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Abstract. Let G be a finite nonabelian group. The commuting conjugacy
class graph Γ(G) is a simple graph with the noncentral conjugacy classes of
G as its vertex set and two distinct vertices X and Y in Γ(G) are adjacent
if and only if there are x ∈ X and y ∈ Y with this property that xy = yx.
The aim of this paper is to obtain the structure of the commuting conjugacy
class graph of finite CA-groups. It is proved that this graph is a union of some
complete graphs. The commuting conjugacy class graph of certain groups are
also computed.

1. Introduction and preliminaries

Suppose that ∆ = (V,E) is a simple graph and that π is a partition of the
vertex set V . Define the quotient graph ∆

π
to be a simple graph with vertex set V

π

and two blocks a
π

and b
π

are adjacent if and only if there are x ∈ a
π

and y ∈ b
π

such
that xy ∈ E. The commuting graph of a group G with center Z(G) is the graph
with vertex set G\Z(G) and in which two vertices are adjacent if and only if they
commute. This graph was studied by Brauer and Fowler [3], and we denote it
by ∆(G). The commuting conjugacy class graph of a nonabelian group G, Γ(G),

is the quotient graph ∆(G)
π

, where π is the set of all noncentral conjugacy classes
of G; see [8]. This graph was first studied by Herzog, Longobardi, and Maj [5],
but these authors considered the nonidentity conjugacy classes of the group as a
vertex set.
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A CA-group is a group in which every noncentral element has an abelian cen-
tralizer; see [10]. We refer the interested readers to consult [7] for more properties
of this important class of finite groups. The aim of this paper is to calculate the
commuting conjugacy class graph of CA-groups. In addition, the commuting
conjugacy class graph of dihedral and the following groups will be obtained:

T4n = 〈a, b | a2n = 1, an = b2, b−1ab = a−1〉,
U(n,m) = 〈a, b | a2n = bm = 1, a−1ba = b−1〉,
V8n = 〈a, b | a2n = b4 = 1, ba = a−1b−1, b−1a = a−1b〉,

SD8n = 〈a, b | a4n = b2 = 1, bab = a2n−1〉,
G(p,m, n) = 〈a, b | apm = bp

n

= [a, b]p = 1, [a, [a, b]] = [b, [a, b]] = 1〉.

In the definition of U(n,m), if we put m = 3, then the resulting group is de-
noted by U6n. This group was first introduced by James and Liebeck in their
famous book [6] in which the character table of this group was calculated. The
group G(p,m, n) was introduced by Abbaspour and Behravesh [1] in which the
conjugacy classes and character table of this group were given.

Throughout this paper, our notation are standard and mainly taken from [9].
Our calculations are done with the aid of GAP; see [11].

2. Commuting conjugacy class graph of certain groups

In this section, the graph structures of the groups presented in the last section
are calculated. Since the dihedral groups have simple structure, we start our
calculations by this group.

Proposition 2.1. The commuting conjugacy class graph of dihedral groups can
be computed by the following formula:

Γ(D2n) =


Kn−1

2
∪K1, n is odd,

Kn
2
−1 ∪ 2K1, n and n

2
are even,

Kn
2
−1 ∪K2, n is even and n

2
is odd.

Proof. Consider the presentation D2n = 〈a, b | an = b2 = 1, bab = a−1〉 for
dihedral groups. The proposition is proved as follows:

(1) n is odd. In this case, the dihedral group is centerless and the noncentral
conjugacy classes are

aD2n , (a2)D2n , (a3)D2n , . . . , (a
n−1
2 )D2n , bD2n .

By simple calculations, one can easily see that the conjugacy classes aD2n , (a2)D2n ,
. . ., (a

n
2
−1)D2n are all adjacent together and so

Γ(D2n) = Kn−1
2
∪K1.

(2) n is even . In this case, Z(D2n) = {1, an
2 }, (a

n
2 b)b = b(a

n
2 b), and the

noncentral conjugacy classes of D2n are

aD2n , (a2)D2n , (a3)D2n , . . . , (a
n
2
−1)D2n , bD2n , (ab)D2n .
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By the presentation of D2n, we can see that all conjugacy classes aD2n , (a2)D2n ,
. . ., (a

n
2
−1)D2n commute to each other. Furthermore, if n

2
is even, then a

n
2 b ∈ bD2n ,

and if n
2

is odd, then a
n
2 b ∈ (ab)D2n . Therefore,

Γ(D2n) =

{
Kn

2
−1 ∪ 2K1,

n
2
is even,

Kn
2
−1 ∪K2,

n
2
is odd.

This completes our argument. �

Our second group that we consider into account is the dicyclic group T4n. If n
is a power of 2, then this group is the well-known generalized quaternion group.

Proposition 2.2. The commuting conjugacy class graph of the dicyclic group
T4n is as follows:

Γ(T4n) =

{
Kn−1 ∪ 2K1, n is even,
Kn−1 ∪K2, n is odd.

Proof. We first notice that Z(T4n) = {1, an} and T4n = 1T4n ∪ (an)T4n ∪ aT4n ∪
(a2)T4n · · · ∪ (an−1)T4n ∪ bT4n ∪ (ab)T4n . Thus, the noncentral conjugacy classes of
T4n are aT4n , (a2)T4n , (a3)T4n , . . ., (an−1)T4n , bT4n , and (ab)T4n . By the presentation
of dicyclic groups, aT4n , (a2)T4n , . . ., (an−1)T4n have elements that commute to
each other. Furthermore, if n is even, then (anb) ∈ bT4n , and if n is odd, then
(anb) ∈ (ab)T4n . Therefore,

Γ(T4n) =

{
Kn−1 ∪ 2K1 n is even,
Kn−1 ∪K2 n is odd,

proving the result. �

Proposition 2.3. The commuting conjugacy class graph of the group U(n,m) is
computed as follows:

Γ(U(n,m)) =

{
2Kn ∪Kn(m

2
−1), m is even,

Kn ∪Kn(m−1
2

), m is odd.

Proof. By the definition, ba2 = baa = ab−1a = aab = a2b and so 〈a2〉 ≤ Z(U(n,m)).
If i is odd, then bai = aib−1 and for each j, bja = ab−j. Furthermore, b2a
= bba = bab−1 = ab−1b−1 = ab−2 and b3a = bb2a = bab−2 = ab−1b−2 = ab−3.
Therefore,

bjai =

{
aibj, 2 | i,
aib−j, 2 - i,

and we can see that

a−ibtai =

{
bt, 2 | i,
b−t, 2 - i,

b−jabj = ab2j.

(2.1)
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Since bm = 1, b
m
2 = b−

m
2 , when m is even. Thus, b

m
2 a = ab

m
2 and hence

b
m
2 ∈ Z(U(n,m)). Therefore,

Z(U(n,m)) =

{
〈a2〉 × 〈bm

2 〉, 2 | m,
〈a2〉, 2 - m.

We now consider the following two cases:
(1) m is even. Then Z(U(n,m)) = 〈a2〉 × 〈bm

2 〉, and the elements of U(n,m) are
as follows:

1 a a2 a3 · · · a2n−2 a2n−1

b ab a2b a3b · · · a2n−2b a2n−1b
...

...
...

... · · · ...
...

b
m
2 ab

m
2 a2b

m
2 a3b

m
2 · · · a2n−2b

m
2 a2n−1b

m
2

...
...

...
... · · · ...

...
bm−1 abm−1 a2bm−1 a3bm−1 · · · a2n−2bm−1 a2n−1bm−1

By Equation (2.1), the noncentral conjugacy classes of U(n,m) are as follows:

(a2kbt)U(n,m) = {a2kbt, a2kb−t}, 0 ≤ k ≤ n− 1, 1 ≤ t ≤ m

2
− 1,

(a2k+1)U(n,m) = {a2k+1b2j | 0 ≤ j ≤ m

2
− 1}, 0 ≤ k ≤ n− 1,

(a2k+1b)U(n,m) = {a2k+1b2j+1 | 0 ≤ j ≤ m

2
− 1}, 0 ≤ k ≤ n− 1.

All conjugacy classes of the form (a2k+1)U(n,m) are adjacent in the commuting con-
jugacy class graph. Since a2 ∈ Z(U(n,m)), we have (a2k1bt1)(a2k2bt2) =
(a2k2bt2)(a2k1bt1) and so all classes in the form (a2kbt)U(n,m) are also adjacent in
Γ(U(n,m)). On the other hand, (ab)2 = abab = aab−1b = a2 and hence (ab)2k+1 =
(ab)2k(ab) = a2k+1b, where 0 ≤ k ≤ n− 1. This shows that all conjugacy classes
in the form (a2k+1b)U(n,m) are adjacent. Therefore, Γ(U(n,m)) = 2Kn ∪Kn(m

2
−1).

(2) m is odd. In this case, Z(U(n,m)) = 〈a2〉 and so all elements of U(n,m) can
be written in the following array:

1 a a2 a3 · · · a2n−2 a2n−1

b ab a2b a3b · · · a2n−2b a2n−1b
b2 ab2 a2b2 a3b2 · · · a2n−2b2 a2n−1b2

...
...

...
... · · · ...

...
bm−2 abm−2 a2bm−2 a3bm−2 · · · a2n−2bm−2 a2n−1bm−2

bm−1 abm−1 a2bm−1 a3bm−1 · · · a2n−2bm−1 a2n−1bm−1

By Equation (2.1), all of noncentral conjugacy classes of U(n,m) are as follows:

(a2kbt)G = {a2kbt, a2kb−t}, 0 ≤ k ≤ n− 1, 1 ≤ t ≤ m− 1

2
,

(a2k+1)G = {a2k+1bj | 0 ≤ j ≤ m− 1}, 0 ≤ k ≤ n− 1.

All of conjugacy classes in the form (a2k+1)U(n,m) are adjacent in the commuting
conjugacy class graph. Since a2 ∈ Z(U(n,m)), an argument similar to case (1)
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shows that the conjugacy classes in the form (a2kbt)U(n,m) are also adjacent to
each other. Therefore, Γ(U(n,m)) = Kn ∪Kn(m−1

2
). Hence the result holds. �

The group U(n,m) is a generalization of the known group U6n = U(n,3) introduced
by James and Liebeck in their famous book [6]. Hence by the previous theorem,
Γ(U6n) = 2Kn.

Proposition 2.4. The commuting conjugacy class graph of the group V8n can be
computed by the following formula:

Γ(V8n) =

{
K2n−2 ∪ 2K2, 2 | n,
K2n−1 ∪ 2K1, 2 - n.

Proof. By the presentation of V8n, we have ab = b−1a−1 and ab−1 = ba−1. Hence
b2a = ab2, which proves that b2 ∈ Z(V8n). On the other hand,

aib =

{
ba−i, 2 | i,
b−1a−i, 2 - i.

(2.2)

Therefore, when n is even, we have an ∈ Z(V8n). This shows that,

Z(V8n) =

{
{1, b2, an, anb2}, 2 | n,
{1, b2}, 2 - n.

We now consider two cases that n is odd or even.
(1) n is even. In this case, the members of V8n are as follows:

1 a · · · an−1 an an+1 · · · a2n−2 a2n−1

b ab · · · an−1b anb an+1b · · · a2n−2b a2n−1b

b2 ab2 · · · an−1b2 anb2 an+1b3 · · · a2n−2b2 a2n−1b2

b3 ab3 · · · an−1b3 anb3 an+1b3 · · · a2n−2b3 a2n−1b3

By Equation (2.2), we have

b−1aib =

{
a−i, 2 | i,
a−ib2, 2 - i,

b−1(aib2)b =

{
a−ib2, 2 | i,
a−i, 2 - i.

(2.3)

Since Z(V8n) = {1, b2, an, anb2}, the conjugacy classes of members contained in
the first and third rows are as follows:

{1}, {an}, {b2},
{anb2}, {a2k, a−2k}, 1 ≤ k ≤ n

2
− 1,

{a2k−1, a−2k+1b2}, 1 ≤ k ≤ n,
{a2kb2, a−2kb2}, 1 ≤ k ≤ n

2
− 1.

On the other hand, by Equation (2.2), it can be easily seen that

bai =

{
a−ib, 2 | i,
a−ib−1, 2 - i,

b−1ai =

{
a−ib−1, 2 | i,
a−ib, 2 - i.
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Therefore,

a−ibai =

{
a−2ib, 2 | i,
a−2ib−1, 2 - i,

(aib)−1b(aib) =

{
a2ib, 2 | i,
a2ib−1, 2 - i,

a−i(ab)ai =

{
a−2i+1b, 2 | i,
a−2i+1b−1, 2 - i,

(aib)−1(ab)(aib) =

{
a2i−1b−1, 2 | i,
a2i−1b, 2 - i,

a−i(a2b)ai =

{
a−2i+2b, 2 | i,
a−2i+2b−1, 2 - i,

(aib)−1(a2b)(aib) =

{
a2i−2b, 2 | i,
a2i−2b−1, 2 - i,

a−i(a3b)ai =

{
a−2i+3b, 2 | i,
a−2i+3b−1, 2 - i,

(aib)−1(a3b)(aib) =

{
a2i−3b−1, 2 | i,
a2i−3b, 2 - i.

Therefore, the conjugacy classes of members of the second and fourth rows can
be written as follows:

bV8n =
{
a4kb, a4k+2b−1 | 1 ≤ k ≤ n

2

}
,

(ab)V8n =
{
a4k+1b, a4k+3b−1 | 1 ≤ k ≤ n

2

}
,

(b3)V8n =
{
a4k+2b, a4kb−1 | 1 ≤ k ≤ n

2

}
,

(ab3)V8n =
{
a4k+3b, a4k+1b−1 | 1 ≤ k ≤ n

2

}
.

Since b2 ∈ Z(V8n), the conjugacy classes bV8n and (ab)V8n are adjacent with the
conjugacy classes (b3)V8n and (ab3)V8n , respectively. If anb ∈ bV8n (or anb3 ∈ bV8n),
then anb3 ∈ (b3)V8n (or anb ∈ (b3)V8n). Finally, the conjugacy classes of members
in the first and third rows are adjacent to each other and there are 2n−2 conjugacy
classes of this type. Therefore, Γ(V8n) = K2n−2 ∪ 2K2.

(2) n is odd. The elements of V8n can be written in the following array:

1 a · · · an−1 an an+1 · · · a2n−2 a2n−1

b ab · · · an−1b anb an+1b · · · a2n−2b a2n−1b

b2 ab2 · · · an−1b2 anb2 an+1b3 · · · a2n−2b2 a2n−1b2

b3 ab3 · · · an−1b3 anb3 an+1b3 · · · a2n−2b3 a2n−1b3

.

By Equation (2.3), we have Z(V8n) = {1, b2}. Thus the conjugacy classes of
members of the first and third rows are

{1}, {b2}, {a2k, a−2k}, 1 ≤ k ≤ n−1
2
,

{a2k−1, a−2k+1b2}, 1 ≤ k ≤ n, {a2kb2, a−2kb2}, 1 ≤ k ≤ n−1
2

,

respectively. So, in this case, there are only two conjugacy classes as bV8n =
{a2kb, a2kb−1 | 1 ≤ k ≤ n} and (ab)V8n = {a2k+1b, a2k+1b−1 | 1 ≤ k ≤ n}. Now it
is easy to see that only conjugacy classes of members in the first and third rows
are adjacent to each other and there are 2n−1 such conjugacy classes. Therefore,
Γ(V8n) = K2n−1 ∪ 2K1. This proves our result. �
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It is merit to mention here that the group V8n was first introduced by James
and Liebeck [6], for the case that n is odd. The conjugacy classes and character
table of this group for the cases that n is odd are taken from the mentioned
book. When n is even, the conjugacy classes and character table of this group
were computed by Darafsheh and Poursalavati [4].

Proposition 2.5. The commuting conjugacy class graph of the semi-dihedral
group SD8n is computed as follows:

Γ(SD8n) =

{
K2n−1 ∪ 2K1, n is even,

K2n−2 ∪K4, n is odd.

Proof. Since bab = a2n−1 and b−1 = b, we have ab = ba2n−1 and so

aib =

{
ba−i, 2 | i,
ba2n−i, 2 - i.

(2.4)

If i = 2n, then a2nb = ba−2n = ba2n and so a2n ∈ Z(SD8n). If i = n, then

anb =

{
ba−n, 2 | n,
ba2n−n = ban, 2 - n.

On the other hand, if n is odd, then an ∈ Z(SD8n) and hence

Z(SD8n) =

{
{1, a2n}, 2 | n,
{1, an, a2n, a3n}, 2 - n.

Our main proof considers two cases, n is odd or even, as follows:
(1) n is even. In this case, the elements of SD8n can be partitioned as follows:

1 , a , . . . , an, . . . , a2n , . . . , a3n, . . . , a4n−1

b, ab, . . . , anb, . . . , a2nb, . . . , a3nb, . . . , a4n−1b

By Equation (2.4), we have

b−1aib =

{
a−i, 2 | i,
a2n−i, 2 - i.

(2.5)

Since Z(SD8n) = {1, a2n}, the conjugacy classes of elements of the first row are
as follows:

{1}, {a2n}, {a2k, a−2k}, 1 ≤ k ≤ n− 1,
{a2k+1, a2n−(2k+1)}, −n

2
≤ k ≤ n

2
− 1.

On the other hand, by Equation (2.4), we have

a−ibai =

{
a−2ib, i = 2k,

a2n−2ib, i = 2k + 1,
(aib)−1b(aib) =

{
a2ib, i = 2k,

a−2n+2ib, i = 2k + 1,

a−i(ab)ai =

{
a−2i+1b, i = 2k,

a2n−2i+1b, i = 2k + 1,
(aib)−1(ab)(aib) =

{
a2n+2i−1b, i = 2k,

a2i−1b, i = 2k + 1,

(2.6)
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and so the conjugacy classes in the second row are bSD8n = {a2kb | 1 ≤ k ≤ 2n}
and (ab)SD8n = {a2k−1b | 1 ≤ k ≤ 2n}. On the other hand, the elements of the
first row is divided into 2n−1 conjugacy classes, which are adjacent to each other
in the commuting conjugacy class graph. Therefore, Γ(SD8n) = K2n−1 ∪ 2K1.

(2) n is odd. In this case, the elements of SD8n are as follows:

1 , a , . . . , an , . . . , a2n , . . . , a3n , . . . , a4n−1

b, ab, . . . , anb, . . . , a2nb, . . . , a3nb, . . . , a4n−1b

By Equation (2.5) and the fact that Z(SD8n) = {1, an, a2n, a3n}, the conjugacy
classes of the elements in the first row are

{1}, {an}, {a2n}, {a3n}, {a2k, a−2k}, 1 ≤ k ≤ n− 1,
{a2k+1, a2n−(2k+1)}, −n−1

2
≤ k ≤ n−1

2
− 1.

On the other hand, by Equation (2.6), we have bSD8n = {a4kb | 1 ≤ k ≤ n} and
(ab)SD8n = {a4k+1b | 1 ≤ k ≤ n}, and by Equation (2.4), we have

a−i(a2b)ai =

{
a−2i+2b, 2 | i,
a2n−2i+2b, 2 - i,

(aib)−1(a2b)(aib) =

{
a2i−2b, 2 | i,
a−2n+2i−2b, 2 - i,

a−i(a3b)ai =

{
a−2i+3b, 2 | i,
a2n−2i+3b, 2 - i,

(aib)−1(a3b)(aib) =

{
a2n+2i−3b, 2 | i,
a2i−3b, 2 - i.

Therefore (a2b)SD8n = {a4k+2b | 1 ≤ k ≤ n} and (a3b)SD8n = {a4k+3b | 1 ≤ k ≤ n}.
Note that a2nb ∈ (a2b)SD8n and so

(1) if anb ∈ (ab)SD8n , then a3nb ∈ (a3b)SD8n ;
(2) if a3nb ∈ (ab)SD8n then anb ∈ (a3b)SD8n .

Since Z(SD8n) = {1, an, a2n, a3n}, the elements b, anb, a2nb, and a3nb are com-
muting to each other. On the other hand, there are 2n − 2 conjugacy classes of
elements in the first row, which are pairwise adjacent p. Therefore, Γ(SD8n) =
K2n−2 ∪K4. This completes our argument. �

Proposition 2.6. The commuting conjugacy class graph of G(p,m, n) is isomor-
phic to Kpm−1(pn−pn−1) ∪Kpn−1(pm−pm−1) ∪ (pn − pn−1)Kpm−n(pn−pn−1).

Proof. By the definition of the group G(p,m, n), we have c ∈ Z(G(p,m, n)),
ba = abc−1, and b−1a = ab. So, for every i and j,

bjai = aibjc−ij. (2.7)

In the last equation, if we put i = p and j = 1, then ap ∈ Z(G(p,m, n)). Simi-
larly, in Equation (2.7), we put i = 1 and j = p to show that bp ∈ Z(G(p,m, n)).
Therefore, Z(G(p,m, n)) = 〈ap〉 × 〈bp〉 × 〈c〉. Now by some tedious calculations,
one can see that

(asbt)G(p,m,n) = {asbtck | 0 ≤ k ≤ p− 1} = asbtH, (2.8)

where H = 〈c〉, 0 ≤ s ≤ pm − 1, 0 ≤ t ≤ pn − 1, and p does not divide
simultaneously s and t. For our main proof, now consider three cases as follows:
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(1) p | s and p - t. Suppose s = rp, where r is an integer. Since ap ∈
Z(G(p,m, n)), for each positive integer t, we have (ar1pbt1)(ar2pbt2)
= (ar2pbt2)(ar1pbt1). Hence all conjugacy classes as (arpbt) are adjacent together.
On the other hand, if 0 ≤ t ≤ pn − 1, p - t, and 0 ≤ r ≤ pm−1 − 1, then the
number of conjugacy classes is pm−1(pn−pn−1). Since these conjugacy classes are
not adjacent with other conjugacy classes, the commuting conjugacy class graph
is isomorphic to Kpm−1(pn−pn−1).

(2) p - s and p | t. Suppose t = rp, where r is an integer. Since bp ∈
Z(G(p,m, n)), for each positive integer s, we have (as1br1p)(as2br2p)
= (as2br2p)(as1br1p). Hence all conjugacy classes in the form (asbrp) are adja-
cent together. On the other hand, if 0 ≤ s ≤ pm− 1, p - s, and 0 ≤ r ≤ pn−1− 1,
then there are pn−1(pm− pm−1) conjugacy classes and these conjugacy classes are
not adjacent with other classes. Therefore, the commuting conjugacy class graph
of the group is isomorphic to complete graph Kpn−1(pm−pm−1).

(3) p - s and p - t. By Equation (2.7) and the fact that c ∈ Z(G(p,m, n)), for
every u, we have

(asbt)u = ausbutc−st
u(u−1)

2 . (2.9)

Thus, for all integers s and t, (asbt)(asbt)u = (asbt)u(asbt) if and only if
(asbt)(ausbut) = (ausbut)(asbt). Our assumption implies ap

m
= bp

n
= 1. With-

out loss of generality, we assume that n ≤ m. Since 0 ≤ u ≤ pm − 1 and p - u,
there are pm−n(pn−pn−1) conjugacy classes of this type. These conjugacy classes
are adjacent to each other, and we have to count the number of these cliques.
Since (s, p) = 1, (s, pm) = 1 and so there are xs and ys such that sxs + pmys = 1.
By Equation (2.9) and the fact that ap

m
= 1, we have

(asbt)xs = asxsbtxsc−st
xs(xs−1)

2

= a1−pmysbtxsc−st
xs(xs−1)

2

= abtxsc−st
xs(xs−1)

2 . (2.10)

By Equations (2.8) and (2.10) and the fact that H = 〈c〉 ≤ Z(G(p,m, n)), we
have

((asbt)xs)G(p,m,n) = (abtxsc−st
xs(xs−1)

2 )G(p,m,n)

= (abtxs)G(p,m,n)c−st
xs(xs−1)

2

= abtxsHc−st
xs(xs−1)

2

= abtxsH = (abtxs)G(p,m,n).

Since 0 ≤ t ≤ pn − 1 and p - t, there are pn − pn−1 such cliques. Therefore, the
commuting conjugacy class graph is isomorphic to (pn − pn−1)Kpm−n(pn−pn−1).

We now apply our calculations to prove that the commuting conjugacy class
graph of G(p,m, n) is isomorphic to Kpm−1(pn−pn−1) ∪ Kpn−1(pm−pm−1) ∪ (pn −
pn−1)Kpm−n(pn−pn−1). �
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3. Commuting conjugacy class graph of CA-groups

In Section 2, the graph structure of five classes of CA-groups are given. In
this section, we analyze these examples to obtain the structure of commuting
conjugacy class graph of a CA-group. For the sake of completeness, we mention
here a result, which is crucial in the proof of our main result. Let G be a finite CA-
group. Then by [2, Remark 2.1(4)], for all a, b ∈ G \Z(G), either CG(a) = CG(b)
or CG(a) ∩ CG(b) = Z(G).

Lemma 3.1. Let G be a CA-Group. The noncentral conjugacy classes xG and
yG of G are adjacent in Γ(G) if and only if CG(x) and CG(y) are conjugate in G.

Proof. Suppose that the noncentral conjugacy classes xG and yG are adjacent in
Γ(G). There are t ∈ xG and s ∈ yG such that ts = st. This implies that t ∈
CG(t)∩CG(s) 6= Z(G) and since G is a CA-group, CG(t) = CG(s). On the other
hand, t ∈ xG and s ∈ yG imply that there are g1, g2 ∈ G such that t = g−1

1 xg1

and s = g−1
2 yg2. Since CG(t) = CG(s), we have g−1

1 CG(x)g1 = CG(g−1
1 xg1) =

CG(g−1
2 yg2) = g−1

2 CG(y)g2, which proves that CG(x) = (g2g
−1
1 )−1CG(y)(g2g

−1
1 ),

as desired.
Conversely, let xG and yG be noncentral conjugacy classes of G such that CG(x)

and CG(y) are conjugate. Suppose that CG(x) = g−1CG(y)g and s = g−1yg. Since
g−1CG(y)g = CG(g−1yg) = CG(s), we have xs = sx and so xG and sG = yG are
adjacent in Γ(G), which proves the lemma. �

Lemma 3.2. Let G be a CA-group and let x ∈ G \ Z(G). Then CG(x) C G if
and only if xG ⊆ CG(x).

Proof. If CG(x) C G, then obviously xG ⊆ CG(x). Conversely, we assume that
xG ⊆ CG(x) and that g ∈ G is arbitrary. Then g−1xg ∈ xG ∩ CG(g−1xg) ⊆
CG(x) ∩ CG(g−1xg) and so CG(x) ∩ CG(g−1xg) 6= Z(G). Since G is a CA-group,
we have CG(x) = CG(g−1xg) = g−1CG(x)g, which proves that CG(x)CG. �

For a finite group G, we define Cent(G) = {CG(x) | x ∈ G}. Consider the
equivalence relation ∼ on Cent(G) \ {G} by CG(x) ∼ CG(y) if and only if CG(x)

and CG(y) are conjugate in G. Set A(G) = Cent(G)\{G}
∼ is the set of all equivalence

classes of ∼.

Theorem 3.3. If G is a CA-group, then Γ(G) =
⋃

CG(x)

∼ ∈A(G)
KnCG(x)

∼
, where

nCG(x)

∼
=
|CG(x)| − |Z(G)|

[NG(CG(x)) : CG(x)]
.

Proof. Suppose that x ∈ G \ Z(G), that k is the number of conjugates of CG(x),
and that s = |xG ∩ CG(x)|. It is clear that |xG| = ks = s[G : NG(CG(x))]. By
Poincaré’s theorem, |xG| = [G : CG(x)] = [G : NG(CG(x))][NG(CG(x)) : CG(x)]
and so s = [NG(CG(x)) : CG(x)]. If y ∈ CG(x) \ ((xG ∩ CG(x)) ∪ Z(G)), then
yx = xy. Since G is a CA-group, CG(x) = CG(y), and by Lemma 3.1, xG

and yG are adjacent in Γ(G). Define nCG(x)

∼
= |CG(x)|−|Z(G)|

s
. Then nCG(x)

∼
=

|CG(x)|−|Z(G)|
[NG(CG(x)):CG(x)]

. Note that nCG(x)

∼
is the number of noncentral conjugacy classes
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of G, which is contained in CG(x). Since G is a CA-group, we have Γ(G) =⋃
CG(x)

∼ ∈A(G)
KnCG(x)

∼
. �

We can apply this theorem to obtain the commuting conjugacy class graphs
of the dihedral group D2n, the semi-dihedral group SD8n, the dicyclic group T4n,
and the groups V8n, U(m,n), G(p,m, n), but our proofs given in Section 2 are
simpler than the proofs that can be obtained by Theorem 3.3.

Acknowledgement. This research is partially supported by the University of
Kashan under grant No. 572760/53.

References

1. M.H. Abbaspour and H. Behravesh, Quasi-permutation representations of some minimal
non-abelian p-groups, Ital. J. Pure Appl. Math. 29 (2012) 55–62.

2. A. Abdollahi, S.M. Jafarian Amiri and A.M. Hassanabadi, Groups with specific number of
centralizers, Houston J. Math. 33 (2007), no. 2, 43–57.

3. R. Brauer and K.A. Fowler, On groups of even order, Ann. of Math. (2) 62 (1955) 565–583.
4. M.R. Darafsheh and N.S. Poursalavati, On the existence of the orthogonal basis of the

symmetry classes of tensors associated with certain groups, SUT J. Math. 37 (2001), no. 1,
1–17.

5. M. Herzog, P. Longobardi and M. Maj, On a commuting graph on conjugacy classes of
groups, Comm. Algebra 37 (2009), no. 10, 3369–3387.

6. G. James and M. Liebeck, Representations and Characters of Groups, Cambridge University
Press, 2nd ed. New York, 2001.

7. P. Lescot, A note on CA-groups, Comm. Algebra 18 (1990), no. 3, 833–838.
8. A. Mohammadian, A. Erfanian, M. Farrokhi D.G. and B. Wilkens, Triangle-free commuting

conjugacy class graphs, J. Group Theory 19 (2016), no. 3, 1049–1061.
9. D.J. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, 1996.

10. R. Schmidt, Zentralisatorverbände endlicher Gruppen (German), Rend. Sem. Mat. Univ.
Padova 44 (1970) 97–131.

11. The GAP Team, Group, GAP - Groups, Algorithms, and Programming, Version 4.5.5, 2012,
http://www.gap-system.org.

1Department of Pure Mathematics, University of Kashan, Kashan 87317-53153,
Iran.

E-mail address: ashrafi@kashanu.ac.ir; salahshour@iausk.ac.ir


	1. Introduction and preliminaries
	2. Commuting conjugacy class graph of certain groups
	3. Commuting conjugacy class graph of CA-groups
	References

