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Abstract. Let R be an associative ring with extended centroid C, let G and
F be generalized derivations of R associated with nonzero derivations δ and
d, respectively, and let m, k, n ≥ 1 be fixed integers. In the present paper, we
study the situations: (i)F (x)◦mG(y) = (x◦ny)k, (ii) [F (x), y]m+[x, d(y)]n = 0
for all y, x in some appropriate subset of R.

1. Introduction

Throughout the present paper, R is always an associative ring with centre
Z(R), C is the extended centroid of R, and the Utumi quotient ring is denoted
by U . For further information related to these concepts, we refer the reader to [2].
For any elements x, y ∈ R, [x, y] and x◦y stand for the Lie commutator xy−yx and
the Jordan commutator xy+yx, respectively. Let x, y ∈ R, then we set x◦0y = x,
x ◦1 y = x ◦ y = xy + yx, and x ◦m y = (x ◦m−1 y)y + y(x ◦m−1 y) for m > 2. We
also set [x, y]0 = x and [x, y]1 = xy − yx. The Engel condition is a polynomial
[x, y]m = [x, y]m−1y − y[x, y]m−1,m ≥ 2 in non-commuting indeterminates x and
y. A ring R is said to satisfy the Engel condition if [x, y]m = 0 for some integer
m ≥ 1. Recall that a ring R is a prime ring if for each y, x ∈ R, yRx = {0}
implies that either y = 0 or x = 0 and R is a semiprime ring if for each z ∈ R,
zRz = {0} implies that z = 0. Prime rings are always semiprime but the converse
is not true in general.

In the present paper, we establish a relation within the structure of rings and
the nature of suitable mappings that satisfy some certain identities. In particular,
we discuss generalized derivations defined on a ring R. An additive map d : R→
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R is called a derivation of R if d(xy) = d(x)y+xd(y) for all x, y ∈ R. In particular,
if d can be written as d(x) = [b, x] for some element b ∈ R, then d is called an
inner derivation (determined by b). We use the notation Ib to denote the inner
derivation determined by the element b. By a generalized inner derivation on R,
we mean a self mapping F on R which is additive and for each x ∈ R satisfies
F (x) = bx + xc, where b, c are fixed elements in R. We can see that such a
mapping F satisfies F (xy) = x[c, y] + F (x)y = xIc(y) + F (x)y, where Ic denotes
the inner derivation determined by the element c. This observation gives the
following definition, which is given in [4]: An additive mapping F : R → R is
said to be a generalized derivation if F (zw) = F (z)w + zd(w) for all w, z ∈ R,
where d stands for some derivation on R. Some homely instances of generalized
derivations are generalized inner derivations, derivations, and left multipliers.
We recall that a self additive mapping F of R is said to be a left multiplier if
F (ab) = F (a)b for all b, a ∈ R.

Argaç and Inceboz [1] showed that if a nonzero derivation d of a prime ring R
satisfies (d(x◦y))k = x◦y for all y, x ∈ I, where I is a nonzero ideal of R and k is
a fixed positive integer, then the ring is commutative. Further, Huang [9] proved
that if U is a square closed Lie ideal of a prime ring R with the characteristic
different from 2 and a generalized derivation F with associated derivation d on
R satisfying F (y) ◦ d(x) = y ◦ x for any y, x ∈ U , then either R is commutative
or d = 0.

Influence by the mentioned above results, we prove the following result.

Theorem 1.1. Let m,n, k be the fixed positive integers, and let I be a nonzero
ideal of a prime ring R with characteristic different from 2. If R admits general-
ized derivations F and G with associated nonzero derivations d and δ, respectively,
such that F (x) ◦m G(y) = (x ◦n y)k for all x, y ∈ I, then R is commutative.

Bell and Daif [3] initiated the concept of the term strong commutativity pre-
serving (SCP ) maps and showed the following: Let I be a nonzero right ideal of a
semiprime ring R. If a derivation d of R satisfies [d(x), d(y)] = [x, y] for all y, x ∈
I, then I is central. Inspired by the work of Bell and Daif [3], Huang [10] proved
the following: If I is a nonzero ideal of R, a prime ring having characteristic differ-
ent from 2, which admits a nonzero derivation d satisfying [d(x), d(y)]m = [x, y]n
for any y, x ∈ I, for some fixed positive integers m,n, then R is commutative.
Influence by these results, Dhara, Ali, and Pattanayak [6] showed the follow-
ing: Let I a nonzero ideal of a 2-torsion free semiprime ring R that admits a
generalized derivation F associated with derivation d such that d(I) 6= {0}. If
[d(y), F (x)] = ±[y, x] holds for all y, x ∈ I, then R contains a central ideal that
is nonzero.

Tendentious by the above results, we study the following condition: [F (x), y]m+
[x, d(y)]n = 0 for any y, x ∈ I, where I is a nonzero ideal of R and F is a
generalized derivation associated with the derivation d of R. Bluntly, we prove
the following.

Theorem 1.2. Let m and n be fixed positive integers and let I be a nonzero ideal
of a prime ring R with characteristic different from 2. If a generalized derivation
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F with associated nonzero derivation d of R satisfies [F (x), y]m + [x, d(y)]n = 0
for all x, y ∈ I, then R is commutative.

Theorem 1.3. Let m and n be fixed positive integers and let R be a semiprime
ring with characteristic different from 2. If a generalized derivation F with asso-
ciated nonzero derivation d of R satisfies [F (x), y]m = [x, d(y)]n for all x, y ∈ R,
then there exists an idempotent element e in U that is central such that the ring
(1− e)U is commutative and the derivation d vanishes identically on eU .

2. Main results

We will use frequently the following important result due to Kharchenko [11]:
Let d be a nonzero derivation of a prime ring R and let I be a nonzero ideal of

R. Let g(z1, . . . , zn, d(z1), . . . , d(zn)) be a differential identity in I, that is,

g(w1, . . . , wn, d(w1), . . . , d(wn)) = 0 for all w1, w2, . . . , wn ∈ I.

Then one of the following holds:

(i) d is an inner in Q, where Q is a martingale ring of quotient of R, that is,
d can be written as d(x) = [p, x] for any x ∈ R and for some p ∈ Q. Also
we have

g(w1, . . . , wn, [p, w1], . . . , [p, wn]) = 0 for any w1, . . . , wn ∈ I.

(ii) d is Q-outer and the following GPI is satisfied by I:

g(w1, . . . , wn, y1, . . . , yn) = 0.

Remark 2.1. Let I be an ideal of R. Then

(i) U , R, and I satisfy the same differential identities; see [13, Theorem 2].

(ii) U , R, and I satisfy the same GPI with coefficients in U ; see [5, Theorem
2].

Remark 2.2. Let F be a generalized derivation defined on a dense right ideal of
a semiprime ring R. Then F can be uniquely extended to U that takes the form
F (x) = ax+ d(x), where d is a derivation on U and for some a ∈ U . Moreover, a
and d are uniquely determined by the generalized derivation F ; see [14, Theorem
4].

Proof of Theorem 1.1. By the hypotheses, we have

F (x) ◦m G(y) = (x ◦n y)k for any x, y ∈ I. (2.1)

Now since R is a prime ring and F,G are generalized derivations of R, by Remark
2.2, G(x) = bx + δ(x) and F (x) = ax + d(x) for some b, a ∈ U and derivations
δ, d on U . By Remark 2.1, we have

F (x) ◦m G(y) = (x ◦n y)k (2.2)

for any y, x ∈ U. Hence

(ax+ d(x)) ◦m (by + δ(y)) = (x ◦n y)k for any y, x ∈ U, (2.3)
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that is,

ax ◦m by + d(x) ◦m by + ax ◦m δ(y) + d(x) ◦m δ(y) = (x ◦n y)k. (2.4)

Here the proof is divided into three cases:
Case 1 If both δ and d are inner derivations, then there exist elements q and
p ∈ U , respectively, such that d(x) = [q, x] and δ(x) = [p, x] for any x ∈ U . So,
we have

H(x, y) =ax ◦m by + [q, x] ◦m by + ax ◦m [p, y]

+ [q, x] ◦m [p, y]− (x ◦n y)k = 0 for any y, x ∈ U. (2.5)

If C is infinite, then U
⊗

C C̄ satisfies (2.5), where C̄ stands for the algebraic
closure of C. By [7], U and U

⊗
C C̄ are centrally closed and prime. Therefore,

we may replace R by U
⊗

C C̄ or U according to C is infinite or finite. Thus we
may assume that R is centrally closed over C, which is either algebraically closed
and H(x, y) = 0 for any y, x ∈ R or finite. By the use of Martindale’s theorem
[7], R is a primitive ring with D as an associative division ring as well as R has
nonzero soc(R). Also by the use of Jacobson’s theorem [8], R and the dense ring
of linear transformations for some vector space V over C are isomorphic, that
is, R ∼= Mk(D), where k = dimDV . Assume that dimDV > 2, otherwise we
are done. Also assume that there exists v ∈ V such that qv and v are linearly
D-independent.

If pv does not belong to the span of {v, qv}, then {v, pv, qv} is linearly inde-
pendent. By the density of ring R, there exist y, x ∈ R such that

xv = 0, xqv = −v, ypv = v, xpv = 0, yv = 0, yqv = v. (2.6)

Multiplying equation (2.5) by v from right and using conditions in equation (2.6),
we get (−1)m−12m−1v = 0, a contradiction.

If pv belongs to the span of {v, qv}, then p = vα+ qvβ for some α, 0 6= β ∈ D.
Again by the density of ring R, there exist y, x ∈ R such that

xv = 0, xqv = −v, yqv = v, yv = 0. (2.7)

Again multiplying equation (2.5) by v from right and using conditions in equations
(2.7), we get (−1)m−12m−1vβ = 0, a contradiction.

Therefore, {v, qv} is linearly dependent over D and hence q ∈ Z(R), that is,
d = 0 which is a contradiction to our hypotheses. Similarly, we can show that
δ = 0, which contradicts our hypotheses.
Case 2 Assume that both δ and d are not both inner derivations of U . let δ and
d are C-linearly dependent modulo Dint. Let δ = ad(p) + βd, for some β ∈ C,
where ad(p) is an inner derivation induced by the element p ∈ U . Observe that
if either β = 0 or d is inner, then δ is also inner which contradicts. So, β 6= 0 and
d is not inner. Then by (2.3), we have

(ax+ d(x)) ◦m (by + βd(y) + [p, y]) = (x ◦n y)k for any y, x ∈ U,

that is,

ax ◦m (by + βd(y) + [p, y]) + d(x) ◦m (by + βd(y) + [p, y]) = (x ◦n y)k.
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Then by the use of Kharchenko’s theorem [11], we have

ax ◦m (by + βy1 + [p, y]) + x1 ◦m (by + βy1 + [p, y]) = (x ◦n y)k

for all y, x, y1, x1 ∈ I. Setting y = 0 = x, we obtain

x1 ◦m y1 = 0 (2.8)

for all y1, x1 ∈ I. By [5, Theorem 2], Q as well as R satisfies the polynomial
identity x1 ◦m y1 = 0. By [12, Lemma 1], we have R ⊆Mn(F ), the ring of n× n
matrices over some field F , where n ≥ 1. Also, Mn(F ) and R satisfy the same
polynomial identity, that is, x1 ◦m y1 = 0, for any y1, x1 ∈ Mn(F ). We use eij to
denote matrix unit with 1 in (i, j)th-entry and zero elsewhere. Taking y1 = e11
and x1 = e12, we see that x1 ◦m y1 = e12 6= 0, a contradiction.

The case when d = ad(q) + γδ for some γ ∈ C and ad(q), an inner derivation
induced by an element q ∈ U , is similar.
Case 3 Now assume that δ and d are C-linearly independent modulo Dint. There-
fore, from (2.4), we have

ax ◦m by + d(x) ◦m by + ax ◦m δ(y) + d(x) ◦m δ(y) = (x ◦n y)k

for any y, x ∈ U. Then by the use of Kharchenko’s theorem [11], we have

ax ◦m by + z ◦m by + ax ◦m w + z ◦m w = (x ◦n y)k

for any w, z, y, x ∈ I. Particularly, for y = x = 0, we have

z ◦m w = 0, (2.9)

which is the same as equation (2.8). Therefore, by a similar argument as above,
this leads that R is commutative. This finishes the proof of the theorem. �

Now, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. By hypotheses, we have

[F (x), y]m + [x, d(y)]n = 0 for any y, x ∈ I. (2.10)

By Remark 2.1, we have

[F (x), y]m + [x, d(y)]n = 0 for any y, x ∈ U. (2.11)

By Remark 2.2, it follows that F (x) = ax + d(x) for some a ∈ U and derivation
d on U . Then we have

[ax+ d(x), y]m + [x, d(y)]n = 0 for any y, x ∈ U. (2.12)

That is,

[ax, y]m + [d(x), y]m + [x, d(y)]n = 0 for any y, x ∈ U. (2.13)

In the light of Kharchenko’s theorem [11, Theorem 2], the proof is divided into
two cases:
Case I Let d be an inner derivation of U , that is, d(x) = [q, x] for any x ∈ U and
for some q ∈ U . Then

H(x, y) = [ax, y]m + [[q, x], y]m + [x, [q, y]]n = 0 for any y, x ∈ U. (2.14)

If C is infinite, then U
⊗

C C̄ satisfies (2.14), where C̄ stands for the algebraic
closure of C. By [7], U and U

⊗
C C̄ are centrally closed and prime. Therefore,
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we may replace R by U
⊗

C C̄ or U according to C is infinite or finite. Thus we
may assume that R is centrally closed over C, which is either algebraically closed
and H(x, y) = 0 for any y, x ∈ R or finite. By the use of Martindale’s theorem
[7], R is a primitive ring with D as associative division ring as well as R has
nonzero soc(R). Also by the use of Jacobson’s theorem [8], R and the dense ring
of linear transformations for some vector space V over C are isomorphic, that
is, R ∼= Mk(D), where k = dimDV . Assume that dimDV > 2, otherwise we are
done. Also assume that there exists v ∈ V such that qv and v are linearly D-
independent. Since dimDV > 2, it is possible to find w ∈ V such that {w, qv, v}
is linearly independent over D. By the density of the ring R, we can find y, x ∈ R
such that

xv = 0, xqv = w, yw = v, xw = 0, yv = 0, yqv = v. (2.15)

Multiplying equation (2.14) by v from right and using conditions in equation
(2.15), we get v = 0, which is a contradiction to the linearly independent of the
set {v, qv}. Therefore, {qv, v} is linearly dependent and hence q ∈ Z(R), that
is, d = 0, which is a contradiction to our hypotheses. Hence our assumption
dimDV > 2 is wrong. Therefore, dimDV = 1 and hence R is commutative.
Case II Let d be an outer derivation. Then

[ax, y]m + [t, y]m + [x, s]n = 0 for any y, x, t, s ∈ I. (2.16)

In particular, choosing y = 0, we get [x, s]n = 0 for any s, x ∈ I, that is, [x, s]m =
0 = [Ix(s)m−1, s] for all s, x ∈ I. By [12, Theorem 1], either R is commutative or
Ix = {0}, that is, I ⊆ Z(R) that is R is commutative by Mayne [15]. �

Now we prove the last result.

Proof of Theorem 1.3. We know that any derivation defined on a semiprime ring
R can be uniquely extended to a derivation on U , where U is a left Utumi ring
of quotient of R, and hence every derivation of R can be defined on U ; see [13,
Lemma 2]. Also, U , R, and I satisfy the same generalized polynomial identity
(GPI) and differential identities (see [5, 13]). By [14, Theorem 4], F can be
expressed as F (x) = d(x) + ax for some a ∈ U and a derivation d defined on U .
We have

[ax, y]m + [d(x), y]m + [x, d(y)]n = 0 for any y, x ∈ U. (2.17)

Let M(C) = {A | A is a maximal ideal of C} and let P ∈ M(C). Then PU
is a prime ideal of U , which is invariant under all derivations of U by the the-
ory of orthogonal completions of semiprime ring (see [13, pp. 31–32]). Also,⋂
{PU | P ∈ M(C) } = {0}. Set U = U/PU. Now any derivation d of R

canonically induces a derivation d on U defined by d(x) = d(x) for any x ∈ Ū .
Then

[āx̄, ȳ]m + [d(x), ȳ]m + [x̄, d(y)]n = 0

for all y, x ∈ U . It is clear that U is a prime ring. So by the use of Theorem 1.2,
we have, either [U,U ] ⊆ PU or d(U) ⊆ PU for any P ∈ M(C). This gives that
d(U)[U,U ] ⊆ PU for any P ∈M(C). Since

⋂
{PU | P ∈M(C) } = {0}, we have

d(U)[U,U ] = {0}. Again using the standard theory of orthogonal completion of
semiprime ring [2], it is obvious that there exists an element e that is a central
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idempotent in U such that on the direct sum decomposition U = eU ⊕ (1− e)U ,
such that d vanishes identically on eU and the ring (1− e)U is commutative. �

The following examples demonstrate that R to be prime cannot be omitted in
the hypotheses of Theorems 1.1 and 1.2.

Example 2.3. For any ring K with characteristic different from two, let R ={(
x y
0 0

)
| x, y ∈ K

}
and I =

{(
0 y
0 0

)
| y ∈ K

}
. Then R is a ring

under the usual addition and multiplication of matrices and I is a nonzero

ideal of R. Define maps F,G, d, δ : R → R by F

((
x y
0 0

))
=

(
x 2y
0 0

)
,

G

((
x y
0 0

))
=

(
x 0
0 0

)
, δ

((
x y
0 0

))
=

(
0 −y
0 0

)
, and d

((
x y
0 0

))
=

(
0 y
0 0

)
. Then F and G are generalized derivations on R associated with

the nonzero derivations d and δ, respectively, satisfying F (x) ◦m G(y) = (x ◦n
y)k for all x, y ∈ I. However R is not commutative. Hence Theorem 1.1 is not
true for arbitrary rings.

Example 2.4. Let R =

{(
x y
0 z

)
| x, y, z ∈ K

}
and I =

{(
0 y
0 0

)
|

y ∈ K
}

, where K is a ring with characteristic different from two. Then R is a

ring under the usual addition and multiplication of matrices and I is a nonzero

ideal of R. Define maps F, d : R → R by F

((
x y
0 z

))
=

(
x 0
0 0

)
and

d

((
x y
0 z

))
=

(
0 y
0 0

)
. Then F is a generalized derivation on R associated

with the nonzero derivation d satisfying [F (x), y]m+[x, d(y)]n = 0 for all x, y ∈ I.
However R is not commutative. Hence Theorem 1.2 does not hold for arbitrary
rings.
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