tension field of f is the section τ(f) of Γ(f−1TN) defined by

τ(f) = divf∗ =
m∑
i=1

(∇f∗)(ei, ei), (2.17)

where {e1, . . . , em} is the orthonormal frame field on M . Then it follows that f
is harmonic if and only if τ(f) = 0; for these facts, see [3].

Lastly, we recall the subsequent lemma from [3].

Lemma 2.3. Let f : M → N be a horizontally conformal submersion. Then for
any horizontal vector fields U, V and vertical vector fields X, Y, we have

(i)(∇df)(U, V ) = U(lnλ)df(V ) + V (lnλ)df(U)− gM(U, V )df(H(gradlnλ)),

(ii)(∇df)(X, Y ) = −df(TXY ),

(iii)(∇df)(U,X) = −df(∇M
U X) = −df((AH)∗UX),

where (AH)∗U is the adjoint of ( AH
U

) characterized by

〈(AH)∗UE,F 〉 = 〈E,AH
U
F 〉 for all E,F ∈ Γ(TM).

3. Conformal semi-invariant submersions admitting vertical
structure vector field

In this section, we define a conformal semi-invariant submersion from an almost
contact metric manifold onto a Riemannian manifold admitting vertical structure
vector field. We investigate the geometry of foliations and integrability of distri-
butions. Moreover, we also study the harmonicity of such submersions and find
necessary and sufficient conditions for a conformal semi-invariant submersion to
be totally geodesic.

Definition 3.1. Let M be an almost contact manifold with Riemannian metric
gM and let N be a Riemannian manifold with Riemannian metric gN . A horizon-
tally conformal submersion f : (M,φ, ξ, η, gM)→ (N, gN) with dilation λ is called
a conformal semi-invariant submersion if there is a distribution D1 ⊆ (ker f∗) such
that

(ker f∗) = D1 ⊕D2⊕ < ξ >, (3.1)

and φ(D1) = D1, φ(D2) ⊆ (ker f∗)
⊥, where D1, D2 and < ξ > are mutually

orthogonal distributions in ker f∗.
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Now, we shall give an example of a conformal semi-invariant submersion from
an almost contact metric manifold onto a Riemannian manifold.

Note that for a Euclidean space R2n+1 with coordinates (x1, x2, . . . , x2n, x2n+1),
we can canonically choose an almost contact metric structure (φ, ξ, η, gM) on
R2n+1 as follows:

φ(a1
∂

∂x1
+ a2

∂

∂x2
+ · · ·+ a2n−1

∂

∂x2n−1
+ a2n

∂

∂x2n
+ a2n+1

∂

∂x2n+1

)

= (−a2
∂

∂x1
+ a1

∂

∂x2
+ · · · − a2n

∂

∂x2n−1
+ a2n−1

∂

∂x2n
),

where ξ = ∂
∂x2n+1

and a1, a2, a3, . . . , a2n, a2n+1 are C∞-real valued functions in

R2n+1. Let η = dx2n+1 be a 1-form, { ∂
∂x1
, . . . , ∂

∂xn
, ∂
∂xn+1

, . . . , ∂
∂x2n

, ∂
∂x2n+1

} an

orthonormal frame field and gMR
2n+1 a Euclidean metric on R2n+1.

Example 3.2. Let R7 have an almost contact metric structure defined above.
Let f : R7 → R2 be a Riemannian submersion defined by

f(x1, x2, x3, x4, x5, x6, x7) = (ex3 sinx2, e
x3 cosx2),

where x2 ∈ R− {kπ2 , kπ}, k ∈ R. Then,

(ker f∗) =span{E1 =
∂

∂x1
, E4 =

∂

∂x4
, E5 =

∂

∂x5
, E6 =

∂

∂x6
, E7 =

∂

∂x7
},

(ker f∗)
⊥ =span{E2 = ex3 cosx2

∂

∂x2
+ ex3 sinx2

∂

∂x3
,

E3 = −ex3 sinx2
∂

∂x2
+ ex3 cosx2

∂

∂x3
}.

Thus it follows that D1 = span{E5, E6} and D2 = span{E1, E4}. Let y1, y2 be
local coordinates in R2. Also by direct computations, we get

f∗E2 = (ex3)2
∂

∂y1
, f∗E3 = (ex3)2

∂

∂y2
.

Hence, we have

g2(f∗E2, f∗E2) = (ex3)2g7(E2, E2), g2(f∗E3, f∗E3) = (ex3)2g7(E3, E3),

where g7 and g2 denote the Euclidean metrics on R7 and R2 respectively . Thus
f is a conformal semi-invariant submersion with λ = ex3 .

Let (M,φ, ξ, η, gM) be an almost contact metric manifold and (N, gN) a Rie-
mannian manifold. Let f : (M,φ, ξ, η, gM) → (N, gN) be a conformal semi-
invariant submersion. Then there is a distribution D1 ⊆ (ker f∗) such that

(ker f∗) = D1 ⊕D2⊕ < ξ >, φ(D1) = D1, (3.2)

φ(D2) ⊆ (ker f∗)
⊥, (ker f∗)

⊥ = φ(D2)⊕ µ.

We denote the complementary distribution to φ(D2) in (ker f∗)
⊥ by µ. Then for

X ∈ Γ(ker f∗), we get
X = PX +QX + η(X)ξ, (3.3)
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where PX ∈ Γ(D1) and QX ∈ Γ(D2).
For Y ∈ Γ(ker f∗), we get

φY = ψY + ωY, (3.4)

where ψY ∈ Γ(D1) and ωY ∈ Γ(φD2). Also, for U ∈ Γ(ker f∗)
⊥, we have

φU = BU + CU, (3.5)

where BU ∈ Γ(D2) and CU ∈ Γ(µ).
For X, Y ∈ Γ(ker f∗), define

(∇M
X ψ)Y = ∇̂XψY − ψ∇̂XY, (3.6)

(∇M
X ω)Y = H∇M

X ωY − ω∇̂XY. (3.7)

Then it is easy to obtain the following result.

Lemma 3.3. Let (M,φ, ξ, η, gM) be a Cosymplectic manifold and (N, gN) a Rie-
mannian manifold. If f : (M,φ, ξ, η, gM)→ (N, gN) is a conformal semi-invariant
submersion, then

(∇M
X ψ)Y = BTXY − TXωY, (3.8)

(∇M
X ω)Y = CTXY − TXψY, (3.9)

for X, Y ∈ Γ(ker f∗).

Lemma 3.4. Let (M,φ, ξ, η, gM) be a Cosymplectic manifold and (N, gN) a Rie-
mannian manifold. If f : (M,φ, ξ, η, gM)→ (N, gN) is a conformal semi-invariant
submersion, then

(i) the distributionD1 is integrable if and only if (∇f∗)(V, φU)−(∇f∗)(U, φV ) ∈
Γ(f∗µ), for U, V ∈ Γ(D1).

(ii) the distribution D2 is always integrable.

Lemma 3.5. Let (M,φ, ξ, η, gM) be a Cosymplectic manifold and (N, gN) a Rie-
mannian manifold. If f : (M,φ, ξ, η, gM)→ (N, gN) is a conformal semi-invariant
submersion, then

gM(BV, φX) = 0, gM(BV, φY ) = 0, gM(BV, φZ) = 0, (3.10)

and

gM(∇M
U BV, φX) = −gM(BV,∇M

U φX), (3.11)

gM(∇M
U BV, φY ) = −gM(BV,∇M

U φY ),

gM(∇M
U BV, φZ) = −gM(BV,∇M

U φZ)

for X ∈ Γ(D1), Y ∈ Γ(D2), Z ∈ Γ(ker f∗) and U, V ∈ (Γ(ker f∗)
⊥).

Proof. For X ∈ Γ(D1), Y ∈ Γ(D2), Z ∈ Γ(ker f∗) and U, V ∈ (Γ(ker f∗)
⊥), since

φX ∈ Γ(D1), φY ∈ Γ(ker f∗)
⊥, BV ∈ Γ(D2), ψZ ∈ Γ(D1) and ωZ ∈ Γ(φD2),

using equations (3.4) and (3.5), we get equation (3.10).
Now, using equations (3.10), (2.15), and (2.16), we get equation (3.11). �
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Theorem 3.6. Let (M,φ, ξ, η, gM) be a Cosymplectic manifold and (N, gN) a
Riemannian manifold. If f : (M,φ, ξ, η, gM) → (N, gN) is a conformal semi-
invariant submersion, then the distribution (ker f∗)

⊥ is integrable if and only if

AV ωBU −AUωBV + φ(AVCU −AUCV ) /∈ Γ(D1),

and
1

λ2
gN(∇f

V f∗CU −∇
f
Uf∗CV, f∗φZ)

= gM(AVBU −AUBV − CV (lnλ)U

+CU(lnλ)V + 2gM(U,CV )Hgradlnλ, φZ)

for Z ∈ Γ(D2) and U, V ∈ Γ(ker f∗)
⊥.

Proof. Let U, V ∈ Γ(ker f∗)
⊥. Now consider

gM([U, V ], ξ) = gM(∇M
U V, ξ)− gM(∇M

V U, ξ),

= −gM(V,∇M
U ξ) + gM(U,∇M

V ξ).

Using equation (2.7), we have

gM([U, V ], ξ) = 0.

The distribution Γ(ker f∗)
⊥ is integrable if and only if

gM([U, V ], X) = 0, and gM([U, V ], Z) = 0,

for X ∈ Γ(D1), Z ∈ Γ(D2) and U, V ∈ Γ(ker f∗)
⊥. Using equations (2.4), (2.6),

and (3.5), we get

gM([U, V ], X) = gM(∇M
U BV, φX) + gM(∇M

U CV, φX)

−gM(∇M
V BU, φX)− gM(∇M

U BV, φX).

From equations (2.6), (3.11), and (2.14), we have

gM([U, V ], X) = −gM(BV, φ∇M
U X) + gM(AUCV, φX)

+gM(BU, φ∇M
V X)− gM(AVCU, φX).

Using equation (2.4), (2.6), and (3.4), one has that

gM([U, V ], X) = gM(AV ωBU −AUωBV − φAUCV + φAVCU,X). (3.12)

On the other hand, equations (2.4), (2.6), and (3.5), imply that

gM([U, V ], Z) = gM(∇M
U BV, φZ) + gM(∇M

U CV, φZ)

−gM(∇M
V BU, φZ)− gM(∇M

V CU, φZ).

Since f is a conformal submersion, by equations (2.11), (2.16), and (3.10) and
Lemma 2.3(i), we get

gM([U, V ], Z) = gM(AVBU −AUBV − CV (lnλ)U + CU(lnλ)V (3.13)

+ 2gM(U,CV )Hgradlnλ, φZ)

− 1

λ2
gN(∇f

V f∗CU −∇
f
Uf∗CV, f∗φZ).

�
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Theorem 3.7. Let f be a conformal semi-invariant submersion from a Cosym-
plectic manifold (M,φ, ξ, η, gM) onto a Riemannian manifold (N, gN) with inte-
grable distribution (ker f∗)

⊥. Then f is a horizontally homothetic map if and only
if

1

λ2
gN(∇f

V f∗CU −∇
f
Uf∗CV, f∗φZ) = gM(AVBU −AUBV, φZ), (3.14)

for Z ∈ Γ(D2) and U, V ∈ Γ(ker f∗)
⊥.

Proof. For Z ∈ Γ(D2) and U, V ∈ Γ(ker f∗)
⊥, from equation (3.13), we have

gM([U, V ], Z) = gM(AVBU −AUBV − CV (lnλ)U + CU(lnλ)V

+2gM(U,CV )Hgradlnλ, φZ)

− 1

λ2
gN(∇f

V f∗CU −∇
f
Uf∗CV, f∗φZ).

If f is a horizontally homothetic map, then

1

λ2
gN(∇f

V f∗CU −∇
f
Uf∗CV, f∗φZ) = gM(AVBU −AUBV, φZ).

Conversely, if (3.14) is satisfied, then

0 = gM(V, φZ)gM(Hgradlnλ, CU)− gM(U, φZ)gM(Hgradlnλ, CV ) (3.15)

+ 2gM(U,CV )gM(Hgradlnλ, φZ).

Now, putting V = φZ, for Z ∈ Γ(D2) in equation (3.15), we have

gM(φZ, φZ)gM(Hgradlnλ, CU) = 0.

Thus λ is constant on Γ(µ). On the other hand, taking V = CU , for U ∈ Γ(µ) in
(3.15), we have

gM(U,U)gM(Hgradlnλ, φZ) = 0.

From the above equation, λ is constant on Γ(φD2). �

As a conformal version of anti-holomorphic semi-invariant submersion [20], a
conformal semi-invariant submersion is called a conformal anti-holomorphic semi-
invariant submersion if φD2 = (ker f∗)

⊥.

Corollary 3.8. Let (M,φ, ξ, η, gM) be a Cosymplectic manifold and (N, gN) a
Riemannian manifold. If f : (M,φ, ξ, η, gM) → (N, gN) is a conformal anti-
holomorphic semi-invariant submersion, then the following assertions are equiv-
alent to each other:

(i) (ker f∗)
⊥ is integrable,

(ii) gN(f∗φU, (∇f∗)(Z, φV )) = gN(f∗φV, (∇f∗)(Z, φU)), for U, V ∈ Γ(D2) and
Z ∈ Γ(ker f∗).

Proof. For U, V ∈ Γ(D2) and Z ∈ Γ(ker f∗), using equations (1.1), (2.4), (2.6) and
(2.7), we have

gM([φU, φV ], Z) = −gM(φV,∇M
Z φU) + gM(φU,∇M

Z φV ).
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Since f is a conformal subnersion by using Lemma 2.3, we have

gM([φU, φV ], Z) =
1

λ2
{gN(f∗φU, (∇f∗)(Z, φV ))− gN(f∗φV, (∇f∗)(Z, φU))},

which completes the proof. �

Theorem 3.9. Let (M,φ, ξ, η, gM) be a Cosymplectic manifold and (N, gN) a
Riemannian manifold. If f : (M,φ, ξ, η, gM) → (N, gN) is a conformal semi-
invariant submersion, then the distribution (ker f∗)

⊥ defines a totally geodesic
foliation on M if and only if

AVCW + V∇M
V BW ∈ Γ(D2), (3.16)

and

1

λ2
gN(∇f

V f∗φZ, f∗CW ) (3.17)

= gM(AVBW − CW (lnλ)V + gM(V,CW )Hgradlnλ, φZ)

for X ∈ Γ(D1), Z ∈ Γ(D2) and V,W ∈ Γ(ker f∗)
⊥.

Proof. Let U, V ∈ Γ(ker f∗)
⊥. Similarly to as in the proof of Theorem 3.6, we

have

gM([U, V ], ξ) = 0.

The distribution (ker f∗)
⊥ defines a totally geodesic foliation on M if and only if

gM(∇M
V W,X) = 0, and gM(∇M

V W,Z) = 0,

for X ∈ Γ(D1), Z ∈ Γ(D2) and V,W ∈ Γ(ker f∗)
⊥. Then by using equations (2.1),

(2.4), and (2.6), we get

gM(∇M
V W,X) = −gM(φ∇M

V φW,X).

Equations (3.4), (3.5), (2.15), and (2.16), imply that

gM(∇M
V W,X) = −gM(ψ(AVCW + V∇M

V BW ), X). (3.18)

On the other hand, from equations (2.4), (3.5), and (3.11), we have

gM(∇M
V W,Z) = −gM(BW,∇M

V φZ)− gM(CW,∇M
V φZ).

Since f is a conformal semi-invariant submersion, equations (2.13), (2.16), and
(3.10) and Lemma 2.3(i), ensure that

gM(∇M
V W,Z) = gM(AVBW − CW (lnλ)V + gM(V,CW )Hgradlnλ, φZ)

− 1

λ2
gN(∇f

V f∗φZ, f∗CW ).

�

Definition 3.10. Let f be a conformal semi-invariant submersion from a Cosym-
plectic manifold (M,φ, ξ, η, gM) onto a Riemannian manifold (N, gN). Then we
say that D2 is parallel along (ker f∗)

⊥ if ∇M
U Z ∈ Γ(D2), for Z ∈ Γ(D2) and

U ∈ Γ(ker f∗)
⊥.
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Corollary 3.11. Let (M,φ, ξ, η, gM) be a Cosymplectic manifold and (N, gN) a
Riemannian manifold. If f : (M,φ, ξ, η, gM) → (N, gN) is a conformal semi-
invariant submersion, then f is a horizontally homothetic map if and only if

1

λ2
gN(∇f

Uf∗φZ, f∗CV ) = gM(AUBV, φZ) (3.19)

for Z ∈ Γ(D2) and U, V ∈ Γ(ker f∗)
⊥.

Proof. For Z ∈ Γ(D2) and U, V ∈ Γ(ker f∗)
⊥, using equations (3.16) and (3.19),

we have

− gM(Hgradlnλ, CV )gM(U, φZ) + gM(U,CV )gM(Hgradlnλ, φZ) = 0. (3.20)

Now, putting U = φZ, for Z ∈ Γ(D2) in the equation (3.19) and using equation
(3.10), we get

gM(Hgradlnλ, CV )gM(φZ, φZ) = 0.

Thus λ is constant on Γ(µ). On the other hand, putting U = CV in equation
(3.19) for U ∈ Γ(µ) and using equation (3.10), we have

gM(Hgradlnλ, φZ)gM(CV,CV ) = 0.

From the above equation, λ is constant on Γ(φD2). �

Corollary 3.12. Let f be a conformal antiholomorphic semi-invariant submer-
sion from a Cosymplectic manifold (M,φ, ξ, η, gM) to a Riemannian manifold
(N, gN). Then the following assertions are equivalent to each other:

(i) (ker f∗)
⊥ defines a totally geodesic foliation on M ,

(ii) (∇f∗)(Z, φX) ∈ Γf∗(µ) for X ∈ Γ(D2) and Z ∈ Γ(ker f∗)
⊥.

Theorem 3.13. Let (M,φ, ξ, η, gM) be a Cosymplectic manifold and (N, gN) a
Riemannian manifold. If f : (M,φ, ξ, η, gM) → (N, gN) is a conformal semi-
invariant submersion, then the distribution (ker f∗) defines a totally geodesic fo-
liation on M if and only if

1

λ2
gN(f∗ωX,∇f

ωY f∗U)

= gM(CTXψY +AωY ψX + gM(ωX, ωY )(Hgradlnλ), U),

and
∇̂XψY + TXωY ∈ Γ(D1),

X, Y ∈ Γ(ker f∗), U ∈ Γ(µ) and Z ∈ Γ(D2).

Proof. For X, Y ∈ Γ(ker f∗), U ∈ Γ(µ) and Z ∈ Γ(D2), the distribution (ker f∗)
defines a totally geodesic foliation on M if and only if

gM(∇M
X Y, U) = 0 and gM(∇M

X Y, φZ) = 0.

Using equations (2.4), (2.6) and (3.4), we have

gM(∇M
X Y, U) = gM(∇M

X ψY, φU) + gM(∇M
X ωY, φU).

Since [X,ωY ] ∈ Γ(D2), hence

gM(∇M
X Y, U) = gM(∇M

X ψY, φU) + gM(∇M
ωYX,φU).
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From equations (2.6), (2.4), (3.4), and (3.10), we get

gM(∇M
X Y, U) = gM(∇M

X ψY, φU) + gM(ψX,∇M
ωYU) + gM(ωX,∇M

ωYU).

Since f is a conformal submersion, from equations (2.12), (2.13), (2.16) and
Lemma 2.3(i), we have

gM(∇M
X Y, U)

= gM(TXψY, φU) + gM(ψX,AωYU)

− 1

λ2
gN(f∗ωX, f∗U)gM(Hgradlnλ, ωY )

− 1

λ2
gN(f∗ωX, f∗ωY )gM(Hgradlnλ, U)

+
1

λ2
gM(U, ωY )gN(f∗Hgradlnλ, f∗ωX) +

1

λ2
gN(f∗ωX,∇f

ωY f∗U).

Hence, we obtain:

gM(∇M
X Y, U) =gM(−CTXψY −AωY ψX − gM(ωX, ωY )(Hgradlnλ), U) (3.21)

+
1

λ2
gN(f∗ωX,∇f

ωY f∗U).

On the other hand, since [X, Y ] ∈ Γ(ker f∗) and using equations (2.1), (2.6), and
(3.5), we get

gM(∇M
X Y, φZ) = − gM(ω∇M

X ψY, φZ)− gM(ω∇M
X ωY, φZ).

Again using equations (2.13) and (2.14), we have

gM(∇M
X Y, φZ) = − gM(ω∇̂XψY, φZ)− gM(ωTXωY, φZ). (3.22)

�

Next, we give certain conditions for dilation λ to be constant on µ. We first
give the following definition.

Definition 3.14. Let f be a conformal semi-invariant submersion from a Cosym-
plectic manifold (M,φ, ξ, η, gM) onto a Riemannian manifold (N, gN). Then we
say that µ is parallel along (ker f∗), if ∇M

X U ∈ Γ(µ), for U ∈ Γ(µ) and X ∈
Γ(ker f∗).

Corollary 3.15. Let f be a conformal semi-invariant submersion from a Cosym-
plectic manifold (M,φ, ξ, η, gM) to a Riemannian manifold (N, gN) such that µ is
parallel along (ker f∗). Then f is constant on µ if and only if

1

λ2
gN(∇f

ωY f∗U, f∗ωX) = gM(CTXψY +AωY ψX,U) (3.23)

for U ∈ Γ(µ) and X, Y ∈ Γ(ker f∗).

Proof. For U ∈ Γ(µ) and X, Y ∈ Γ(ker f∗), from equation (3.21), we have

gM(∇M
X Y, U) = gM(−CTXψY −AωY ψX − gM(ωX, ωY )(Hgradlnλ), U)

+
1

λ2
gN(f∗ωX,∇f

ωY f∗U).
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Using equation (1.1), we get

gM(ωX, ωY )gM(Hgradlnλ, U) = 0.

From the above equation λ is constant on Γ(µ). The converse comes from equation
(3.21). �

By Theorems 3.9 and 3.13, the following theorem can be followed.

Theorem 3.16. Let (M,φ, ξ, η, gM) be a Cosymplectic manifold and (N, gN) a
Riemannian manifold. If f : (M,φ, ξ, η, gM) → (N, gN) is a conformal semi-
invariant submersion, then M is a locally product manifold of the form M(ker f∗)×λ
M(ker f∗)⊥ if and only if

AUCV + V∇M
U BV ∈ Γ(D2),

1

λ2
gN(∇f

Uf∗φZ, f∗CV ) = gM(AUBV − CV (lnλ)U + gM(U,CV )Hgradlnλ, φZ),

and
1

λ2
gN(f∗ωX,∇f

ωY f∗U)

= gM(CTXψY +AωY ψX + gM(ωX, ωY )(Hgradlnλ), U),

∇̂XψY + TXωY ∈ Γ(D1)

for all vector fields X, Y, Z ∈ Γ(ker f∗) and V, U ∈ Γ(ker f∗)
⊥.

Theorem 3.17. Let (M,φ, ξ, η, gM) be a Cosymplectic manifold and (N, gN) a
Riemannian manifold. If f : (M,φ, ξ, η, gM) → (N, gN) is a conformal semi-
invariant submersion, then D1 defines a totally geodesic on M if and only if

(∇f∗)(X,φY ) ∈ Γf∗(µ),

and
1

λ2
gN((∇f∗)(X,φY ), f∗CU) = gM(Y, TXωBU)

for X, Y ∈ Γ(D1) and U ∈ Γ(ker f∗)
⊥.

Proof. Let X, Y ∈ Γ(D1). Similarly to as in the proof of Theorem 3.6, we have

gM([X, Y ], ξ) = 0.

The distribution D1 defines a totally geodesic foliation on M if and only if

gM(∇M
X Y, Z) = 0, and gM(∇M

X Y, U) = 0,

for X, Y ∈ Γ(D1), Z ∈ Γ(D2) and U ∈ Γ(ker f∗)
⊥.

From equations (2.4), (2.6) and (2.14), we get

gM(∇M
X Y, Z) = gM(H∇M

X φY, φZ).

Since f is a conformal semi-invariant submersion, using equation (2.16), we have

gM(∇M
X Y, Z) = − 1

λ2
gN((∇f∗)(X,φY ), f∗φZ).

On the other hand, by using equations (2.4), (2.6), (3.5), and (2.13), we get

gM(∇M
X Y, U) = gM(Y,∇M

X φBU) + gM(∇M
X φY,CU).
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Since f is a conformal semi-invariant submersion, using equations (3.4), (2.12),
and (2.16), one has

gM(∇M
X Y, U) = gM(Y, TXωBU)− 1

λ2
gN((∇f∗)(X,φY ), f∗CU).

�

Theorem 3.18. Let (M,φ, ξ, η, gM) be a Cosymplectic manifold and (N, gN) a
Riemannian manifold. If f : (M,φ, ξ, η, gM) → (N, gN) is a conformal semi-
invariant submersion, then D2 defines a totally geodesic on M if and only if

(∇f∗)(Y, φX) ∈ Γf∗(µ),

and

− 1

λ2
gN(∇f

φZf∗φY, f∗φCU) = gM(Z,BTYBU) + gM(Y, Z)gM(Hgradlnλ, φCU)

for X ∈ Γ(D1), Y, Z ∈ Γ(D2) and U ∈ Γ(ker f∗)
⊥.

Proof. Let Y, Z ∈ Γ(D2). As in Theorem 3.6, we have

gM([Y, Z], ξ) = 0.

The distribution D2 defines a totally geodesic foliation on M if and only if

gM(∇M
Y Z,X) = 0, and gM(∇M

Y Z,U) = 0,

for X ∈ Γ(D1), Y, Z ∈ Γ(D2) and U ∈ Γ(ker f∗)
⊥. Using equations (2.4), (2.6),

and (3.11), we get
gM(∇M

Y Z,X) = gM(∇M
Y φZ, φX).

Since f is a conformal submersion, from equation (2.16), we get

gM(∇M
Y Z,X) = − 1

λ2
gN((∇f∗)(Y, φX), f∗φZ).

On the other hand, equations (2.4), (2.5), and (3.11), imply that

gM(∇M
Y Z,U) = −gM(φZ,∇M

Y BU) + gM(∇M
φZφY, φCU).

Since f is a conformal submersion, from equation (2.16) and Lemma 2.3(i), we
get

gM(∇M
Y Z,U) = gM(Z,BTYBU) + gM(Z, Y )gM(Hgradlnλ, φCU)

+
1

λ2
gN(∇f

φZf∗φY, f∗φCU).

�

By Theorems 3.17 and 3.18, we get the following result.

Theorem 3.19. Let (M,φ, ξ, η, gM) be a Cosymplectic manifold and (N, gN) a
Riemannian manifold. If f : (M,φ, ξ, η, gM) → (N, gN) is a conformal semi-
invariant submersion, then the fibers of f are locally product manifold if and only
if

(∇f∗)(X,φY ) ∈ Γf∗(µ),
1

λ2
gN((∇f∗)(X,φY ), f∗CU) = gM(Y, TXωBU),
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(∇f∗)(W,φV ) ∈ Γf∗(µ),

− 1

λ2
gN(∇f

φWf∗φV, f∗φCU) = gM(W,BTVBU) + gM(W,V )gM(Hgradlnλ, φCU)

for X, Y ∈ Γ(D1), V,W ∈ Γ(D2) and U ∈ Γ(ker f∗)
⊥.

Since (ker f∗)
⊥ = φ(D2) ⊕ µ and f is a conformal semi-invariant submersion

from an almost contact metric manifold (M,φ, ξ, η, gM) onto a Riemannian man-
ifold (N, gN), for X ∈ Γ(D2) and Y ∈ Γ(µ), we get

1

λ2
gN(f∗φX, f∗Y ) = gM(φX, Y ) = 0.

This implies that the distributions f∗(φD2) and f∗(µ) are orthogonal. Now, we
investigate the geometry of the leaves of the distribution D1 and D2.

Lemma 3.20. Let f be a conformal semi-invariant submersion from a Cosym-
plectic manifold (M2p+2q+2r+1, φ, ξ, η, gM) onto a Riemannian manifold (N q+2r, gN).
Then the tension field τ of f is τ(f) = −(2p+q)f∗(µ

ker f∗)+(2−q−2r)f∗(Hgradlnλ),
where µker f∗ is the mean curvature vector field of the distribution of (ker f∗).

Theorem 3.21. Let f be a conformal semi-invariant submersion from a Cosym-
plectic manifold (M2p+2q+2r+1, φ, ξ, η, gM) onto a Riemannian manifold (N q+2r, gN).
If q + 2r 6= 2, then any two conditions below imply the third:

(i) f is harmonic,
(ii) The fibers are minimal,
(iii) f is a horizontally homothetic map.
We also have the following result.

Corollary 3.22. Let f be a conformal semi-invariant submersion from a Cosym-
plectic manifold (M2p+2q+2r+1, φ, ξ, η, gM) onto a Riemannian manifold (N q+2r, gN).
If q + 2r = 2, then f is harmonic if and only if the fibers are minimal.

Now, we obtain necessary and sufficient condition for a conformal semi-invariant
submersion to be totally geodesic. We recall that a differentiable map f between
Riemannian manifolds is called totally geodesic if

(∇f∗)(U, V ) = 0, for all U, V ∈ Γ(TM).

A geometric interpretation of a totally geodesic map is that it maps every geodesic
in the total manifold into a geodesic in the base manifold in proportion to arc
lengths. We now present the following definition.

Definition 3.23. Let (M,φ, ξ, η, gM) be an almost contact metric manifold and
(N, gN) a Riemannian manifold. If f : (M,φ, ξ, η, gM) → (N, gN) is a conformal
semi-invariant submersion, then f is called a (φD2, µ)-totally geodesic map if

(∇f∗)(φU,X) = 0, for all U ∈ Γ(D2) and X ∈ Γ(ker f∗)
⊥.

In what follows, we show that this notion has an important effect on the geometry
of the conformal submersion.
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Theorem 3.24. Let (M,φ, ξ, η, gM) be a Cosymplectic manifold and (N, gN) a
Riemannian manifold. If f : (M,φ, ξ, η, gM) → (N, gN) is a conformal semi-
invariant submersion, then f is a (φD2, µ)-totally geodesic map if and only if f
is a horizontally homothetic map.

Proof. For U ∈ Γ(D2) and X ∈ Γ(µ), from Lemma 2.3(i), we get

(∇f∗)(φU,X) = X(lnλ)f∗φU + φU(lnλ)f∗X − gM(φU,X)f∗(Hgradlnλ).

From the above equation, if f is horizontally homothetic, then (∇f∗)(φU,X) = 0.
Conversely, if (∇f∗)(φU,X) = 0, for U ∈ Γ(D2) and X ∈ Γ(µ), since φU ∈
Γ(φD2), we get

X(lnλ)f∗φU + φU(lnλ)f∗X = 0. (3.24)

Taking inner product in equation (3.24) with f∗φU, we have

gM(Hgradlnλ, φU)gN(f∗X, f∗φU) + gM(Hgradlnλ,X)gN(f∗φU, f∗φU) = 0.

Since f is a conformal submersion, hence

gM(Hgradlnλ,X)gM(φU, φU) = 0.

Above equation, it follows that λ is constant on Γ(µ). On the other hand, taking
inner product in equation (3.24) with f∗X and since f is a conformal submersion,
we get

gM(Hgradlnλ, φU)gN(f∗X, f∗X) + gM(Hgradlnλ,X)gN(f∗φU, f∗X) = 0.

From the above equation, it follows that λ is constant on Γ(φD2). Thus λ is
constant on Γ(ker f∗)

⊥. �

Theorem 3.25. Let (M,φ, ξ, η, gM) be a Cosymplectic manifold and (N, gN) a
Riemannian manifold. If f : (M,φ, ξ, η, gM) → (N, gN) is a conformal semi-
invariant submersion, then f is totally geodesic map if and only if

(i) CTUφV + ω∇̂UφV = 0, for U, V ∈ Γ(D1),
(ii) ωTUφW + CH∇M

U φW, for W ∈ Γ(D2) and U ∈ Γ(ker f∗),
(iii) f is a horizontally homothetic map,

(iv) TUBZ+H∇M
U CZ ∈ Γ(φD2) and V∇UBZ+TVCZ ∈ Γ(D1), U ∈ Γ(ker f∗), Z ∈

Γ(ker f∗)
⊥.

Proof. (i) For U, V ∈ Γ(D1), using equations (2.1), (2.6), (2.11), (3.4), and (3.5),
we get

(∇f∗)(U, V ) = −f∗(∇UV )

= f∗(BTUφV + CTUφV + ψ∇̂UφV + ω∇̂UφV ).

Since BTUφV + CTUφV ∈ Γ(ker f∗), we get

(∇f∗)(U, V ) = f∗(CTUφV + ω∇̂UφV ).

Since f is a linear isometry between Γ(ker f∗)
⊥ and TN , (∇f∗)(U, V ) = 0 if and

only if CTUφV + ω∇̂UφV = 0.
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(ii) For U ∈ Γ(ker f∗) and W ∈ Γ(D2), using equations (2.1), (2.6), (2.12),
(2.17), (3.4), and (3.5), we get

(∇f∗)(U,W ) = f∗(ψTUφW + ωTUφW +B∇M
U φW + CH∇M

U φW ).

Since ψTUφW +B∇M
U φW ∈ Γ(ker f∗), we derive

(∇f∗)(U,W ) = f∗(ωTUφW + CH∇M
U φW ).

Since f is a linear isometry between Γ(ker f∗)
⊥ and TN , (∇f∗)(U, V ) = 0 if and

only if ωTUφW + CH∇M
U φW = 0.

(iii) For X, Y ∈ Γ(µ), from Lemma 2.3(i), we get

(∇f∗)(X, Y ) = X(lnλ)f∗Y + Y (lnλ)f∗X − gM(X, Y )f∗(Hgradlnλ).

From the above equation taking Y = φX, for X ∈ Γ(µ), we get

(∇f∗)(X,φX) = X(lnλ)f∗φX + φX(lnλ)f∗X.

If (∇f∗)(X,φX) = 0, we get

X(lnλ)f∗φX + φX(lnλ)f∗X = 0. (3.25)

Taking inner product in equation (3.25) with f∗X and by the fact that f is a
conformal submersion, we get

gM(Hgradlnλ, φX)gN(f∗φX, f∗X) + gM(Hgradlnλ, φX)gN(f∗X, f∗X) = 0.

Above equation, it follows that λ is constant on Γφ(µ). On the other hand, taking
inner product in equation (3.25) with f∗φX and since f is a conformal submersion,
we get

gM(Hgradlnλ,X)gN(f∗φX, f∗φX) + gM(Hgradlnλ, φX)gN(f∗X, f∗φX) = 0.

Above equation implies that λ is constant on Γ(µ). In a similar way, for U, V ∈
Γ(D2), using Lemma 2.3(i), we get

(∇f∗)(φU, φV ) = φU(lnλ)f∗φV + φV (lnλ)f∗φU − gM(φU, φV )f∗(Hgradlnλ).

From the above equation taking V = U , we get

(∇f∗)(φU, φU) (3.26)

= φU(lnλ)f∗φU + φU(lnλ)f∗φU − gM(φU, φU)f∗(Hgradlnλ).

Taking inner product in equation (3.26) with f∗φU and since f is a conformal
submersion, we obtain

gM(Hgradlnλ, φU)gM(φU, φU) = 0.

From the above equation, it follows that λ is constant on Γφ(U). Thus λ is con-
stant on Γ(ker f∗)

⊥. If f is a horizontally homothetic map, then f∗(Hgradlnλ)
vanishes; thus the converse is clear; that is, (∇f∗)(X, Y ) = 0, for X, Y ∈
Γ(ker f∗)

⊥.

(iv) In the same way with the proof of Theorem 4.3(d) in [2], we can show
TUBZ+H∇M

U CZ ∈ Γ(φD2) and V∇UBZ+TVCZ ∈ Γ(D1), U ∈ Γ(ker f∗), Z ∈
Γ(ker f∗)

⊥.
�
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Example 3.26. Let R7 have got a Cosymplectic structure as in Example 2.1.
Let f : R7 → R2 be a submersion defined by

f(x1, x2, x3, y1, y2, y3, z) = (ex3 cos y2, e
x3 sin y2),

where y2 ∈ R− {kπ2 , kπ}, k ∈ R. Then

Γ(ker f∗) = span{E1 =
∂

∂y1
, E3 =

∂

∂y3
, E4 =

∂

∂x1
, E5 =

∂

∂x2
, E7 =

∂

∂z
},

Γ(ker f∗)
⊥ = span{E2 = −ex3 sin y2

∂

∂y2
+ ex3 cos y2

∂

∂x3
,

E6 = ex3 cos y2
∂

∂y2
+ ex3 sin y2

∂

∂x3
}.

Hence we have φE1 = E4, φE3 = E6, φE4 = −E1, φE5 = −E2. Thus it follows
that D1 = span{E1, E4} and D1 = span{E3, E5}. Let u1, u2 be local coordinates
in R2. Also by direct computations, we get

f∗E2 = (ex3)2
∂

∂u1
and f∗E6 = (ex3)2

∂

∂u2
.

Hence, we have

g2(f∗E2, f∗E2) = (ex3)2g7(E2, E2) and g2(f∗E6, f∗E6) = (ex3)2g7(E6, E6),

where g7 and g2 denote the Euclidean metrics on R7 and R2 respectively. Thus
f is a conformal semi-invariant submersion with λ = ex3 .
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