a(x,t,u,\nabla u)-\mbox{div}\> \Phi(x,t,u)= f \quad\mbox{in }{Q_T=\Omega\times (0,T)}, $$ where $b(x,\cdot)$ is a strictly increasing $C^1$-function for every $x\in\Omega$ with $b(x,0)=0$, the lower order term $\Phi$ satisfies a natural growth condition described by the appropriate Orlicz function $M$ and $f$ is an element of $L^1(Q_T)$. We don't assume any restriction neither on $M$ nor on its conjugate $\overline{M}$.]]>