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ABSTRACT. We develop Bernstein type operators using the Beta function and
study their approximation properties. By using Korovkin’s theorem, we achieve
the uniform convergence of sequences of these operators. We obtain the rate of
convergence in terms of modulus of continuity and establish the Voronovskaja
type asymptotic result for these operators. At last the graphical comparison
of these newly defined operators with few of the fundamental but significant
operators is discussed.

1. INTRODUCTION AND PRELIMINARIES

Let B(X) be the class of all real-valued bounded functions defined on a nonempty
set X. For approximation of a real-valued continuous function f(z) defined on
0, 1], Bernstein [1] introduced the following positive linear operator B,,.

B, : B([0,1]) — B([0, 1]) defined by

B (fix) = Z pato) £ (%) (1)

n

where p,, ,(z) = 2% (1 — 2)"~* is the Bernstein basis function and 0 < k < n.

n
k
The expression in (1.1) is also called the Bernstein polynomial of degree n of the
function f.
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Let C'(X) be the class of all real-valued continuous functions defined on a
nonempty set X. If a real-valued function f € C(]0,1]), then B,(f;-) converges
to f uniformly on [0, 1].

Durrmeyer in [7] introduced a generalization of Bernstein operators using
summation-integral type formula, as follows:

1

Du(fi) =3 puse) [ prslt)®) (1.2
k=0 0
In 1941, Szész and Mirakyan [20] introduced an operator, known as the Szasz-
Mirakyan operator, which is given below.
For z € [0,00), S, : C([0,00)) = C([0,00)) is defined as

Sufi) = sunle) £ (g) | (13)
k=0
(nz)"
k!
Further, in 1957, Baskakov [3] introduced an operator on the space of contin-
uous functions, known as the Baskakov operator, which is given below.
For z € [0,00), V,, : C([0,00)) — C(]0,00)) is defined as

Vifio) =3 vale) 1 (£). (1.4
k=0
n+k—1 a*
where ’Umk(l') = ( k ) W .

Many researchers have done lots of work using the Bernstein operator (1.1).
Several generalization and development are studied in [1,2,5,6,9-16,18,19,21-23].
With the motivation from the above development, we introduce the following
operator which provides better approximation than few of the above operators.

For f € C(]0,1]), we define a Beta-Bernstein operator as follows:

For z € [0, 1], B, : C([0,1]) — C([0,1]) is defined as

B.(f:7) = kzi;m(x) (%), (15)

k+1,2n—k — 1
where P, i (z) = (Z) ﬁ(nmﬁ—'(—nx—: 1’7 :_ - +n1x) +1) . Here, f(a,b) is the Beta
1

nx

where s, () =€~

function defined by (£(a,b) = /t“l(l — )"t dt (a,b>0).

0
It can be seen that the operator defined in (1.5) is a positive linear operator.

2. AUXILIARY RESULTS

Lemma 2.1. Fora,b > 0 and nonnegative integers n and k, we have the following
ETPTESSIONS.
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. " /n\ Bla+k,b+n—k)
(i) For 0 < k < n, () =1;
2k B(a.b)
. " /n—1\ Bla+kb+n—k) a
For 1 <k <n, = ;
(ii) For n 2 (k;—1> B(a,b) a+b

(iii) For 1 <k < n,

“~(n—1\Bla+kb+n—k) k  (n—1)(a+1)a a
Z(k 1) B(a,b) 'ﬁ_n(a+b—|—l)(a+b)+n(a+b)’

k=1

k
"N (n—1\ Bla+tkb+n—k) k¥ (n—1)(n—2)(a+2)(a+1)a
Z( 1) B(a,b) n?2 n2(a+b+2)(a+b+1)(a+0b)
3(n—1)(a+1a a
n2(a+b+1)(a+b) n2(a+b)’

—~

n3  n3(a+b+3)(a+b+2)(atbt1)(atd)
6(n — 1)(n — 2)(a+ 2)(a + Da
n3a+b+2)(a+b+1)(a+b)
7(n—1)(a+ 1)a a
ndla+b+1)(a+bd) n3(a+b)

1
S (n—1\Blatkb+n—k) K _(n-1)n-2)(n-3)(a+3)(a+2)(a+1)a
> (k1) 5

Now, we obtain the first four raw moments of the operator defined in (1.5).
The following lemma gives the raw moments of the operator defined in (1.5).

Lemma 2.2. For z € [0, 1] and the operator given in (1.5), the following equali-
ties hold true.

(i) Bn(l;2) = 1;

" nr + 1
(i) B (t;2) = s
s (n—=1mr+1)nz+2) nr+l1
(i) Bn(t7;7) = n(n +2)(n + 3) n(n+2)’
: 5 (n—=1)(n—2)(nx+ 3)(nx + 2)(nz + 1)
(iv) Bt ) = n?(n+4)(n+3)(n+2)
3(n —1)(nz +2)(nx + 1) nr+1
n%(n+3)(n+2) n?(n+2)’
4 v (m=1n-2)n—-3) nr+4 nrx+3 nr+2 nr+l
(v) Balts ) = n? "n+5 n+4d n+3 n+2
+6(n—1)(n—2)‘nx+3‘nx+2'nac+1
n3 n+4 n+3 n+2

+7(71—1) nt+2 nr+1 1 nx+1
n3 n+3 n+2 nd n+2°



4 D.J. BHATT, V.N. MISHRA, R.K. JANA

- k+1,2n—k— 1
Frook (B ) = kz—% (Z) B(nx;(_n;:l— 1,:— nw +nla; =

By part (i) of Lemma 2.1, we get
B,(l;z) = 1.
(i)

‘Bn(t;x):ic) Pz tkil2n—k—not1) %

— k B(nz+1,n—nx+1)

_Zn: n—1\ fnx+k+1,2n—k—nzx+1)
—ki k—1 B(nz+1,n—nx+1)
By part (ii) of Lemma 2.1, we get
nr+1
n+2

B, (t;x) =
(iii)

n 1. 2
B, (1% 1) — (n>ﬁ(nx+k+1,2n k—nz+1) k

p k Bnx+1,n—nx+1) n?
_i n\ Bnz+k+1,2n—k—nx+1) k?
_k;O k B(nx+1,n —nx+1) n?

(n—l) Bnx+k+1,2n—k—nx+1) k
n

P k—1 Bnz+1,n—nx+1)

By part (iii) of Lemma 2.1, we get
1
B, (¢0) = (0= 1)

n

nc+2 nr+1 nx+1

n+3 n+2 n+2 |

(mn—1)nzx+1)(nx+2) nr+l
n(n+2)(n+ 3) n(n+2)

B, (1) =

(iv)

5« ~~(n\Bhz+k+1,2n—k—nz+1) Kk
‘Bn(t,x)—Z(k) L

prt B(nx+1,n —nx+1) n3

Sl

B (n—l)ﬁ(nx+k+1,2n—k—nw+1) k?

e \k—1 B(nz+1,n—nx+1) n?

By part (iv) of Lemma 2.1, we have
(n —1)(n —2)(nx + 3)(nx + 2)(nx + 1)
n?(n+4)(n+3)(n+2)
3(n —1)(nz+2)(nx + 1) nr+1
n%(n+3)(n+2) n?(n+2)

‘Bn(t3; x) =
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B, (thz) = A .

n\ Bz +k+1,2n—k-—nx+1) &
Bnx+1,n—nx+1) nt

=
3 ||M:
o

(n—l) Bnr+k+1,2n—k—nz+1) k3

k—1 Bnr+1,n—nx+1) nd

k=1
From the part (iv) of Lemma 2.1, we have

(n=1)(n—-2)n—-3) nr+4 nr+3 nr+2 nr+l

B, (th ) = . .
( ) n3 n+5 n+4 n+3 n+2
+6(n—1)(n—2) nr+3 nr+2 nr+1
n3 n+4 n+3 n+2

Tm—1) nz+2 nx+1 1 nzx+l
n3 n+3 n+2 nd n+2°

OJ

The following lemma gives the moment estimation of the operator defined in
(1.5) about z.

Lemma 2.3. For z € [0,1], the following equalities give p™ (p = 0,1,2,3,4)
moments for the operator defined in (1.5) about x.
(1) B ((t — )% 2) =1
. 1-2z
() B (¢ — )i ) =
3(22° =2z +1)  2nx(z—1) N 1 '
m+2)(n+3) (n+2)(n+3) nn+2)(n+3)’
6(—4z3 +8x% — 122 +1)  nw(242? — 45z + 2)
(n+2)(n+3)(n+4) (n+2)(n+3)(n+4)

(iil) B, ((t —2)*7) =

(iv) Bu((t —2)’2) =

n 2(51‘ — 9) B In2x2
R R e Rl e Y oy vy
12
+(n+2)(n—|—3)(n+4);
4 N 12n%2%(z — 1)? — 2nx (12623 — 25222 + 1692 — 43)
) Ballt —a)52) = (n+2)(n+3)(n+4)(n+5)

+3n(40$4 — 8023 + 13222 — 92z + 25) + 2(8522 — 85z + 26)
n(n+2)(n+3)(n+4)(n+5)
3n+4
n3(n+2)(n+3)(n+4)(n+5)
Proof. (i) Using the part (i) of Lemma 2.2 and linearity of 9B,,, we have

B,((t—2)%z)=B,(1;2) = 1.
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(ii) Using the parts (i) and (ii) of Lemma 2.2 and linearity of 98,,, we have

nr+1
B ((t = a)i7) = o -
1 -2z

2B ((t—x);x) = 3

(iii) Proceeding in similar manner as above with parts (i), (ii), and (iii) of
Lemma 2.2, we have
n—1(nz+1)(nx+2) nzx+l
n(n+2)(n+ 3) n(n + 2)
— 2z <n.r+ 1> — 2.
n+2
3(2z% — 2z + 1) 2nx(x — 1)

LBt —2)ha) = (n+2)(n+3) (n+2)(n+3)

1
* n(n+2)(n+3)

B((t — )" 2) =

(iv) Using the parts (i) to (iv) of Lemma 2.2 and linearity of B,,, we obtain

(n—1)(n —2)(nz + 3)(nx + 2)(nz + 1)
n%(n+4)(n+3)(n+2)
3(n —1)(nz+2)(nx + 1) nr+1 >
n?(n+3)(n+2) n?(n + 2)
(n—1mnz+1)(nx+2) nr+1
_3$( n(n+2)(n+3) n(n—|—2))
o (nr+1 3
+ 3x ( s ) —x”.
6(—42® + 822 — 12z +1) = nx(242* — 452 + 2)
(n+2)(n+3)(n+4) +(n+2)(n—|—3)(n+4)
2(5z —9) 3n?z? — 12

+n(n+2)(n+3)(n+4) (n+2)(n+3)(n+4)

B, (0 %52) =

2B ((t—a)x) =

(v) With the similar procedure as above, we obtain

(n—1)(n—2)(n —3)(nx +4)(nx + 3)(nz + 2)(nz + 1)
n3(n+2)(n+3)(n+4)(n +5)

6(n—1)(n —2)(nx + 3)(nx + 2)(nx + 1)

B, (- 0's2) =

w3+ 2)(n + 3)(n + )
7(n —1)(nx 4+ 2)(nz + 1) i‘nx+1>
n3(n+2)(n+ 3) nd n+2

e ((" —1)(n —2)(nx + 3)(nx + 2)(nx + 1)
n?(n+4)(n+ 3)(n + 2)
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3(n—1)(nz +2)(nz + 1) nr+ 1 )

n%(n+3)(n+2) n?(n + 2)
o [(n—=1)(nz+1)(nzx+2) nzx+1
o < n(n+ 2)(n+3) n<n+2>>

g (ne+1 4
—4x ( s ) + 2"
' oy 12n22% (2 — 1) — 2na(1262° — 2522% 4 1692 — 43)
< Balll —2)52) = (n+2)(n+3)(n+4)(n+5)
3(40z* — 802 + 13222 — 92z + 25)
(n+2)(n+3)(n+4)(n+5)
L 2(850% — 850 426)
n(n+2)(n+3)(n+4)(n+5)
3n +4
w3 +2)(n+3)(n+4)(n+5)

3. MAIN RESULT

The following theorem shows the convergence of the sequence of operators (1.5)
for a function f € C([0,1]). Here, we consider C' ([0, 1]) endowed with the norm
LfI] = sup [f(z)].

z€[0,1]
Theorem 3.1. For every function f € C ([0, 1]), it follows that
[1B,.(f;x) — f(z)|| = 0 uniformly as n — oc.

Proof. From Lemma 2.2, we have

B,(l;z) =1,
nr+1
B, (1; = )
(o) =——>5
-1 1 2 1
and B, (12: 1) = (n—1)(nx+1)(nx+2) nx+ '
n(n+2)(n+ 3) n(n + 2)
Now, it follows that 9B, (t™; ) converges uniformly to 2™ (m = 0,1,2) on [0, 1].
Hence, the result follows by Korovkin’s theorem [17]. O

4. RATE OF CONVERGENCE
For a function f € C([a,b]), the modulus of continuity is defined as
wi0) = w(f,0) = sup  A|f(8) = f@)]} 5 where d>0.

r—o<t<z+
a<z<hb
Now, we estimate the rate of convergence of the sequence of operators (1.5). The
following theorem gives the rate of convergence of the sequence of operators (1.5)

in terms of modulus of continuity of a function f € C ([0, 1]).
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Theorem 4.1. For every function f € C ([0, 1]),

[B(f32) = [(@)] < 2 w(f, V/30),
where 6, = B, ((t — x)%;z).

Proof. Since the operator (1.5) is monotonic, we have

B.,(f: Zm ‘f() f(@)
()
SINE (1 +7(5- )) 19
1+522m (g-xﬂwf(a)

= |14 5 Bl = 0] i),

If we take 6 = 8, = (B,,((t — z)%;z)), then
B, (f:2) = f(2)] < 2ws(V/6) -

O

Let f € C([0,1]), C > 0 and let 0 < r < 1. A function f is said to be in the
(Lipschitz) class Lipo(r) if the inequality

f@) = f@) <Ot —af
holds for ¢,z € [0, 1].
Theorem 4.2. Let f € Lips(r). Then
B, (f;2) — f(2)] < C 6, ()
where 8,(x) = (B, ((t — x)% )7

Proof. Using the monotonicity of the operator (1.5), we obtain

B.(f12) — 1(2)] < im(@ 'f (S) - ftw)
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Applying Holder’s inequality for the sum, we obtain

B.(f50) = f(w)] < C (zwx) (2-o) ) (Zwm))

~o(Sruin (5-))

— O (Bu((t—2)%2))?
— C 5 (a),

where 6,(z) = (B, ((t — z)% 1))z .

Now, we establish a direct result for the operator (1.5) using the Peetre’s K-
functional and the second order modulus of continuity.

Let f € C([a,b]). Let 6 > 0 and let W? = {g € C ([a,b]) : ¢, ¢" € C([a,])}.
The Peetre’s K-functional is defined by

Ky(f.0) = inf {IIf —gll +dllg"[[}-

For a function f € C(]a,b]), the second order modulus of continuity is defined by
wa(f,8) = sup sup {|f(z+2h)—2f(x+h)+ f(z)|} ; where § > 0.

0<h<d a<z<b

The relation between the Peetre’s K-functional and the second order modulus of
continuity is given as follows.
There is a constant M > 0 such that

Theorem 4.3. Let f € C([0,1]) and let g € C([0,1]) be such that ¢',q" €
C ([0,1]). Then for all n € N, there is a constant M > 0 such that

B, (fi2) - f(x) - g'(x) (1 o

n+2
where 6,(x) = (B, ((t — x)2%; x))z.

)‘gkﬁwﬂﬁ%@ﬁ,

Proof. Set W? for [0, 1]. For g € W?, employ the Taylor’s expansion to obtain
t
o(t) = 9(a) + g @)t )+ [ (¢~ )’ (w) du.
By Lemma (2.3), we have
t

) + B, /(t — ) () dus

T

1 -2z
n+ 2

B, (g:2) = g(x) + ¢'(2) (
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1 - 22
n+2

t
)‘ <8, /\t—u\ 1" ()] dus

T

)‘ < B, ((t— 2)%2) lg"]

|Bulasa) — o) - )

1—2x
n—+2

"Bn(g;x) —g(z) — ¢'(x) (
Hence, we get

B, (g:2) — () — o (2) (

n 42 (n+2)(n+3) (n+2)(n+3)

1—2:1:)‘ . (3(23:2—2:C+1) 2nz(z — 1)

//H

1
MPTC) T 3)) llg
Now,

B.(0) = 1)~ /0 (5

n+2

)’ B — gi2) — (f — 9)(a)]

+ ‘%n(g;ﬂf) —9(x) — (@) (1 - 23:) ‘ |

n+2
Using the relation |%8,,(f;x)| < ||f||, we obtain
, 1—2x
3, (i0) = 1o - o o) (25 )]
320 =2 +1)  2nx(z—1) N 1 >|| a
n+2)n+3) (m+2)n+3)  nm+2n+s))""

Now taking infimum on the right side of the above inequality over all ¢ € W?2,
we get

<||f—g||+(

1—2x
n+ 2

B (0) = Jo) o 0) (555 )| <Halr B2

where
o o 320 —2041) 2na(z—1) 1
on(z) = (n+2)(n+ 3) a (n+2)(n+3) +n(n+2)(n+3)

=B, ((t—2)*z).

In the view of the property of Peetre’s K-functional given in (4.1), we get

B(fia) - fla) - 0 (L5

)‘ < M - ws(f, 60()).

5. WEIGHTED APPROXIMATION

Let B, ([0, 1]) be the space of functions defined on [0, 1] satisfying the condition
|f(x)] < Myp(z), where My is a constant depending only on f. Moreover p(z) is
a weight function defined on [0, 1] and bounded away from zero. By C, ([0,1]),
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we denote the subspace of B, ([0,1]), of all continuous functions belonging to

B, ([0,1]). We define a norm || - ||, on C, ([0,1]) as [|f||, = sup ’f($)|
z€0,1] p(z)

Theorem 5.1. For each f € C,([0,1]),
i [1,(f:2) — £(@)], =0.

Proof. Using the subsequent lemma to [8, Theorem 1|, we see that it is sufficient
to verify the following three conditions

lim [|%B,(t";z) —2"||, =0, r=0,1,2. (5.1)
n—o0
Since, B,,(1;x) = 1, the first condition of (5.1) is satisfied for r = 0.
Now,
B,(t;x) —x
B, (t; ) — x||, = sup [B(t; z) — |
z€[0,1] p(x)
1-2 1
= sup Tl x (From Lemma 2.2)
wefo] | M+ 2 p(z)
1 ‘ 1 -2z
n+2 .epy | plT)

~ ||IBn(t;z) — ||, = 0 as n — oo.

Therefore, the second condition of (5.1) is satisfied for r = 1.
Similarly, we have

2 B, (% 2) — 7
1B (% 2) — 2], = S )
1)(nx + 1)(nx + 2 nr+1 1
"ot I s |
(From Lemma 2.2)

~ s 2nx(2 — 3x) 3(1 — 22?%) N 1 ' Ll

ze01] [ +2)(n+3)  (n+2)(n+3) n(n+2)(n+3) p(x)
< 2n sup z(2 — 3x) 3 sup 1 — 222

(n+2)(n+3)sepoy | pl2) (n+2)(n+3) ey | pl@)

1 1
n(n+2)(n+3) ey |p@)|°

1B (% 2) — 22|, — 0 as n — oo.
Therefore, the third condition of (5.1) is satisfied for » = 2. Hence, we have

Tim [8,,(f:2) — f(x)[], = 0.
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6. VORONOVSKAYA TYPE THEOREM

In this section, we establish a Voronovskaya type asymptotic formula for the
operator ‘B,,.

Lemma 6.1. For every x € [0, 1], we have

lim n-B,((t—2z);z)=1-2x

n—oo

and lim n-B,((t —2)%z) =22(1 — ).

n—00

The proof of the above lemma is clear from the expressions (ii) and (iii) of
Lemma 2.3.

Theorem 6.2. If f € C([0,1]) such that f', f" € C([0,1]) and z € [0,1], then
we have

lim n(B,(f;2) — f(2)) = (1 - 22) - f'(2) +2(1 —z) - [(2) .

n—o0

Proof. Let f, f', f" € C(]|0,1]) and let 2 € [0, 1] be fixed.
By Taylor’s expansion, we write
(t— )

f(t) = f(2) + (t =) f'(2) + —5— ["(&) + () (t = 2)", (6.1)
where h(t) € C([0,1]) is the Peano type remainder and lim h(t) = 0.

t—z

Using the linearity of B, in (6.1), we get

n(Ba(f7) = F()) =n - f(@)Bu((t = 2);2) + 5 - f(2)B((t — 2)2)

+n - B, (h(t)(t — z)*; a:).2 (6.2)
Using the Cauchnychwarz inequality, we have
B, (h(t)(t — x)%2) < /DBu(h2(t);z) - /B, ((t — 2)4;2) .
con By (h(t )(t—x z) < /B (h2(t);x) - /n2 - B, ((t — x)4; ). (6.3)

Now, for z € [0, 1], From (v) of Lemma 2.3, nlljglon B, ((t—x)* x) is nonnegative
and finite. As h(t) € C([0,1]) and %gr; h(t) = 0, by using uniform convergence of
the operators B, for f(t) € C([0,1]), we have

nh_)rglo B, (h*(t);x) = h*(x) =0
uniformly for x € [0,1]. Hence, from (6.3), we get

nh_)n;On B, (h(t)(t — x)% ) = 0.

Hence, from (6.2), we get
Tim n(B,(f) - @) = (1-20) - /(@) + 21— 2) - f'(a)
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7. GRAPHICAL ILLUSTRATION AND COMPARISON

In this section, we show the approximation of some continuous functions by the
operator ‘B,, graphically using Maple. Also, we show the graphical comparison
of some operators and the operator B,,.

glx) — ¥ g7 . lg:7) . (g:7)
— Fylain) Bpl@iz)
FI1GURE 7-1 FIGURE 7-2

We consider two functions f(z) = 223 —2? and g(z) = sin 27z defined on [0, 1].
Figure 7-1 shows the approximation of the function f by the operator 8, for
n = 10, 15,25, 50 and 100. Figure 7-2 shows the approximation of the function g
by the operator B,, for n = 10, 15, 25,50 and 100.

Now, we show the comparison of few operators and the operator B,, graphically.
The comparison of the operators (1.2), (1.3), and (1.4) with the operator B, is
shown in the following figures. The figures 7-3, 7-4, and 7-5 show the comparison
of the operators (1.2), (1.3), (1.4), and B,, approximating the function f for
n = 10,25 and 50, respectively.

0.2
0.6
0.4

0.2+

nz

Flx) — & (fix) Dos(fix)
—ng(fi x) ng(f; x)

FIGURE 7-3 FIGURE 7-4
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FIGURE 7-5

The figures 7-3, 7-4, and 7-5 show that approximations of the operator 8,, and

the operator (1.2) are identical as n increases. The operator 8B, approximates
the function f quite better than the operators (1.3) and (1.4) on [0, 1].
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