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APPROXIMATING SOLUTIONS OF THIRD-ORDER
NONLINEAR HYBRID DIFFERENTIAL EQUATIONS VIA

DHAGE ITERATION PRINCIPLE
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Abstract. We prove the existence and approximation of solutions of the ini-
tial value problems of nonlinear third-order hybrid differential equations. The
main tool employed here is the Dhage iteration principle in a partially ordered
normed linear space. An example is also given to illustrate the main results.

1. Introduction

Let J = [t0, t0 + a] be a closed and bounded interval of the real line R for some
t0, a ∈ R with t0 ≥ 0 and a > 0. We consider the existence of solutions for the
following initial value problem (in short IVP) of the nonlinear third-order hybrid
differential equation

(
x(t)

p (t) +
∫ t

t0
g(s, x(s))ds

)′′′
= f(t, x(t)), t ∈ J,(

x(t)

p (t) +
∫ t

t0
g(s, x(s))ds

)(k)
∣∣∣∣∣∣
t=t0

= αk, k = 0, 1, 2,

(1.1)

where g, f : J × R → R are continuous functions and p : J → R is a continuous
function such that

p (t) +

∫ t

t0

g(s, x(s))ds > 0 for all t ∈ J,
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and

α0 + α1(t− t0) +
1

2
α2(t− t0)2 +

1

2

∫ t

t0

(t− s)2f(x, x(s))ds ≥ 0 for all t ∈ J.

By a solution of the IVP (1.1), we mean a function x ∈ C3(J,R) that satisfies
(1.1), where C3(J,R) is the space of thrice continuously differentiable real-valued
functions defined on J .

Differential equations arise from a variety of different areas of applied math-
ematics and physics, for example, in the deflection of a curved beam having a
constant or varying cross section, a three-layer beam, electromagnetic waves or
gravity driven flows, and so on; see [1, 4–9]. The special cases of the IVP (1.1)
are well known in the literature and are discussed at length for existence as well
as other aspects of the solutions (see [7, 9]). The purpose of this paper is to use
the Dhage iteration principle to show the existence and approximation of solu-
tions of (1.1) under weaker partially continuity and partially compactness type
conditions.

The article is organized as follows. In Section 2, we give some preliminaries
and key fixed point theorem that will be used in later sections. In Section 3, we
prove some sufficient conditions of the existence and approximation of solutions
of (1.1) by using the Dhage iteration principle. For details on the Dhage iteration
principle, we refer the reader to [3]. Finally, an example is given to illustrate our
main results.

2. Preliminaries

Let E denote a partially ordered real normed linear space with an order relation
� and the norm ‖ · ‖. It is known that E is regular if {xn} is a nondecreasing
(resp. nonincreasing) sequence in E such that xn → x∗ as n→∞, then xn � x∗

(resp. xn � x∗) for all n ∈ N. The conditions guaranteeing the regularity of E
may be found in [8] and the references therein.

Definition 2.1. A mapping A : E → E is called isotone or monotone nonde-
creasing if it preserves the order relation �, that is, x � y implies Ax � Ay
for all x, y ∈ E. Similarly, A is called monotone nonincreasing if x � y implies
Ax � Ay for all x, y ∈ E. Finally, A is called monotonic or simply monotone if
it is either monotone nondecreasing or monotone nonincreasing on E.

Definition 2.2. An operator A on a normed linear space E into itself is called
compact if T (E) is a relatively compact subset of E. A is called totally bounded
if for any bounded subset S of E, A(S) is a relatively compact subset of E. If A
is continuous and totally bounded, then it is called completely continuous on E.

Definition 2.3 (Dhage [3]). A mapping A : E → E is called partially continuous
at a point a ∈ E if for ε > 0, there exists δ > 0 such that ‖Ax−Aa‖ < ε whenever
x is comparable to a and ‖x− a‖ < δ. A called partially continuous on E if it is
partially continuous at every point of it. It is clear that ifA is partially continuous
on E, then it is continuous on every chain C contained in E.
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Definition 2.4 (Dhage [2,3]). An operator A on a partially normed linear space
E into itself is called partially bounded if A(C) is bounded for every chain C in E.
A is called uniformly partially bounded if all chains A(C) in E are bounded by
a unique constant. A is called partially compact if A(C) is a relatively compact
subset of E for all totally ordered sets or chains C in E. A is called partially
totally bounded if for any totally ordered and bounded subset C of E, A(C) is a
relatively compact subset of E. If A is partially continuous and partially totally
bounded, then it is called partially completely continuous on E.

Definition 2.5 (Dhage [2]). The order relation � and the metric d on a non-
empty set E are said to be compatible if {xn} is monotone, that is, monotone
nondecreasing or monotone nondecreasing sequence in E and if a subsequence
{xnk
} of {xn} converges to x∗ implies that the whole sequence {xn} converges

to x∗. Similarly, given a partially ordered normed linear space (E,�, ‖ · ‖), the
order relation � and the norm ‖ · ‖ are said to be compatible if � and the metric
d defined through the norm ‖ · ‖ are compatible.

Clearly, the set R of real numbers with usual order relation ≤ and the norm
defined by the absolute value function has this property.

Theorem 2.6 (Dhage [3]). Let (E,�, ‖ · ‖) be a regular partially ordered com-
plete normed linear space such that the order relation � and the norm ‖ · ‖ are
compatible in E. Let A : E → E be a partially continuous, nondecreasing, and
partially compact operator. If there exists an element x0 ∈ E such that x0 � Ax0
or x0 � Ax0, then the operator equation Ax = x has a solution x∗ in E and the
sequence {Anx0} of successive iterations converges monotonically to x∗.

3. Main results

The equivalent integral formulation of the IVP (1.1) is considered in the func-
tion space C(J,R) of continuous real-valued functions defined on J . We define a
norm ‖ · ‖ and the order relation ≤ in C(J,R) by

‖x‖ = sup
t∈J
|x(t)|, (3.1)

x ≤ y ⇐⇒ x(t) ≤ y(t), (3.2)

for all t ∈ J . Clearly, C(J,R) is a Banach space with respect to above supremum
norm and also partially ordered with respect to the above partially order relation
≤. It is known that the partially ordered Banach space C(J,R) has some nice
properties with respect to the above order relation in it.

Lemma 3.1 (see [5]). Let (C(J,R),≤, ‖ · ‖) be a partially ordered Banach space
with the norm ‖·‖ and the order relation ≤ defined by (3.1) and (3.2), respectively.
Then ‖ · ‖ and ≤ are compatible in every partially compact subset of C(J,R).

We need the following definition in what follows.
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Definition 3.2. A function u ∈ C3(J,R) is said to be a lower solution of the
IVP (1.1) if it satisfies

(
u(t)

p (t) +
∫ t

t0
g(s, u(s))ds

)′′′
≤ f(t, u(t)), t ∈ J,(

u(t)

p (t) +
∫ t

t0
g(s, u(s))ds

)(k)
∣∣∣∣∣∣
t=t0

≤ αk, k = 0, 1, 2.

(3.3)

Similarly, an upper solution v ∈ C3(J,R) for the IVP (1.1) is defined on J , by
reversing the above inequalities.

We consider the following set of assumptions:

(B1) There exist constants Kg, Kf > 0 such that

|g(t, x)| ≤ Kg and |f(t, x)| ≤ Kf for all t ∈ J and x ∈ R.
(B2) There exists constant Kp > 0 such that

|p (t2)− p (t1)| ≤ Kp |t2 − t1| for all t1, t2 ∈ J.
(B3) g(t, x) and f(t, x) are monotone nondecreasing functions in x for all t ∈ J .
(B4) The IVP (1.1) has a lower solution u ∈ C3(J,R).

Lemma 3.3. The IVP
(
x(t)

q (t)

)′′′
= h(t), t ∈ J,(

x(t)

q (t)

)(k)
∣∣∣∣∣
t=t0

= αk, k = 0, 1, 2,
(3.4)

is equivalent to the integral equation

x(t) = q (t)

(
α0 + α1 (t− t0) +

1

2
α2 (t− t0)2 +

1

2

∫ t

t0

(t− s)2 h(s)ds

)
, t ∈ J.

(3.5)

Theorem 3.4. Assume that hypotheses (B1) − (B4) hold. Then the IVP (1.1)
has a solution x∗ defined on J and the sequence {xn} of successive approximations
defined by

xn+1(t) =

(
p (t) +

∫ t

t0

g(s, xn(s))ds

)
×
(
α0 + α1 (t− t0) +

1

2
α2 (t− t0)2 +

1

2

∫ t

t0

(t− s)2 f (s, xn(s)) ds

)
,

(3.6)

for all t ∈ J , where x0 = u converges monotonically to x∗.

Proof. Set E = C(J,R). Then by Lemma 3.1, every compact chain in E is
compatible with respect to the norm ‖ · ‖ and order relation ≤. Define the
operator A on E by
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(Ax) (t) =

(
p (t) +

∫ t

t0

g(s, x(s))ds

)
(3.7)

×
(
α0 + α1 (t− t0) +

1

2
α2 (t− t0)2 +

1

2

∫ t

t0

(t− s)2 f (s, x(s)) ds

)
, t ∈ J.

From the continuity of the integral, it follows that A defines the map A : E → E.
Now, by Lemma 3.3, the IVP (1.1) is equivalent to the operator equation

(Ax) (t) = x(t), t ∈ J. (3.8)

We shall show that the operators A satisfies all the conditions of Theorem 2.6.
This is achieved in the series of following steps.

Step I: A is nondecreasing operator on E. Let x, y ∈ E be such that x ≤ y.
Then by hypothesis (B3), we obtain

(Ax) (t) =

(
p (t) +

∫ t

t0

g(s, x(s))ds

)
×
(
α0 + α1 (t− t0) +

1

2
α2 (t− t0)2 +

1

2

∫ t

t0

(t− s)2 f (s, x(s)) ds

)
≤
(
p (t) +

∫ t

t0

g(s, y(s))ds

)
×
(
α0 + α1 (t− t0) +

1

2
α2 (t− t0)2 +

1

2

∫ t

t0

(t− s)2 f (s, y(s)) ds

)
= (Ay) (t)

for all t ∈ J . This shows that A is nondecreasing operator on E into E.
Step II: A is a partially continuous operator on E. Let {xn} be a sequence

in a chain C in E such that xn → x, when n → ∞. Then, by the dominated
convergence theorem, we have

lim
n→∞

(Axn) (t)

= lim
n→∞

[(
p (t) +

∫ t

t0

g(s, xn(s))ds

)
×
(
α0 + α1 (t− t0) +

1

2
α2 (t− t0)2 +

1

2

∫ t

t0

(t− s)2 f (s, xn(s)) ds

)]
=

(
p (t) +

∫ t

t0

[
lim
n→∞

g(s, xn(s))
]
ds

)
×
(
α0 + α1 (t− t0) +

1

2
α2 (t− t0)2 +

1

2

∫ t

t0

(t− s)2
[

lim
n→∞

f (s, xn(s))
]
ds

)
=

(
p (t) +

∫ t

t0

g(s, x(s))ds

)
×
(
α0 + α1 (t− t0) +

1

2
α2 (t− t0)2 +

1

2

∫ t

t0

(t− s)2 f (s, x(s)) ds

)
= (Ax) (t)



100 A. ARDJOUNI, A. DJOUDI

for all t ∈ J . This shows that {Axn} converges pointwise to Ax on J .
Next, we show that {Axn} is an equicontinuous sequence of functions in E.

Let t1, t2 ∈ J be arbitrary with t1 < t2. Then, for all n ∈ N

|(Axn) (t2)− (Axn) (t1)|

≤
(
|p (t1)|+

∫ t1

t0

|g(s, xn(s))| ds
)

×
(
|α1| |t2 − t1|+ a |α2| |t2 − t1|

+
1

2

∣∣∣∣∫ t2

t0

(t2 − s)2 f (s, xn(s)) ds−
∫ t1

t0

(t1 − s)2 f (s, xn(s)) ds

∣∣∣∣ )
+

(
|p (t2)− p (t1)|+

∣∣∣∣∫ t2

t0

g(s, xn(s))ds−
∫ t1

t0

g(s, xn(s))ds

∣∣∣∣)
×
(
|α0|+ |α1| (t2 − t0) +

1

2
|α2| (t2 − t0)2 +

1

2

∫ t2

t0

(t2 − s)2 |f (s, xn(s))| ds
)

≤ (|p (t1)|+Kga) ((|α1|+ a |α2|) |t2 − t1|

+
a

2

∣∣∣∣∫ t1

t0

(t2 − t1) f (s, xn(s)) ds

∣∣∣∣+
1

2

∣∣∣∣∫ t2

t1

(t2 − s)2 f (s, xn(s)) ds

∣∣∣∣)
+ (Kp |t2 − t1|+Kg |t2 − t1|)

(
|α0|+ |α1| a+

1

2
|α2| a2 +Kf

a3

6

)
≤ (|p (t1)|+Kga)

(
(|α1|+ a |α2|) |t2 − t1|

+
aKf

2

∫ t0+a

t0

|t2 − t1| ds+
1

2
Kf

∫ t2

t1

(t2 − s)2 ds
)

+ (Kp +Kg)

(
|α0|+ |α1| a+

1

2
|α2| a2 +Kf

a3

6

)
|t2 − t1|

≤

[
(|p (t1)|+Kga)

(
|α1|+ a |α2|+Kf

(
a2

2
+

(t0 + a)2

2

))

+ (Kp +Kg)

(
|α0|+ |α1| a+

1

2
|α2| a2 +Kf

a3

6

)]
|t2 − t1|

→ 0,

uniformly, as t2 − t1 → 0. This shows that the convergence Axn → Ax is
uniformly and hence A is partially continuous on E.

Step III: A is a partially compact operator on E. Let C be an arbitrary chain
in E. We show that A(C) is a uniformly bounded and equicontinuous set in E.
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First we show that A(C) is uniformly bounded. Let x ∈ C be arbitrary. Then

|(Ax) (t)|

≤
(
|p (t)|+

∣∣∣∣∫ t

t0

g(s, x(s))ds

∣∣∣∣)
×
(
|α0|+ |α1| (t− t0) +

1

2
|α2| (t− t0)2 +

1

2

∣∣∣∣∫ t

t0

(t− s)2 f (s, x(s)) ds

∣∣∣∣)
≤
(
Kp (t− t0) + |p (t0)|+

∫ t0+a

t0

|g(s, x(s))| ds
)

×
(
|α0|+ |α1| a+

1

2
|α2| a2 +

1

2

∫ t0+a

t0

(t− s)2 |f (s, x(s))| ds
)

≤ (Kpa+ |p (t0)|+Kga)

(
|α0|+ |α1| a+

1

2
|α2| a2 +Kf

a3

6

)
= r,

for all t ∈ J . Taking supremum over t, we obtain ‖Ax‖ ≤ r for all x ∈ C.
Hence A is a uniformly bounded subset of E. Next, we will show that A(C) is
an equicontinuous set in E. Let t1, t2 ∈ J with t1 < t2. Then, for all x ∈ C

|(Ax) (t2)− (Ax) (t1)|

≤
(
|p (t1)|+

∫ t1

t0

|g(s, x(s))| ds
)

×
(
|α1| |t2 − t1|+ a |α2| |t2 − t1|

+
1

2

∣∣∣∣∫ t2

t0

(t2 − s)2 f (s, x(s)) ds−
∫ t1

t0

(t1 − s)2 f (s, x(s)) ds

∣∣∣∣ )
+

(
|p (t2)− p (t1)|+

∣∣∣∣∫ t2

t0

g(s, x(s))ds−
∫ t1

t0

g(s, x(s))ds

∣∣∣∣)
×
(
|α0|+ |α1| (t2 − t0) +

1

2
|α2| (t2 − t0)2 +

1

2

∫ t2

t0

(t2 − s)2 |f (s, x(s))| ds
)

≤
[

(|p (t1)|+Kga)

(
|α1|+ a |α2|+Kf

(
a2

2
+

(t0 + a)2

2

))

+ (Kp +Kg)

(
|α0|+ |α1| a+

1

2
|α2| a2 +Kf

a3

6

)]
|t2 − t1|

→ 0

uniformly, as t2−t1 → 0. Hence A(C) is a compact subset of E, and consequently,
A is a partially compact operator on E into itself.
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Step IV: u satisfies the operator inequality u ≤ Au. By hypothesis (B4), the
IVP (1.1) has a lower solution u on J . Then we have(

u(t)

p (t) +
∫ t

t0
g(s, u(s))ds

)′′′
≤ f(t, u(t)), t ∈ J, (3.9)

satisfying (
u(t)

p (t) +
∫ t

t0
g(s, u(s))ds

)(k)
∣∣∣∣∣∣
t=t0

≤ αk, k = 0, 1, 2.

Integrating (3.9) thrice which together with the definition of the operator A
implies that u(t) ≤ (Au) (t) for all t ∈ J . Consequently, u is a lower solution to
the operator equation x = Ax.

Thus A satisfies all the conditions of Theorem 2.6 with x0 = u and we apply
it to conclude that the operator equation Ax = x has a solution. Consequently,
the integral equation and the IVP (1.1) have a solution x∗ defined on J . Further-
more, the sequence {xn} of successive approximations defined by (3.6) converges
monotonically to x∗. This completes the proof. �

Remark 3.5. The conclusion of Theorem 3.4 also remains true if we replace the
hypothesis (B4) with the following one:

(B4’) The IVP (1.1) has an upper solution v ∈ C3(J,R).

Example 3.6. Given a closed and bounded interval J = [0, 1] in R, consider the
IVP, 

(
x (t)

π + sin t+
∫ t

0
arctanx (s) ds

)′′′
= tanhx(t), t ∈ J,(

x (t)

π + sin t+
∫ t

0
arctanx (s) ds

)(k)
∣∣∣∣∣∣
t=0

= 0, k = 0, 1,

(
x (t)

π + sin t+
∫ t

0
arctanx (s) ds

)(2)
∣∣∣∣∣∣
t=0

= 1,

(3.10)

where g (t, x) = arctanx, f(t, x) = tanhx, and p (t) = π + sin t. Clearly, the
functions g and f are continuous on J × R, p is continuous on J , and

π + sin t+

∫ t

0

arctanx (s) ds > 0 for all t ∈ J.

The functions g and f satisfy the hypothesis (B1) with Kg = π/2 and Kf = 1.
The function p satisfies the hypothesis (B2) with Kp = 1. Moreover, the functions
g and f are nondecreasing in x for each t ∈ J and so the hypothesis (B3) is
satisfied. Finally the IVP (3.10) has a lower solution

u(t) =

(
3π

2
+ sin t

)(
t2

2
− t3

6

)
,
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defined on J . Thus all hypotheses of Theorem 3.4 are satisfied. Hence we apply
Theorem 3.4 and conclude that the IVP (3.10) has a solution x∗ defined on J and
the sequence {xn} defined by

xn+1(t) =

(
π + sin t+

∫ t

0

arctanxn (s) ds

)(
1

2
t2 +

1

2

∫ t

0

(t− s)2 tanhxn(s)ds

)
,

(3.11)
for all t ∈ J , where x0 = u, converges monotonically to x∗.

Remark 3.7. In view of Remark 3.5, the existence of the solutions x∗ of the IVP
(3.10) may be obtained under the upper solution

v(t) =
(π

2
+ sin t

)(t2
2

+
t3

6

)
, t ∈ J.
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