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ABSTRACT. In this paper we survey some recent results obtained by the au-
thor related to Pompeiu’s mean value theorem and inequality. Natural appli-
cations to Ostrowski type inequalities that play an important role in Numerical
Analysis, Approximation Theory, Probability Theory & Statistics, Information
Theory and other fields, are given as well.

1. INTRODUCTION

In 1946, Pompeiu [11]| derived a variant of Lagrange’s mean value theorem, now
known as Pompeiu’s mean value theorem (see also [13, p. 83]).

Theorem 1.1 (Pompeiu, 1946 [11]). For every real valued function f differen-
tiable on an interval [a,b] not containing 0 and for all pairs xy # x5 in [a,b],
there exists a point £ between x1 and xo such that

w1 f (x2) — 22 f (1)

X1 — X2

= [ =&1(6). (1.1)

Following |13, p. 84 — 85|, we will mention here a geometrical interpretation of
Pompeiu’s theorem.

The equation of the secant line joining the points (z1, f (1)) and (z3, f (x2))
is given by
f(@2) — f(21)

To — X1

y=f(r1)+ (. —x1).

Date: Received: 18 June 2014; Accepted: 18 July 2014.
2010 Mathematics Subject Classification. Primary 26D10; Secondary 26D15.
Key words and phrases. Ostrowski inequality, Pompeiu’s mean inequality, integral inequali-
ties, special means.
1



2 S.S. DRAGOMIR

This line intersects the y—axis at the point (0,y), where y is

f(22) = f (21)

y=f(z1)+ P (0 — )
- x1f (x2) — 2o f (1)
N 1 — T2 '

The equation of the tangent line at the point (&, f (§)) is
y=(z-=8fE+f&.

The tangent line intersects the y—axis at the point (0,y), where

y=—E[(+ ().

Hence, the geometric meaning of Pompeiu’s mean value theorem is that the tan-
gent of the point (&, f (§)) intersects on the y—axis at the same point as the secant
line connecting the points (x1, f (x1)) and (z2, f (22)) .

The following inequality is a simple consequence of Pompeiu’s mean value the-
orem.

Corollary 1.2 (Pompeiu’s Inequality). With the assumptions of Theorem 1.1
and if ||f = Lf']| o = SuDseap |f () —tf' (t)| < oo where £(t) =1, t € [a,b], then
tf (@) —2f O < |If = €'l |z — 1] (1.2)
for any t,x € [a,b].
The inequality (1.2) was obtained by the author in [3], see also [1].

In 1938, A. Ostrowski [9] proved the following result in the estimating the
integral mean:

Theorem 1.3 (Ostrowski, 1938 [9]). Let f : [a,b] — R be continuous on |a, b
and differentiable on (a,b) with |f' (t)] < M < oo for allt € (a,b). Then for any
x € [a,b], we have the inequality

o — atb

‘f(x)—ﬁ/abf(t)dt'g i+<b_; )2 M(b—a). (1.3)

The constant i is best possible in the sense that it cannot be replaced by a smaller
quantity.

In order to provide another approximation of the integral mean, by making use
of the Pompeiu’s mean value theorem, the author proved the following result:

Theorem 1.4 (Dragomir, 2005 [3]). Let f : [a,b] — R be continuous on |a, b
and differentiable on (a,b) with [a,b] not containing 0. Then for any z € |a,b|,
we have the inequality

a+b f(x) 1 b b—a |1 b’
2 _b—a/af(t)alt’S || Z_l+<b—62z (14)

XN = s
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where £ (t) =t, t € [a,b] .
The constant }L 1s sharp in the sense that it cannot be replaced by a smaller
constant.

In [12], E. C. Popa using a mean value theorem obtained a generalization of
(1.4) as follows:

Theorem 1.5 (Popa, 2007 [12]). Let f : [a,b] — R be continuous on |a,b] and
differentiable on (a,b). Assume that « ¢ [a,b]. Then for any x € [a,b], we have
the tnequality

Ka;b_a)f(x)+2‘:j/abf(t)dt' (L5)

1 r — b ?
<7+ (5= |o-alf - s,

where £, (1) =t —a, t € [a,b].

In [10], J. Pecari¢ and S. Ungar have proved a general estimate with the
p-norm, 1 < p < oo which for p = oo give Dragomir’s result.

Theorem 1.6 (Pecari¢ & Ungar, 2006 [10]). Let f : [a,b] — R be continuous
on [a,b] and differentiable on (a,b) with 0 < a < b. Then for 1 < p,q < oo with
% + % = 1 we have the inequality

atb fx) 1
2 x b—a

(/f@M%SPUmme—MWW (1.6)

for x € [a,b], where

1 a2—1 — 24 2274 _ glta,l—2q 1/q
PU(z,p) : =(b—a)r ! ( + >
wp) =) [(L—%M2—® T-200+9
b2 — p2—4 2274 _ plta,l—2q 1/q
+ ( + >
(1-2¢)(2-¢q) (1-2¢9)(1+q)

In the cases (p,q) = (1,00), (00, 1) and (2,2) the quantity PU (z,p) has to be
taken as the limit as p — 1,00 and 2, respectively.

For other inequalities in terms of the p-norm of the quantity f — £, f’, where
ly(t)=t—a,t€|a,b] and a ¢ [a,b] see [2| and [1].

In this paper we survey some recent results obtained by the author related to
Pompeiu’s inequality presented above. Natural applications to Ostrowski type
inequalities that play an important role in Numerical Analysis, Approximation
Theory, Probability Theory & Statistics, Information Theory and other fields are
given as well.
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2. OSTROWSKI VIA A GENERALIZED POMPEIU’S INEQUALITY

2.1. Pompeiu’s Inequality for p-Norms. We can generalize the above in-
equality (1.2) for the larger class of functions that are absolutely continuous and
complex valued as well as for other norms of the difference f — £f’ as follows:

Lemma 2.1 (Dragomir, 2013 [5]). Let f : [a,b] — C be an absolutely continuous
function on the interval [a,b] with b > a > 0. Then for any t,z € [a,b] we have

tf (z) —xf (t)] (2.1)
(f = Lf Nl |2 — ] if [ —Lf € Lo la,b]
o=t e Lylat]
< thf—MWAﬁ%—gﬁﬂ” >l
54—5:1

11— o), )

or, equivalently

f@)—i34 (2.2)
x t
(Nf=2f 0|3 = 2] if f—(f € Lo [a,b]
if f —L4f" € Lya,b
< S IF =, | — p>1,

1 1 _
lil=

LI =271 gy

Proof. If f is absolutely continuous, then f/¢ is absolutely continuous on the
interval [a, b] that does not containing 0 and

for any ¢,z € [a,b] with x # t.

Since /z (&)/dsz/xf/(s>sg_f(8)d5

then we get the following identity

tf@yﬂj@y:m[xf“f;f“hs (2.3)

for any t,x € [a,b].
We notice that the equality (2.3) was proved for the smaller class of differen-
tiable function and in a different manner in [10].
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Taking the modulus in (2.3) we have

I (s)s—f(s)
tf () —2f (1)) = xt/t g pLYE (2.4)
xT / _
< uat / / (8)82 1) ds| =1
t S
and utilizing Holder’s integral inequality we deduce
( SUPse[t,2](Jz.1]) |f7(s) s — [ (s)] ‘ftx sizdsl
T g p Up |z 1 1/q p>1,
I < at [T (s)s = f(s)[Pds| ™" | [ Fzds| 11 (2.5)
p q
. Utm If"(s)s— f(s)] dS‘ SUPselt,]([z,t]) {s%}
(= Cf' o [z — ¢
24 q 1/ P > 1,
S Tlfl‘|f_‘€f/|’p‘tq—1_x§—l| ! l+l:1
p q
max{t,x}
\ Hf—gf,“l min{t,z}
and the inequality (2.2) is proved. OJ

Remark 2.2. The first inequality in (2.1) also holds in the same form for 0 > b > a.

Remark 2.3. If we take in (2.1) x = A = A(a, b) := %t (the arithmetic mean) and
t =G = G (a,b) := Vab (the geometric mean) then we get the simple inequality
for functions of means:

Gf(A) = Af(G)] (2.6)
(I = (A=G) if f—Lf" € Lo [a,b]
e i f—Lf € L,a,b

p>1,
1 1 _
st =1

A2q—1_G2q—1
2q+1 ”f_gf/Hp ( Al/pcl/p)

IN

L If—ef)), &

2.2. Evaluating the Integral Mean. The following new result holds.
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Theorem 2.4 (Dragomir, 2013 [5]). Let f : [a,b] — C be an absolutely continuous
function on the interval [a,b] with b > a > 0. Then for any z € [a,b] we have

a+b f(x)
5 . T h—a /f dt‘ (2.7)

4
b—a |1 v— 3t
T |:4 + < b—a

V|- wr-eretaay

if f—Lf € Ly,la,b]

<9 1 . \11/4 ,
o (2q—1)z(b—a) /4 Hf tf Hp [Bq (CL7 b; :L‘)] . p >1 E
Lyl
p g
s =l (g ).
where
% (22972 — @972 — p172)
1 1 1 1 q72
By (a,b52) = ¢+ (0T +at = 22070, (2.8)
72 ln z2 + b3 a3 —223 g =2

3z )

Proof. The first inequality can be proved in an identical way to the case of dif-
ferentiable functions from [3] by utilizing the first inequality in (2.1).
Utilising the second inequality in (2.1) we have

a+b
2

< /!tf )= of ()] de

1 !
T (e ||f—€f||p/a

Utilising Holder’s integral inequality we have

b 1/q b
‘/ cﬁg(b—afm(/j

For g # 2 we have

/b
a xq
= — (2xq_2 —ai? = bq_2) +

2-9q
= B, (a,b;x).

) dt' (2.9)

1/q

dt

ta—1 el

xd t?

ta—l ge-l

x4 t?

ta—l ge-l

dt)l/q. (2.10)

x4 t?

ta—l  ga-1

1

patl ¢+l _ 9 atl
xq—l(q—i—l)( +a x )
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For ¢ = 2 we have

/b
Utilizing (2.9) and (2.10) we get the second inequality in (2.7).
Utilising the third inequality in (2.1) we have

x? 2

t

2 1b3 2 3
dt = a* lnx—b—i——%:Bg(a,b;x).

b
a‘;b- t)dt‘ SL/ tf () —af BOdt (2.11)
B ® max {t, x}
L I )

Since

b x b 2

t 1b° —
—méx{ ’x}dt:/ de/ dt—xlnf+— s ;
., min{t z} o b - 2

then by (2.11) we have

b I
a; _ t)dt‘gT/ [tf (x) —xf (t)]dt
r 10—
s I =t [ 4 2]
and the last part of (2.7) is thus proved. O
Remark 2.5. If we take in (2.7) 2 = A = A (a,b) := %2, then we get
‘ / Fit dt’ (2.12)
( ||f ('l if f—Lf" € Lo a,b]

if f—(f € L,la,b]

e 1~ B b A v ,
pTe =1

IN

L 1 = 27 (2 4 2 (b — a) 2 1),
where

555 (A2 — A(a?7%,b72)
B, (a,b; A) = +(q+l)% (A (b3F1, qr+1) — AaHL)

2A42In 4 +1(b—a), q=2
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2.3. A Related Result. The following new result also holds.

Theorem 2.6 (Dragomir, 2013 [5]). Let f : [a,b] — C be an absolutely continuous
function on the interval [a,b] with b > a > 0. Then for any x € |a,b] we have

f(z f(t
‘ : b_a/ dt‘ (2.13)

( / z ath_ g . ,
gllf—fflloo(lnm+27) if f—Lf € Lo [0, 1]

if f —L4f € L,]a, b

= m 1f = €f'Il, (Cy (a, by )" =L ’
1yl
p q
o I — e, e,
where
a2—2q + bQ—Qq _ 2:62—2(]
Cylabyx) = e (b+a—2x)+ 2 =1) ,q > 1. (2.14)
Proof. From the first inequality in (2.8) we have
I t
x b—a b—a x t

<f=4f

o[ G- [ G-

Since

r

for any = € [a,b], then we deduce from (2.15) the first inequality in (2.13).
From the second inequality in (2.8) we have

f(z) f(t
’ : b_a/ dt‘ (2.16)
<l [0
“b—alJ, | x t

1 , b 1 1/q
<ene—aV Y[ |Em ] @

Utilising Holder’s integral inequality we have

b 1/q b
/ dt < (b—a)'/? (/

1 1
12¢-1 21

1 1
12-1 521

dt) " . (2.17)
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Since

1 1

a2—2q + 62—2q _ 2372—211

1
=——((b+a—2x)+ g —1)

=C,(a,b;x)

then by (2.16) and (2.17) we get

‘f; b—a/f dt’

1f = ¢, (b—a)'’” (Cy (a, by )"

S(zq—mb 2)

and the second inequality in (2.13) is proved.
From the third inequality in (2.8) we have

fl@) 1 ["f@) L
‘ x _b—a/a t dt‘gb—a/a

<L r—er) /b pa—
“b—a V), min {2, 22}

/b 1 /"” / _a? x4+ ab — 2ax
. at= _rravTsar
min {2, 22} 2a

then by (2.18) we deduce the last part of (2.13).

T

)10,
t

Since

Remark 2.7. If we take in (2.13) 2 = A = A(a,b) := “2, then we get

fA) 1 f
’ A _b—a/a t dt’
(= tf ) n () if f— (f' € L [a,b]

if f—(f € L,la,b]

1 oy . 1/q
(2q_1)(b_a)1/(1 Hf gf Hp (Cq (0’7 b? A)) l i>l E 1
p g

IN

sIF—efll 5,

where

A ((1272q7 b272q) - A272q
qg—1

Cy(a,b; A) = ,q > 1.

3. OSTROWSKI VIA POWER POMPEIU’S INEQUALITY

(2.18)

(2.19)

3.1. Power Pompeiu’s Inequality. We can generalize the above (1.2) inequal-

ity for the power function as follows.
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Lemma 3.1 (Dragomir, 2013 [0]). Let f : [a,b] — C be an absolutely continuous
function on the interval [a,b] with b > a > 0. If r € R, r # 0, then for any
t,x € [a,b] we have

[t f (x) — " f (¢)] (3.1)
( ‘71| Nfl—rfll |t —a|,if fl —rf € Ly |a,b]

1 t" s
[1—g(r+1)] ‘mlflI(T‘Jrl)fr — fd=atr+D—r |
/ forr#£ —=
< “f ¢ — Tpr P
t"z" lnx — Int|, forr= —%

if f'l —rf e L,a,b]

r

||f/€—7”f|’1m

or, equivalently
f@)  f(t)
" tr

,
Life—rfl. |+

(3.2)

LI if f'l —rf € Ly la,b]

tr

) fOT’T?é—Il)

1 | 1 _
T=qr+D] | z=a0D

IN

Lf€=rfl,
lnx —Int|, forr= —}—17
if f'l —rfeL,la,b]

. ||f,£ - Tf”l min{xri_1’tr+_1}
1,1 _
where p > 1,5—1-3—1.
Proof. If f is absolutely continuous, then f/ ()" is absolutely continuous on the

interval [a, b] and
/t‘”” (fS(TS))'dS: fggf) B ft(rt)

for any t,x € [a,b] with x # t.
Since

/( )d_/f’ S G ds_/f’ ) =11 (o),

then we get the following identity
, fiis)s—rf(s),
£ f (2) — 2" / g, (3.3)

for any ¢,z € [a,b] .
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Taking the modulus in (3.3) we have

o /t’“" f’(S)S—Tf(S)dS‘ (3.4)

Sr—l-l

" /:” [/ (s)s —rf(s )Id';l

t°f (2) —2"f ()] =

S Sr—l—l

and utilizing Holder’s integral inequality we deduce

( Supse[t,m]([aj,t]) ’f, ( s — ’f’f | }ft sT ’
ryr T 1 T 1
I < @t | [ (s)s — rf ()P ds|"7 | [ yds| (3.5)
Utx | f' (s S—Tf( |d3|SUPse[t,x}([x,t]) {}
\T| Hf/ﬁ—er xr
1 1 1
T | st — e |
4T / r 7& —1
< "ttt g [[ffl=rfl, P
Inz —Int|,r = —%
L 1f¢—=rfl, m
where p > 1, 719 + % = 1, and the inequality (3.1) is proved. O

3.2. Some Ostrowski Type Results. The following new result also holds.

Theorem 3.2 (Dragomir, 2013 [6]). Let f : [a,b] — C be an absolutely continuous
function on the interval [a,b] with b > a > 0. If r € R, r # 0, and f'l —rf €
L [a,b], then for any x € [a,b] we have

P / I dt‘ (3.6)

fr’—i—l
< = f'l=rflly
IT!

2re™t—g" (a+b) (r4+1)+b" i 4a7 1 : Zf r>0

r+1
X
zr(a+b)(7ﬂ+1)7ir+xlr+17br+17ar+1 7 Zf re (—OO, 0) \\ {—1} .
Also, for r = —1, we have

b 1 [? , T atb _ o
rom?-1 [roal<ire i, (“WW = ) 37)

for any x € [a,b], provided f'l + f € Ly [a,b]
The constant 2 in (3.7) is best possible.
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Proof. Utilising the first inequality in (3.1) for r # —1 we have

@ [0 i < [ri@-wroa 3

7“+1

IN

L L
T l=rflle [ [t —a"|dt.
Id a

Observe that

/b|t’"—:cT|dt:
“ [5 —arydt + [P (@ —17)dt, if r € (—o0,0)\ {—1}.

Then for r > 0 we have

/m (l“r—tr)dt+/b(tr—xr)dt: 2ret —a" (a4 b) (r+1) + 0 + 0™
a x r+1

[F @ —ydt+ [P (7 —am)dt, ifr >0

and for r € (—o0,0) \ {—1} we have

/r<tf_xr>dt+/b<xr_tr>dt:_2””“‘3””“ (r+1)+b7 +a™
u - r+1 ’

Making use of (3.8) we get (3.6).
Utilizing the inequality (3.1) for r = —1 we have

(@) =2 f @) SN+ fllo [t — 27!
if {0+ f€ L la,bl.

Integrating this inequality, we have

f(x)lng—x_l/ f(t)dt‘g/ 1 () — 2 F (1)) dt (3.9)

b
I fl [ et - e

Since
1 1 7®=

b T a+b
———|dt=211 2
/ax t‘ Yat T )

then by (3.9) we get the desired inequality (3.7).
Now, assume that holds with a constant C' > 0, i.e.

(3.7)
b atb
'f(a:)lng—x_l/f(t)dt‘§C||f'€+f||oo <ln T2 x) (3.10)

Vab x

for any z € [a,b].
If we take in (3.10) f(¢) = 1,t € [a, b], then we get

x atb _ o
<C|1 + 2 3.11
< (n\/% - ) (3.11)

b b—a
In— —
a T

for any for any z € [a, b] .
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Making z = a in (3.10) produces the inequality

T ] ] Y
a a 2a 2 a
which implies that C' > 2.
This proves the sharpness of the constant 2 in (3.7). O

Remark 3.3. Consider the r-Logarithmic mean

prl g+t T

L= = [P

defined for r € R\ {0, —1} and the Logarithmic mean, defined as
b—a

Inb—1Ina’

If A= A(a,b):= %2, then from (3.6) we get for z = A the inequality

L =L(ab):=

L'(b—a)f / Ft dt‘ (3.12)

br+1 7‘+1) _ATHL
r—+1

, ifr >0

2
<=y
AEAVE) it e (—00,0)\ {—1},

while from (3.7) we get

b
A
e-ar@-at [roal e s )
The following related result holds.

Theorem 3.4 (Dragomir, 2013 [6]). Let f : [a,b] — C be an absolutely continuous
function on the interval [a,b] with b > a > 0. If r € R, r # 0, then for any

x € [a,b] we have
)_/ %dt‘ (3.14)

S =Sl

2 1—r_ lfr_blfr

ol +w_1r(b+a—2:1:),7“€(0,00)\{1}

%yw—l—x—ﬂ@x—a—b), if r < 0.

1

Also, for r =1, we have

f @) 0 , N
]7<b—a>—/aTdt\g2|rfe—fr\oo<ln@+ : ) (3.15)

for any x € [a,b], provided f'¢ — f € Ly |a,b].
The constant 2 is best possible in (5.15).
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Proof. From the first inequality in (3.2) we have

f(z) f(t) 11
—_ l— — - = 3.16
= < =l | = | (3.16)
for any ¢,z € [a,b], provided fll—rfeLylab.
Integratmg over t € [a,b] we get
t
o= [0 < |10 10, o
" tr
111
<orlre=rfll [ |2 - |
T ot
for r e R, r #0.
For r € (0,00) \ {1} we have
b 1—7r 1—r 1—r
1 1 20" —a"7" =D 1
/a xrtr 1—r +$T(+a 7)
for any = € [a, b] .
For r < 0, we also have
b 1-r 1—r 1-r
1 1 a"T+bT" =22 1
/a ot 1—r +x7’<x a=b)

for any z € [a,b].
For r = 1 we have

111 x atb _ g
——Zldt=2|(1 2
/a T t‘ n\/ab—i_ T

for any x € [a,b], and the inequality (3.15) is obtained.
The sharpness of the constant 2 follows as in the proof of Theorem 3.2 and the
details are omitted. OJ

Remark 3.5. If we take x = A in Theorem 3.4, then we we have

f(A) /b f ()
‘ G T dt (3.18)
Al_rfA al—rjbl—r
, @) e 0,00\ {1)
<ple=rrleg ,
Ale ’bl_T>7A , if r < 0.
Also, for r = 1, we have
b
‘@ —/ @dt‘ §2||f’€—f||oolng. (3.19)

Remark 3.6. The interested reader may obtain other similar results in terms of
the p-norms || f'¢ —rf[|, with p > 1. However, since some calculations are too
complicated, the details are not presented here.
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4. OSTROWSKI VIA AN EXPONENTIAL POMPEIU’S INEQUALITY

4.1. An Exponential Pompeiu’s Inequality. We can provide some similar
results for complex-valued functions with the exponential instead of /.

Lemma 4.1 (Dragomir, 2013 [7]). Let f : [a,b] — C be an absolutely continuous
function on the interval [a,b] and o € C with Re () # 0. Then for any t,x € [a,b]
we have

fl@)  F()
exp (ax)  exp(at)
([ Re ()| If' — aflly if f'—af
1 1

X exp(tRe(a)) ~ exp(zRe(a)) € Lo [CL, b] )

, if fl-af
< dRe @IS = afll, cl,al  (41)
X | sl ~ e : R i
i1,
! 1
L ||f - af”l min{exp(tRe(a)),exp(zRe(a))}’
or, equivalently
lexp (at) f (z) — f (t) exp (ax)|

Re ()] 1/ = afllo if f'—af

X |exp (zRe (a)) — exp (tRe (a))| € Lo a,b],
y if f'=af

< ¢ ¢ Re(a)[ | f —afl, € Ly a, b] (4.2)
X lexp (zqRe () — exp (tgRe () p>1,
=1,
| [If" = af]l; max {exp (tRe (a)) , exp (zRe (@)} .

Proof. If f is absolutely continuous, then f/exp (a-) is absolutely continuous on
the interval [a,b] and

/tx (%)lds - exi((?x) - ex];)((to)zt)

for any ¢,z € [a,b] with x # t.
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/ ds_/ f'(s) exp (as) — af (s) exp (as) ,
’ exp (2as)
/ f(s) — af 5) 4
exp (as) %
then we get the following identlty

exp (ax) exp (a exp (as)

for any t,x € [a,b] with x # t.
Taking the modulus in (4.3) we have

[ (x)

exp (ax)  exp ( ‘

/f/ _O‘f ) ' (4.4)

exp (as)

RO
lexp (as) o

and utilizing Holder’s integral inequality we deduce

ft \exp

p
SUPselt,]([z,t]) |f'(s) —af(s

1/q

I

T<q |f71f (s) — af (s)"ds|""

x 1
)i eptemmds

17 (5) = af ()] ds| subaciy o { i |
,
1 = afll

9

1/q

Y

IN

1" = afll,

T 1
)i etamds

L If = afll, SUPselt,z]([z,¢]) {m} .
Now, since @ = Re () + ilm («) and s € [a, b], then

lexp (as)| = exp (sRe («)) .
We have

z 1 1 1
/ oxp (o)~ e @) LXp (fRe(a))  oxp (#Re <a>>]
and by (4.4) and (4.5) we get

fle) — f@)
exp (az)  exp (at)

] < | — ofll |Re ()

1 1
exp (tRe (a))  exp (zRe () ‘
and the first part of (4.1) is proved.
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We have
x 1 1 1
/ oxp (a7 = 1Re (@) pr (tqRe (@) oxp (2qRe (@)

and by (4.4) and (4.5) we get the second part of (4.1).
We have

1 1
sup = —
s€lt,x]([z,t]) { |eXp (OéS)| } min {eXp (tRe (OZ)) , €XP (xRe (O'/))}
and by (4.4) and (4.5) we get the last part of (4.1).
The inequality (4.2) follows by (4.1) on multiplying with |exp (ax)exp (at)]
and performing the required calculation. Il

The following particular case is of interest.

Corollary 4.2. Let f : [a,b] — C be an absolutely continuous function on the
interval [a,b] . Then for any t,x € |a,b] we have

flz) — F) ’
exp (z)  exp (1)

; . /
, L iff - f
1" = Fll |em — som € Lo [a, D],
if ' T f]
< X . L |V € L,la,b (4.6)
q /a ||f/ - f”p exp(tq) B exp(zq) p > ]-7
1,1 _
5 + 6 - 5
/ 1
L ||f - f||1 min{exp(t),exp(x)}’
or, equivalently
lexp (t) f () = f (1) exp (z)]
( f '
if f—
17 = Fllo lexp (2) = exp (1) Lo
if /' T f]
< Vel 1/q € Lpla,b (4.7)
¢/ f" = fll, lexp (vq) — exp (tq)] p>1,
1,1 _
5 + E ’
177 = £l max fexp (£) exp ()}
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Remark 4.3. If Re (a) = 0 then the inequality (4.5) becomes

;

SUPselt,a]([z,4]) |f'(s) —ilm () f (s)| f: mds) )

1/q

Y

I< S |[51f (s) — ilm () f (s)[" ds|"'" ds

)i Tt
t |exp(ilm(a)s)|?

\ |71 () = idm () f ()] ds| suDycps (o) {m} )
(N —im (a) fll. | [ ds|, [f" = ilm (o) f[lo |z =1,

IN

| £ = itm (o) fIl, |7 ds| ", = q 1 = ilm(a) fll, e — 27,

L f" = dlm (o) f]] |f" —ilm () f]; -
Therefore we have
|f" —ilm () fll o |z — ],

f(x) A
exp (ilm (o) x)  exp (ilm (a) t)

<q I —im(a) fll, le =47, (48)

1f" =i (a) fl;

or, equivalently

lexp (ilm () 2) f (x) — f (£) exp (ilm (@) 2)| (4.9)
1" = ilm () flloo |2 — 2],

< 9§ I =dm () f, o — ¢,

I/ = il (o) £

for any ¢,z € [a,b] .
In particular, we have

I =ifll o =1,
t
ejp((xil) B ejp((z?t) =1 W= ipr == t|l/q’ (4.10)
If =iflly,
or, equivalently
1" = iflle [z — 2l
lexp (it) f () = f (t)exp (ix)] < | = ifl, le — [, (4.11)
1f =iflly

for any t,z € [a,b].
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4.2. Inequalities of Ostrowski Type. The following result holds:

Theorem 4.4 (Dragomir, 2013 [7]). Let f : [a,b] — C be an absolutely continuous
function on the interval [a,b] and o € C with Re (a) > 0. Then for any x € |a, b]
we have

f () 22 (aub) ;exp (aa) exp (o) /bf () dt‘
Re(@)| ' = afl Bulabwa) 700
if f'—af
<{ ¢/1|Re ()7 (b— ) € Lpfat]  (412)
<|If" = afl,|Bya b)) P>
]—34—5: 1,
\ ||f/ - af|’1 BOO(CL7 b,ZL‘, a)
where
B,(a,b,x,a) :=2 {exp (zqRe («)) (:c _ —2i_ b)
N qR(;L(a) (exp (bqRe () ;exp (agRe (o) exp (ngRe (oz)))}
forq>1 and

exp (bRe (a)) — exp (zRe («))
Re («) '

Boo(a,b,z,a) := exp (zRe () (x — a) +

Proof. Utilising the first inequality in (4.2) we have

f (@) / ’ exp (at) di — exp (az) / ") dt‘ (4.13)

< / lexp (at) f (z) — f (t) exp ()| dt

suwmﬂwuaﬂu/WwMﬂmm»—wmmamnﬁ

for any = € [a, b] .
Observe that, since Re (a) > 0, then

/ lexp (zRe () — exp (tRe ()| dt

—9 [exp (zRe (a)) (33 = ; b)

. Rel( . (exp (bRe () g exp(aRe (@) o <a>)>]




20 S.S. DRAGOMIR

for any = € [a, b] .
Also

b b
f(x)/ exp (at) dt — exp (a:v)/ f(t)dt

exp (ab) — exp (wa)

= () ~ exp (ax) / £ (t)dt

for any x € [a,b] and by (4.13) we get the first inequality in (4.12).
Using the second inequality in (4.2) we have

f(2) / b exp (at) dt — exp (az) / ’ £t dt‘ (4.14)

«

b
< [ lexp(at) £ (a) ~ £ (t)exp ()] i

b
< g1 [Re (@] £ = af, [ lexp (saRe (@) — exp (tqRe ()| de

for any = € [a, b] .
By Holder’s integral inequality we also have

/ lexp (2qRe (o)) — exp (fqRe ()[4 dt

1/q

< (b—a)? l / lexp (zqRe (@) — exp (tqRe (a)|dt|

for any = € [a,0].
Observe that, as above, we have

b
/ lexp (zqRe () — exp (tqRe (a))| dt

_9 {exp (zqRe (a)) (g; _af b)

2
1 exp (bgRe (a)) + exp (agRe (a))
+ JRe (@) ( 5 — exp (zqRe (a)))]
= B,(a,b,z,a)

for any x € [a,b] and by (4.14) we get the second part of (4.12).
Using the third inequality in (4.2) we have

b b
‘f(x)/ exp(at)dt—exp(aa:)/ f(t)dt' (4.15)
b
< / lexp (at) f (z) — f (t) exp ()] dt

<17 = afly [ max fexp (tRe ) exp (eRe ()} d

for any = € [a, b] .
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Observe that,

b
/ max {exp (tRe (a)) , exp (zRe (a)) } dt
_ / " max {exp ({Re () , exp (zRe (a))} dt
o
+ / max {exp (tRe (a)) , exp (zRe (a)) } dt

= /w exp (zRe (o)) dt + / exp (tRe («)) dt =

exp (bRe (o)) — exp (zRe («))

= exp (zRe (a)) (x — a) + Re (a)

and by (4.15) we get the third part of (4.12). O

Remark 4.5. If Re (o) < 0, then a similar result may be stated. However the
details are left to the interested reader.

Corollary 4.6. Let f : [a,b] — C be an absolutely continuous function on the
interval [a,b]. Then for any x € [a,b] we have

F@) o )~ exp (@] - e ) [ 10 dt\

( Hf/_fHooBl(a?b’x) iff/—fELoo [aab]>
f f— L b
S RO Ve A e
X |By(a,b,z)| 1 1yl
| "= Il Boo(a, b, )
where
B,(a,b, )
= {(a: _ ¢ ;_ b) exp (xzq) + ! (eXp (ba) —|2—exp ag) _ exp (xq))]
q
forq>1 and

Boo(a,b,z) := (x — a) exp (x) + exp (b) — exp ().
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Remark 4.7. The midpoint case is as follows:

\f(“*‘f)@xp@)—expawy—ema(agb)lefa>m¢

( I/ = fll Bi(a,b) if f'=f € Ly [a, 0],
q Lp g if f'—fe Lp [CL?b]
_ ] al- )1/q||f o s, (4.17)
< |Byfa.b) iy
L ||f’_f||1Boo(a,b)

where

By (a.b.x) = 2 (eXp (bq) ; exp (ag) exp (a ; ba))

for ¢ > 1 and

b— b b
By (a,b) := 2anp(a—2k )—l—exp(b)—exp(a; )

The case Re () = 0 is different and may be stated as follows.

Theorem 4.8 (Dragomir, 2013 [7]). Let f : [a,b] — C be an absolutely continuous
function on the interval a,b] and o € C with Re (o)) = 0 and Im () # 0. Then
for any x € [a,b] we have

‘f (2) exp (iIm (a)fl)m—é};p (t1Im (o) a) exp (i (o / I dt‘
(i) Sl e
a+05§f}@—@2 S

if f'—ilm («) f (4.18)

<4 - i) £, € I, 0.1
b=z % z—a % e >1
JE)THE) T e- T p )

p T b

| S =il (@) fll; (b= a).
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Proof. Utilizing the inequality (4.9) we have

exp (iIm () b) — exp (iIm (o) a)

‘ f(2) — exp (ilm (a) 2) / b £ dt’ (4.19)

ilm (o)
< / lexp (ilm () t) f () — f(t) exp (ilm («) z)| dt

(f =il (a) fll. [7 | — ¢ dt,

IN

1f" = iTm (a) fII,, [ Jo — t]"/ dt,

|1 — it (o) fI|, 7 dt.
2
b 1 r — b
/‘x—tdtlz+ b_; (b—a)’
b b a1 g+l
a4 —x\ ¢ r—ay\ ¢ B %1
/a]x ] dt | (b—a) +<b—a) ](b a) ¢

then we get from (4.19) the desired result (4.18). O

Since

and

Corollary 4.9. Let f : [a,b] — C be an absolutely continuous function on the
interval [a,b] . Then for any x € [a,b] we have

‘f () 2D =R 1 / s (1) dt'
¢ a

1 = ifll o if foif

[ e Shdon,
; f f—if

=1 =i, . . c L, [2, o (420
<JEF e To-0®  pe
L L= ifll (b—a).
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Remark 4.10. The midpoint case is as follows

‘f (a + b) exp (ib) —exp (ia) exp <Z,a ; b) /abf © dt' (421)

]

Hf —iflle 0—a)?, if f'—if € Lo [a,b],

<
o | = ifll, (0 — @) if f—if € L,[ab].

Similar inequalities may be stated if one uses (4.1) and integrates over ¢ on
[a,b] . The details are left to the interested reader.

5. OSTROWSKI VIA A TwWO FUNCTIONS POMPEIU’S INEQUALITY

5.1. A General Pompeiu’s Inequality. We start with the following general-
ization of Pompeiu’s inequality:

Theorem 5.1 (Dragomir, 2013 [8]). Let f, g : [a,b] — C be absolutely continuous
functions on the interval [a,b] with g (t) # 0 for all t € [a,b]. Then for any
t,x € [a,b] we have

‘f(l“) B f(t)‘
g(t)
( ! ! z 1 ; ! !
19 = 1l |J7 s if f'9— 19 € Loo[a,1].
. 1/q fo/g_fgleLp[a7b]
<< If'g—1dl,|/; |;2qd8 p>1, (5.1)
9(s)| 11 _
e 1’
P
Hf/g fg Hlsupse[t:p}([xt]) {|g(i)| }
or, equivalently
g (£) f (x) = [ () g (z)]
(11£'9— 191l | s i 9~ 19 € Lo la.],
1/q fo/g_fgleLp[a7b]
<9 If'g=fgl, 19 g @[] mds p>1,
1.1 _
24 2= 1’
P g
l / 1
1579 = £9/ 19 (1) 9 (@) 59P.epe oy { e |

(5.2)
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Proof. It f and g are absolutely continuous and g (t) # 0 for all ¢t € [a,b], then
f/g is absolutely continuous on the interval [a, b] and

N O0)
/t<g<s>)d3‘g<x> g ()
for any t,x € [a,b] with x # t.

" [ a- [ L@s0) 1000,

then we get the following identity

1e)_J0_ [ 101 0d 6,
5)

g(x) g(t)

s (5.3)

for any ¢,z € [a,b] .
Taklng the modulus in (5.3) we have

t / /
g(z) t) )
/ /
S / s 2<>g<3>|d5 .
‘ \9 (s)]
and utilizing Holder’s integral inequality we deduce
( xr
SUD etz | (8) 9 (8) = f(5) 9" (s)] |, ‘g(ﬁds ,
Tl ! p 1/p T 1 1/a p> 17
L< |1 (s)g(s) = [ () g ()P ds|"" | [ s 1h1
lg(s)] > + p 1,
17 () 9.(5) = £ () 9 () ds| supcppyony { i
(19— fo'll | s
oo |t g(s)* 7]
1/q p>1
/ ! T 1 )
<q W19, \f omds Lyl_q
1
\ 19— £9'll, SUPset.a)(e.) {W}
and the inequality (5.1) is proved. O

The following particular case extends Pompeiu’s inequality to other p-norms
than p = oo obtained in (5.2).



26 S.S. DRAGOMIR

Corollary 5.2. Let f : [a,b] — C be an absolutely continuous function on the
interval [a,b] with b > a > 0. Then for any t,x € [a,b] we have

fz)  f()
T t
y if f—Lf € Ly,la,b]
<< = I =0, = — | ERE (5.5)
pte= b
L = 2Fl sy
or, equivalently
tf (x) = f (1)]
(S = Cf oo |2 — ] if f—Lf € Lo [a,b],

xd qa |1 sz—ﬁf/EL a,b
m b el = IS e

IN

L If =7l i
where £ (t) =t,t € [a,b].

The proof follows by (5.1) for g (t) =€ (t) =t, t € [a,b] .
The general case for power functions is as follows.

Corollary 5.3. Let f : [a,b] — C be an absolutely continuous function on the
interval [a,b] with b >a > 0. If r € R, r # 0, then for any t,z € [a,b] we have

flx)  f@)
x” tr
(FIFC=rfll|E =& i f0=rf € Lucla,b],
1f'e—rfl,
1 1 1 1
[T—q(r+D)] | s — e |5 forr # =
2 (5.7)
lnzx —Int|, forr= —%
if fill —rf e Lp[aab]>
L 1f¢—=rfl, _min{xr}rl,tr+l}7
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or, equivalently

|t°f () — 2" f (2)]

(LA = rfll 1t —aT| i FO—rf € Lo [a,1].

e rfl,
1 r
[1—q(r+1)] ‘xl—Q(t”-l)—T - q('r+1) = fOT r 7& —=
. (5.8)
" |lnx —Int|, forr= _le

if fll —rf e Lyla,b],

IN

! tT T
\ Hf g - Tle min{xr‘{i,t"“'l}’
where p > 1,%+%:1.

The proof follows by (5.1) for g (t) =", t € [a,b]. The details for calculations
are omitted.
We have the following result for exponential.

Corollary 5.4. Let f : [a,b] — C be an absolutely continuous function on the
interval [a,b] and o € R, a # 0. Then for any t,x € |a,b] we have

fle) —f@)

exp (iax)  exp (iat)

(If' —iafllole—t]  if f'—iaf € Lo a,b],

y if f/—iaf € L,[a,b
If" = dafll, [ —¢[* p>1 (5.9)
RS

IN

L L —dafll

or, equivalently

lexp (iat) f (x) — f (t) exp (iaz)]

(I —iafllle—t if f'—iaf € Lolab],

if f'—iaf € L,[a,b
WW—mﬂum—ﬂW p>1 (5.10)
sta=1

IN

\ ”f/—ZOéle
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5.2. An Inequality Generalizing Ostrowski’s. The following result holds:
Theorem 5.5 (Dragomir, 2013 [8]). Let f, g : [a,b] — C be absolutely continuous

functions on the interval [a,b]. If 0 < m < |g(t)] < M < oo for any t € [a,b],
then

‘f(x)/ab Bdt — g /f dt‘

( atb\ 2
79— sl o-a? |1+ (52)] wr9-sd € Lata

MY’ o if '9— £ € Ly[a,b]
S( ) 17 = foll, [C=ot e

m 1+1/q 1 _]I)_Ti’ 1
L g —fdll, (b—a)
(5.11)
for any x € [a,b)].
Proof. Utilizing (5.2) we have
b
‘f(x)/ Bt — g /f dt‘
b
< [lo) @) - F 9] d
(1779 = 19l la @)1 (lg 1| s]) .
- 1/q
<3 189 = 160l @1 7 (19 O1]; mmas| ) ot (5.12)
\ 1f'g — fd'lly 19 ()] fj (|g ()| SUDs et 2 (1) {m}) dt

for any z € [a, ], which is of interest in itself.
Since 0 <m < |g(t)| < M < oo for any t € [a,b], then

<m>\/ab (1o 5| )t < (%)zfabm—t\dt
G [+ (55) |
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1/q
dt
¢ g
M2 P " MN\? (b—2)" ™7 4 (z — q)' T/
< (= \x—t| dt = [ =
m 1+1/q

|/ ('g o))< () [a= (i) v-o

for any z € [a,b] and by (5.12) we get the desired result (5.11). O
(t

ds

(s)[*

Remark 5.6. If we take g (t) = 1,t € [a, ] in the first inequality (5.11) we recap-
ture Ostrowski’s inequality.

Corollary 5.7. With the assumptions in Theorem 5.5 we have the midpoint
mequalities

o(55) [owu=o(52) [0

(1 0—a)’ 19— fd 0 if f'9— g € Lo la,b],
M 2
< ()
" ) if ['9 = 19" € Lyla,b]
g - o) - g, P>
\ p + = L
(5.13)

The following result also holds:

Theorem 5.8 (Dragomir, 2013 [3]). Let f, g : [a,b] — C be absolutely continuous
functwns on the interval [a,b], g (x) # 0 for x € [a,b] and g% € Lo [a,b]. Then

10 - ’

g (x) t) dt / fe)dt

(N f'g—fd'll. [Pl )|z —t|dt, if f'g— fg € Loo[a,b],
if f'9— fg' € Lyla,b

<|lg2|. xS If'g—Foll, [ lg Oz —¢Ydt  p>1,
l_|_l:17
p q

L 179 = £d'lly Jy 1o (£)] dt
(5.14)
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for any x € [a,b].
Proof. Utilizing (5.2) we have

gg; /abg(t)dt—/abf(t)dt‘

(79— f9ll S (lg @)

I “’dSD

IN

|uy—fmuﬁ(mu>

w1l g 5.15
I amas] ) e (5.15)

b
\ 19— fd'll, [, <|9 ()] SUDseft (1) {@}) dt

for any z € [a, b].
Since

1/q
o < o2l -1, 2| ot

oo

=
——_ds
[‘MQWq

R SR

for any z,t € [a,b], then on making use of (5.15) we get the desired result
(5.14). O

We have the midpoint inequalities:

Corollary 5.9. With the assumptions of Theorem 5.8 we have
f (a+b / /

t)dt — f(t)dt
g (a+b)

(119 = £9'llo J} g 0] |52 —t] dt, if f'g— fg' € Lac[a,b],

< g7l x
, e if f'9—f9' € Ly|a,b]
1f'g—rdll, [ lg @]t =t dt  p>1,

1 1 _
( p =1

(5.16)
We have the following exponential version of Ostrowski’s inequality as well:

Theorem 5.10 (Dragomir, 2013 [3]). Let f : [a,b] — C be an absolutely contin-
uous function on the interval [a,b] and o € R, o # 0. Then for any = € [a,b] we



A SURVEY ON OSTROWSKI TYPE INEQUALITIES 31

have

exp (ia (b —z)) — exp (—ia (x — a

))f(:v)—/abf(t)dt'

1o

t—atd

I iafl 0= a2 |1+ (55 ] 7= ios € Lot

if ['—iaf
< , . (b—z) /94 (g—a) 1 H1/a € Lp [CL, b] (517)
||f - ZOéf“p 1+1/q ) p > 17
1 1 _
> + i 1,

L L = dafll; -

Proof. If we write the inequality (5.12) for g (t) = exp (iat), t € [a,b], then we
get

‘ f () / b exp (iat) dt — exp (iax) / ’ Ft) dt‘

(N —iaf|y, [P]e—t]dt, if [/ —iaf € Ly [a,b]
if f'—iaf
. b 1 € L [(l, b]
< S N —iafll, lg @) ) o -t dt, pp> 1
1,1 _
> + i 1
L —daflly,
which, after simple calculation, is equivalent with (5.17).
The details are omitted. O

Corollary 5.11. With the assumptions of Theorem 5.10 we have the midpoint
mequalities

o 10 () —ew Cnl59)  (048Y _ 1y

(10

( L\ f —iaf|, (b—a)?, if f' —iaf € Lo [a,b],

IN

(5.18)

141 : if f' —iof € Lyla, 0]
\ s (b — ) T —daf], p>17%+§=§,
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or, equivalently

2sin(o<("‘7“>)f(a‘2*b) _/abf(wdt

(0%

LI —iafll (b—a)®, if f' —iaf € Lo [a,b],

(5.19)

IN

, if f'—iaf € L,[a,b
b= —iafl,, TS i0SE bl
p g )

a7 (

5.3. An Application for CBS-Inequality. The following inequality is well
known in the literature as the Cauchy-Bunyakovsky-Schwarz inequality, or the

CBS-inequality, for short:

t)dt

2 b b
< / F @R d / g ()2 dt, (5.20)

provided that f,g € Lo |a,].
We have the following result concerning some reverses of the CBS-inequality

Theorem 5.12 (Dragomir, 2013 [3]). Let f, g : [a,b] — C be absolutely continu
ous functions on the interval [a,b] with g (t) # 0 for all t € [a,b]. Then

b b
og/ |g<t>|2dt/ Pt -

’ 1f5 — f7 <f 9 (O] dt) (Lbﬁdt)z? i {77 € Luola.].

#EL[a,b]

f§ fg € Lyla,b],

1 2/q € La,b]
S — X 1— —/ b; . ‘ ‘2(1
3 g = sl ([g OF ) (17 pbamat) i W7
11 _
> T = 1,

173~ £17 (2 1o (0 ar) esssupici { i
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Proof. Utilising the inequality (5.2) we have

g @) f (x) = f(t)g(x)

( - if f'g —
15— 17l s S
ﬁf%—ﬁg
< / q E Lp a/7 b 522
=3 g —f7l,19) g L|QWM8 pt (5.22)
1 1 _
> + 2 1,
1= —/ 1
175 = 131 19 (8) 9 ()| 5uPsefe ey { 57 }
for any t,z € [a,b].
i € [a,b]” we have

Taking the square in (5.22) and integrating over (¢, x)

[0 9 @) dide

IR 2@‘ﬁm;

(rg— 171 [ () g
(5.23)

s‘ dtdzx,

|2"

1f'g— £330 [2 19 (1) g

IN

— - b rb
17— S35 2 S 19 () 9 (@)1 UPcpe oy { e } b

Observe that

2
() g(ac)’ dtdx

// 9017 (a |—2Re[ OF )7 (09 @)] +1a @) |f ©)) deda
ZQM oo ar |17 - t],
[/ [rgmg( i ] i < (/:|g<t>\2dt)2(/ab ,g(lt)ﬁdt)Q,
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[ [ owowr [
(o) ([ )

2/q

dtdx

and

b b 1
[ [ fswswr s {—Lobaas
o Ja selta)(z,t) g (s)]
b 2
) 1
< (/ lg ()] dt) ess sup { 4},
o tela] Ulg (1)

then by (5.23) we get the desired result (5.21). O

10.

11.

12.

13.
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