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CONVERGENCE OF OPERATORS WITH CLOSED RANGE
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Abstract. Izumino has discussed a sequence of closed range operators (Tn)
that converges to a closed range operator T on a Hilbert space to establish the
convergence of T †n → T † for Moore-Penrose inverses. In general, if Tn → T
uniformly and each Tn has a closed range, then T need not have a closed range.
Some sufficient conditions have been discussed on Tn and T such that T has a
closed range whenever each Tn has a closed range.

1. Introduction

Many of the concrete applications of mathematics in science and engineering,
eventually result in a problem involving operator equations. This problem can
be usually represented as an operator equation

Tx = y, (1.1)

where T : X → Y is a linear or nonlinear operator (between certain function
spaces or Euclidean spaces) such as a differential operator or an integral operator
or a matrix. The spaces X and Y are linear spaces endowed with certain norms
on them. Solving linear equations with infinitely many variables is a problem of
functional analysis, while solving equations with finitely many variables is one of
the main themes of linear algebra.

The normed space of all bounded linear operators from a normed space X to a
normed space Y is denoted by B(X, Y ). We write B(X) for B(X, Y ) when X = Y .
If T ∈ B(X, Y ), we denote the kernel of T by N(T ) and the range of T by R(T ).
The problem of solving equation (1.1) is well-posed if it asserts existence and
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uniqueness of a solution of (1.1) and the continuous dependence of the solution
on the data y. It is well-known that the problem of solving the operator equation
(1.1) is essentially well-posed if R(T ) is closed. The study of operators with
closed range on Hilbert spaces predominantly appears to pervade the literature
dealing with the Moore-Penrose inverse. Closed rangeness of operators has been
discussed for restrictions [1], compositions [2, 8, 9], compact perturbations and
factorizations [13], and so on. It has been found useful in applications; see [3].
Moreover, a recent research is going on to analyze closed rangeness of operators
on Hilbert C∗-modules; see [5, 14].

Let H and K be Hilbert spaces. If T ∈ B(H,K) with a closed range, then T †

is the unique linear operator in B(K,H) satisfying

(1) TT †T = T ;
(2) T †TT † = T †;
(3) TT † = (TT †)∗;
(4) T †T = (T †T )∗.

The operator T † is called the Moore-Penrose inverse of T . The convergence of
closed range operators on a Hilbert space has been discussed in [7] to establish
the convergence of Moore-Penrose inverses. If Tn and T have closed ranges and
‖Tn − T‖ → 0, then the following conditions are equivalent:

(1) ‖T †n − T †‖ → 0.
(2) ‖TnT †n − TT †‖ → 0.
(3) ‖T †nTn − T †T‖ → 0.
(4) sup ‖T †n‖ <∞.

It is well known that an operator T has a closed range if and only if its Moore-
Penrose inverse T † exists. Topological properties of the set of all bounded linear
operators between Hilbert spaces with closed range have been studied by consid-
ering certain natural metrics on the set. Also using homogeneous structure of
closed range operators, several other equivalent conditions are given in [4]. If a
sequence (Tn) converges to T uniformly and each Tn has a closed range, then T
need not have a closed range in general (see Example 3.1). In section 2, some
characterizations for closed range operators between Frechet and Banach spaces
are given. The third and final sections of the paper are devoted to find conditions
for operators Tn and T between Banach spaces such that T has a closed range
whenever each Tn has a closed range.

2. Preliminaries

Banach’s closed range theorem [15] states that if X and Y are Banach spaces
and if T ∈ B(X, Y ), then R(T ) is closed in Y if and only if R(T ∗) is closed
in X∗. Some characterizations for operators to have a closed range are given
in [6,10,11]. In this section, we give characterizations of closed range continuous
operators between Frechet spaces and between Banach spaces. A Frechet space
is a complete metrizable topological vector space, see [12].

Theorem 2.1. Let X and Y be Frechet spaces and let T : X → Y be a contin-
uous linear operator. Then R(T ) is closed in Y if and only if, for a given open
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neighborhood U of 0 in X, there is an open neighborhood V of 0 in Y such that,
for a given x ∈ X with Tx ∈ V , there is an element y ∈ U satisfying Tx = Ty.

Proof. Suppose that R(T ) is closed in Y . Write N = N(T ) and X ′ = X/N
is a quotient space with the quotient topology. Define T ′ : X ′ → R(T ) by
T ′(x + N) = T (x). Then T ′ is a one-to-one continuous linear operator from
X ′ onto R(T ); hence T ′−1 is continuous by the open mapping theorem. Let
π : X → X ′ be a quotient mapping.

Now fix an open neighborhood U of 0 in X. Then π(U) = U + N = U ′ (say)
is an open neighborhood of 0 +N in X ′. Then there is an open neighborhood V
of 0 in Y such that R(T ) ∩ V ⊆ T ′(U ′) = T ′(π(U)) = T ′(U +N) = T (U). Thus,
for a given x ∈ X with Tx ∈ V , there is an element y ∈ U such that Tx = Ty.
This proves one part.

Conversely assume that, for a given open neighborhood U of 0 in X, there is
an open neighborhood V of 0 in Y such that, for a given x ∈ X with Tx ∈ V ,
there is y ∈ U satisfying Tx = Ty.

Let (Un) be a sequence of balanced open neighborhoods of 0 which form a local
base at 0 in X such that Un+1 + Un+1 ⊆ Un for every n. For each Un, let us
find an open neighborhood Vn of 0 in Y such that if Tx ∈ Vn for some x ∈ X,
then Tx = Ty for some y ∈ Un. Without loss of generality, we assume that
{Vn : n = 1, 2, . . .} is a local base at 0 in Y such that Vn+1 + Vn+1 ⊆ Vn for every
n.

Fix y0 ∈ R(T ). Find a sequence (x′n) in X such that Tx′n → y0 as n → ∞
and Tx′n+1 − Tx′n ∈ Vn for every n. For every n, find xn ∈ Un such that Txn =
Tx′n+1 − Tx′n ∈ Vn. Then

m∑
n=1

Txn = (Tx′2 − Tx′1) + (Tx′3 − Tx′2) + · · ·+ (Tx′m+1 − Tx′m)

= Tx′m+1 − Tx′1 → y0 − Tx′1 as m→∞.

Thus
∞∑
n=1

Txn converges to y0 − Tx′1. Also for m < n, we have

xm + xm+1 + xm+2 + · · ·+ xn ∈ Um + Um+1 + Um+2 + · · ·+ Un−1 + Un

⊆ Um + Um+1 + · · ·+ Un−2 + Un−1 + Un−1

⊆ Um + Um+1 + · · ·+ Un−3 + Un−2 + Un−2
...

⊆ Um + Um ⊆ Um−1.

This proves that
∞∑
n=1

xn converges to x0, say, in the Frechet space X, and hence

∞∑
n=1

Txn converges to Tx0 in Y . Therefore Tx0 = y0 − Tx′1 =
∞∑
n=1

Txn, so that

y0 = Tx0 + Tx′1 ∈ R(T ). This proves that R(T ) is closed in Y . �

Corollary 2.2. Let T : X → Y be a continuous linear operator from a Frechet
space X into a Frechet space Y . Then T has a closed range in Y if and only if
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for every sequence (yn) in R(T ) that converges to 0, there is a sequence (xn) in
X which also converges to 0 such that Txn = yn for every n.

Theorem 2.3. Let X and Y be Banach spaces and let T ∈ B(X, Y ). Then R(T )
is closed in Y if and only if there is a constant c > 0 such that, for given x ∈ X,
there is an element y ∈ X such that Tx = Ty and ‖y‖ ≤ c‖Tx‖.

Proof. Suppose that R(T ) is closed in Y . Write N = T−1(0) = N(T ) and let
X

′
= X/N be the quotient space with the quotient norm. Define T

′
: X

′ → R(T )
by T

′
(x + N) = Tx for x ∈ X. Then T

′
is a well defined one-to-one continuous

linear operator from X
′

onto R(T ). Therefore, by the open mapping theorem,
there exists a constant c′ > 0 such that ‖x + N‖ ≤ c′‖T ′

(x + N)‖ for every
x ∈ X. That is, ‖x + N‖ ≤ c′‖Tx‖ for every x ∈ X. Take c = c′ + 1. Then for
given x ∈ X, if Tx 6= 0, then there is an element z ∈ N such that ‖x + z‖ ≤
‖x + N‖+ ‖Tx‖ ≤ c′‖Tx‖+ ‖Tx‖ = c‖Tx‖. In this case, we take y = x + z, so
that ‖y‖ ≤ c‖Tx‖. If Tx = 0, then we take y = 0, so that ‖y‖ ≤ c‖Tx‖. Thus
for given x ∈ X, there is y ∈ X such that Tx = Ty and ‖y‖ ≤ c‖Tx‖.

Conversely assume that, for given x ∈ X, there is y ∈ X such that Tx =
Ty and ‖y‖ ≤ c‖Tx‖ for some fixed c > 0. Fix y0 ∈ R(T ), the closure of
R(T ) in Y . Then there is a sequence (xn) in X such that ‖xn‖ ≤ c‖Txn‖ and
‖(y0 − Tx1 − Tx2 − · · · − Txn−1)− Txn‖ ≤ 1

2n+2 for every n = 1, 2, 3, . . .. Then
1
c
‖xn‖ ≤ ‖Txn‖ ≤ ‖y0−Tx1−Tx2−· · ·−Txn‖+‖y0−Tx1−Tx2−· · ·−Txn−1‖ ≤
1

2n+2 + 1
2n+1 ≤ 1

2n
. Therefore, the series

∞∑
n=1

xn converges to x0, say, in X and

the series
∞∑
n=1

Txn converges to y0. Since T is continuous,
∞∑
n=1

Txn converges to

T (
∞∑
n=1

xn) = Tx0. Therefore y0 = Tx0 ∈ R(T ). This proves that R(T ) is closed in

Y . �

3. Main Results

Izumino [7] discusses a sequence of closed range operators (Tn) which converges
to a closed range operator T on a Hilbert space to establish the convergence of
T †n → T † for Moore-Penrose inverses. In general, if ‖Tn − T‖ → 0 and each Tn
has a closed range then T need not have a closed range. This section is devoted
to find conditions on Tn and T such that T has a closed range whenever each Tn
has closed range.

The following example shows that the limit of (Tn) need not have a closed
range even each Tn has a closed range and the convergence is uniform.

Example 3.1. Let X = Y = `2. Define Tn : X → Y by

Tn(x1, x2, x3, . . .) =
(
x1,

x2
2
,
x3
3
, . . . ,

xn
n
, 0, 0, . . .

)
and T : X → Y by

T (x1, x2, x3, . . .) =
(
x1,

x2
2
,
x3
3
, . . .

)
.
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Then ‖Tn − T‖ → 0, each Tn is of finite rank. Hence each Tn is a closed range
operator. But the limit T does not have a closed range in Y because T is a
compact operator.

Theorem 3.2. Let Tn, T ∈ B(X, Y ), where X and Y are Banach spaces. Suppose
that N(Tn) = N(T ) for all n and that ‖Tnx−Tx‖ → 0 for every x ∈ X. Suppose
that for each n ∈ N and given any x, there is some xn in X such that Tnxn = Tnx
and ‖Tnx‖ ≥ γ‖xn‖ for some constant γ > 0. Then T has a closed range in Y.

Proof. Without loss of generality, we assume that N(Tn) = N(T ) = {0}, by
passing to X/N(T ). Fix x ∈ X. If Tx = 0, then x = 0 and hence ‖Tx‖ ≥ γ

2
‖x‖.

Suppose Tx 6= 0, so that x 6= 0 and find n such that ‖Tx− Tnx‖ < γ
2
‖x‖. Then,

we have ‖Tx‖ ≥ ‖Tnx‖ − ‖Tx − Tnx‖ ≥ γ‖x‖ − γ
2
‖x‖ = γ

2
‖x‖. This shows that

T also has a closed range in Y. �

Lemma 3.3. Suppose that X and Y are Banach spaces and that Tn ∈ B(X, Y )
for all n. Suppose ‖Tn−Tn+1‖ → 0 as n→∞ and assume that there is a constant
γ > 0 such that for each n ∈ N and each x ∈ X, there is some xn in X such
that Tnxn = Tnx and ‖Tnx‖ ≥ γ‖xn‖. Further assume that R(Tn) ( R(Tn+1) or
R(Tn) ) R(Tn+1) for every n. Then there is an integer n0 such that R(Tn) =
R(Tn0) for all n ≥ n0.

Proof. If R(Tn) is strictly contained in R(Tn+1), then by Riesz’s lemma, there is
an element x ∈ X such that ‖Tn+1x‖ = 1 and inf

y∈X
‖Tny−Tn+1x‖ ≥ 1− 1

2
. To this

x, find x′ ∈ X such that Tn+1x = Tn+1x
′ and ‖Tn+1x‖ ≥ γ‖x′‖, so that ‖x′‖ ≤ 1

γ
.

Thus, if R(Tn) is strictly contained in R(Tn+1), then there is an element x′ ∈ X
such that ‖Tnx′‖ = 1, ‖x′‖ ≤ 1

γ
and ‖Tnx′−Tn+1x

′‖ ≥ 1
2
, so that ‖Tn−Tn+1‖ ≥ γ

2
.

Similarly, if R(Tn) is strictly containing R(Tn+1), then we have ‖Tn−Tn+1‖ ≥ γ
2
.

Since ‖Tn − Tn+1‖ → 0, there should be an integer n0 such that R(Tn) = R(Tn0)
for every n ≥ n0. �

Corollary 3.4. Assume the hypothesis of Lemma 3.3. Suppose that T ∈ B(X, Y ),
‖Tnx−Tx‖ → 0 for each x ∈ X, and that each Tn is compact. Then T is compact
and T has a closed range in Y.

Proof. By the previous Lemma 3.3, there is an integer n0 such that R(Tn) =
R(Tn0) for all n ≥ n0. Since Tn0 is compact, R(Tn0) is of finite dimension. Since
Tnx→ Tx for every x,R(T ) ⊆ R(Tn0), hence R(T ) is of finite dimension. �

Lemma 3.5. Assume the hypothesis of Lemma 3.3. Suppose that Y is a Hilbert
space and that R(Tn)+R(Tn+1) is closed for each n ∈ N. Then there is an integer
n0 such that R(Tn) = R(Tn0) for all n ≥ n0.

Proof. Suppose that R(Tn) is strictly contained in R(Tn) + R(Tn+1). Then by
Riesz’s lemma, there is an element Tnx0 + Tn+1y0 in R(Tn) + R(Tn+1) such that
‖Tnx0 + Tn+1y0‖ = 1 and ‖Tnx − (Tnx0 + Tn+1y0)‖ ≥ 1

2
for all x ∈ X and such

that Tn+1y0 ∈ R(Tn)⊥. In that case ‖Tn+1y0‖ ≤ ‖Tnx0 + Tn+1y0‖ = 1.
For this y0, there is an element z0 in X such that Tn+1y0 = Tn+1z0 and 1 ≥

‖Tn+1y0‖ ≥ γ‖z0‖. Thus ‖Tn+1z0 − Tnz0‖ ≥ 1
2
, where ‖z0‖ ≤ 1

γ
. Thus ‖Tn+1 −
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Tn‖ ≥ γ
2
, if R(Tn) is strictly contained in R(Tn)+R(Tn+1). Similarly, one can prove

that if R(Tn+1) is strictly contained in R(Tn) +R(Tn+1), then ‖Tn+1 − Tn‖ ≥ γ
2
.

Since ‖Tn − Tn+1‖ → 0, there should be an integer n0 such that R(Tn) =
R(Tn+1) = R(Tn) +R(Tn+1) for every n ≥ n0. �

Corollary 3.6. Assume the hypothesis of Lemma 3.5. Suppose that T ∈ B(X, Y ),
‖Tnx−Tx‖ → 0 for each x ∈ X and that each Tn is compact. Then T is compact
and T has a closed range in Y.

Proof. It is similar to the proof of Corollary 3.4. �

Theorem 3.7. Let Tn, T ∈ B(X, Y ), where Y is a Banach space and X is reflex-
ive. Suppose that there is a constant γ > 0 such that for each n ∈ N and x ∈ X,
there is an element xn in X such that ‖Tnx‖ ≥ γ‖xn‖ and Tnx = Tnxn. Assume
that ‖Tnx− Tx‖ → 0 for each x ∈ X and ‖T ∗nf − T ∗f‖ for each f ∈ Y ∗. Then T
has a closed range in Y.

Proof. Fix x ∈ X. By assumption, for each n ∈ N, there is xn ∈ X such that
γ‖xn‖ ≤ ‖Tnx‖ ≤ ‖Tnx− Tx‖+ ‖Tx‖. Therefore (xn) is a bounded sequence in
X. Since X is reflexive, there is a subnet (xnδ)δ∈D of (xn), which converges weakly
to some y in X. Fix f ∈ Y ∗ arbitrarily. Since f ◦ T ∈ X∗, so f(Txnδ)→ f(Ty).
The condition sup

‖x‖≤1
|fTnx− fTx| → 0 is equivalent to ‖T ∗nf − T ∗f‖ → 0. Also

|fTx− fTxnδ | ≤ |fTx− fTnδxnδ |+ |fTnδxnδ − fTxnδ |
= |fTx− fTnδx|+ |fTnδxnδ − fTxnδ | → 0.

Thus fTxnδ → fTx. Since f ∈ Y ∗ is arbitrary, Tx = Ty. Moreover |g(xnδ)| →
|g(y)|, for every g ∈ X∗, and hence lim sup

n→∞
‖xnδ‖ ≥ ‖y‖, which implies that

γ‖y‖ ≤ ‖Tx‖, where Tx = Ty. Therefore T has a closed range in Y. �

Example 3.8. Let X = Y = `2. Define Tn : X → Y by

Tn(x1, x2, . . .) = (x1, x2, . . . , xn, 0, 0, . . .).

Let T = I be the identity operator. Then ‖Tn − T‖ does not converge to 0 and
‖Tnx− Tx‖ → 0 for every x ∈ X, and

sup
‖x‖≤1

|fTnx− fTx| → 0,

for every f ∈ Y ∗ = `2. Note that Tn and T have closed ranges in Y.

Example 3.9. Let X = Y = `1. Define Tn and T as in Example 3.8. Then
‖Tn − T‖ does not converge to 0 and ‖Tnx− Tx‖ → 0 for every x ∈ X, and

sup
‖x‖≤1

|fTnx− fTx|

does not converge to 0 with f = (1, 1, 1, . . .) ∈ Y ∗ = `∞. Here Tn and T have
closed ranges in Y, but X and Y are not reflexive.

We propose the following conjecture that is based on the previous examples: Let
X and Y be Banach spaces and let Tn, T ∈ B(X, Y ). Suppose ‖Tnx − Tx‖ → 0
for every x ∈ X and ‖T ∗nf − T ∗f‖ → 0 for every f ∈ Y ∗. Suppose that there is a
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constant γ > 0 such that for each n ∈ N and x ∈ X, there is an element xn ∈ X
such that ‖Tnx‖ ≥ γ‖xn‖ and Tnx = Tnxn. Then the range of T is closed in Y.
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