
Khayyam J. Math. 7 (2021), no. 2, 187-200
DOI: 10.22034/kjm.2020.169670.1308

THE CORRESPONDENCE OF FUSION FRAMES AND
FRAMES IN HILBERT C∗-MODULES AND FINITE GABOR
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Abstract. We show that fusion frames in a finite-dimensional Hilbert space
H correspond to frames in a Hilbert C∗-module B (Cn). Moreover, we show
that every tight fusion frame (resp. Riesz fusion basis) in Cn corresponds to
a tight frame (resp. a Riesz basis) in the Hilbert C∗-module B (Cn). Then,
we use this fact to characterize the dual of a Riesz fusion basis. Finally, we
introduce Gabor fusion frames as a new notion.

1. Introduction

Fusion frames were originally called frames of subspaces introduced by Casazza
and Kutyniok [10]. Fusion frames are a generalization of frames, which are useful
for robust and stable representation of a signal. More Precisely, in the frame
theory, a signal is represented by the magnitude of the projection of the signal
on frame vectors. However, in the fusion frame theory, a signal is represented by
a collection of vectors, in which their entries are equal to the inner product of
the signal and orthogonal basis of subspaces of the fusion frame. Fusion frames
have been applied in several different fields, such as sampling theory [12], data
quantization [7], coding [6], image processing [8], time-frequency analysis [11],
and speech recognition [5].

Many mathematicians have generalized the notion of a frame in a Hilbert space
to a frame in a Hilbert C∗-module and achieved significant results. Standard
frames in Hilbert C∗-modules over unital C∗-algebras were first defined by Frank
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and Larson in 1998 [14]. However, the case of Hilbert C∗-module over nonunital
C∗-algebra was investigated in [19] as well as in [4]. The most significant advan-
tage of frames in Hilbert C∗-module to frames in Hilbert space is the additional
degree of freedom coming from C∗-algebra of coefficients. Therefore, similar pro-
cedures used for frames in Hilbert spaces are applied to deal with frames in Hilbert
C∗-modules.

The Gabor transform as the set of all time-frequency shifts of a single vector in
Cn has profound implications in signal processing. Such a frame is an equal norm
tight frame that is maximally robust to erasures, a fact which allows the recovery
of the original signal even if some parts of the information are lost; see [9]. In
addition, the Gabor transform is used to determine the sinusoidal frequency and
phase content of local sections of a signal as it changes over time.

In this article, we show that every fusion frame in Cn is a frame in Hilbert C∗-
module B (Cn) and vice versa. Thus, it is clear that they share similar properties
and results in different interpretations. We also define a Gabor fusion frame using
modular frames in Hilbert C∗-module B (Cn). We can use similar procedures,
using modular frames in Hilbert C∗-module B (Cn), to define generalized wavelet
fusion frames [16] and Galois wavelet fusion frames [15].

This article is structured as follows: In Section 2, we start with preliminaries
about fusion frames and frames in Hilbert C∗-modules and some characteristics
of them. Moreover, we present a brief summary of Gabor frames, which is useful
in the construction of Gabor fusion frames. In section 3, we present the equiva-
lence of fusion frames and frames in Hilbert C∗-modules. Then, we discuss some
properties of these two notions and show that they share similar properties. We
also argue the unique dual fusion sequence for a Riesz fusion basis by using the
equivalence of these two notions. Finally, we devote Section 4 to introducing a
new notion, Gabor fusion frame, using modular frames in Hilbert C∗-modules
and explore some of its properties.

2. Preliminaries and notation

We recall that a fusion frame in a finite-dimensional Hilbert space Cn is a
family of subspaces {Wi}Ni=1 in Cn and a family of positive weights {ωi}Ni=1 such
that there exist two positive constants A and B with A ≤ B and for every x ∈ Cn

A‖x‖2 ≤
N∑
i=1

ω2
i ‖PWi

x‖2 ≤ B‖x‖2, (2.1)

where PWi
is the orthogonal projection onto Wi. In this article, we use fusion

frames with weights equal to one. Therefore, in this case, (2.1) takes the form

A‖x‖2 ≤
N∑
i=1

‖PWi
x‖2 ≤ B‖x‖2. (2.2)

The constants A and B are called the fusion frame bounds. Furthermore, the
fusion frame is tight, whenever A = B. Note that the second inequality of (2.2)
is always true as x belongs to the finite-dimensional space Cn. A fusion frame
{Wi}Ni=1 is said to be an orthonormal fusion basis if Cn = ⊕N

i=1Wi, and it is a Riesz
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decomposition of Cn if for every x ∈ Cn, there exists a unique choice of xi ∈ Wi

such that x =
∑N

i=1 xi. Moreover, a family of subspaces {Wi}Ni=1 of Cn is called
a Riesz fusion basis whenever it is complete for Cn and there exist two positive
constants 0 < C ≤ D < ∞ such that for any arbitrary vector {xi}Ni=1 ∈ ⊕N

i=1Wi

we have

C

N∑
i=1

‖xi‖2 ≤ ‖
N∑
i=1

xi‖2 ≤ D

N∑
i=1

‖xi‖2.

It is clear that any Riesz fusion basis is a fusion frame and that also a fusion
frame is a Riesz basis if and only if it is a Riesz decomposition for Cn [10].

To define the operators associated with a fusion frame, we assume the Hilbert
space

⊕N
i=1Wi =

{
{xi}Ni=1 : xi ∈ Wi

}
,

with the inner product

〈{xi}Ni=1, {yi}Ni=1〉 =
N∑
i=1

〈xi,yi〉.

The analysis operator TW : Cn → ⊕N
i=1Wi for any x ∈ Cn is defined as

TW (x) = {PWi
x}Ni=1.

The adjoint of the analysis operator, T ∗
W : ⊕N

i=1Wi → Cn is called the synthesis
operator, and it is given by

T ∗
W

(
{xi}Ni=1

)
=

N∑
i=1

xi.

Let {Wi}Ni=1 be a fusion frame. The fusion frame operator SW : Cn → Cn is
defined by

SWx =
N∑
i=1

PWi
x,

which is an invertible and positive operator. Consequently, we have

x =
N∑
i=1

S−1
W PWi

x

for every x ∈ Cn. The family {S−1
W Wi}Ni=1 is called the canonical dual fusion frame

associated with {Wi}Ni=1. We also call a Bessel fusion sequence {Vi}Ni=1 as a dual
fusion frame of {Wi}Ni=1 if and only if there exists an operator ΦVW : ⊕N

i=1Wi →
⊕N

i=1Vi such that TVΦVWT ∗
W = ICn .

Moreover, a Hilbert C∗-module over a C∗-algebra A is a left A-module E with
an A-valued inner product 〈·, ·〉 : E×E → A such that E is a Banach space with
respect to the norm ‖x‖ = ‖〈x,x〉‖ 1

2 . Recall that the inner product on E has the
following properties:

• 〈x,x〉 ≥ 0,
• 〈x,x〉 = 0 ⇔ x = 0,
• 〈x,y + z〉 = 〈x,y〉+ 〈x, z〉,
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• 〈ax,y〉 = a〈x,y〉,
• 〈x,y〉∗ = 〈y,x〉,

where x,y, z ∈ E and a ∈ A. We say that E is countably generated if there
exists a sequence {xi}i∈I in E such that the closed linear span of the set {xia :
i ∈ I, a ∈ A} is equal to E. It is clear that B (Cn) is a finitely generated Hilbert
C∗-module over itself.

Let E be a Hilbert C∗-module. A finite sequence {xi}Ni=1 in E is called a frame
for E if there exist two positive constants A and B such that for every x ∈ E

A‖〈x,x〉‖ ≤ ‖
N∑
i=1

〈x,xi〉〈xi,x〉‖ ≤ B‖〈x,x〉‖. (2.3)

If only the second inequality of (2.3) is satisfied, then we say that {xi}Ni=1 is a
Bessel sequence. The constants A and B are called frame bounds. If A = B = 1,
that is, if for every x ∈ E

N∑
i=1

〈x,xi〉〈xi,x〉 = 〈x,x〉,

then the sequence {xi}Ni=1 is called a Parseval frame for E.
Finally, we provide a brief summary of Gabor frames, which is useful to con-

struct our tight fusion frames. We index the components of a vector x ∈ Cn by
{0, 1, . . . , n − 1}, that is, the cyclic group ZN . We write x (m) instead of xm to
avoid algebraic operations on indices.

The discrete Fourier transform is the base of Gabor analysis, which is defined
as

Fx (l) = x̂ (l) =
n−1∑
m=0

x (m) e−2πilm
n .

Gabor analysis is concerned with the interplay of the Fourier transform, trans-
lation operators, and modulation operators. The translation operator Tk : CN →
CN is given by

Tkx (m) = x (m− k) .

The operator Tk alters the position of the entries of x. Note that m−k is achieved
modulo n. The modulation operator Mℓ : C

n → Cn is given by

Mlx (m) = e2πil
m
n x (m) .

Modulation operators are implemented as the pointwise product of the vector
with harmonics e−2πiℓ ·

n .
Translation and modulation operators are referred to as time-shift and frequency-

shift operators, respectively. The time-frequency shift operator π (k, ℓ) is the
combination of a translation operator and a modulation operator

π (k, ℓ) : Cn → Cn π (k, ℓ)x = MlTkx.
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Hence, the short time-Fourier transform Vy : Cn → Cn×n with respect to the
window y ∈ Cn can be written as

Vyx (k, l) = 〈x, π (k, l)y〉 =
n−1∑
m=0

x (m)y (m− k)e−2πilm
n , x ∈ Cn.

The short time-Fourier transform generally uses a window function y, supported
at a neighborhood of zero that is translated by k. Therefore, the pointwise
product with x selects a portion of x centered at k, and this portion is analyzed
by using the Fourier transform. The inversion formula for the short time-Fourier
transform is (see [2, 3, 18])

x (m) =
1

n‖y‖22

n−1∑
k=0

n−1∑
l=0

Vϕx (k, ℓ)y (m− k) e2πiℓ
m
n

=
1

n‖y‖22

n−1∑
k=0

n−1∑
l=0

〈x, π (k, l)y〉π (k, l)y (m) , x ∈ Cn.

Hence, it is obvious that for all y 6= 0, the system is an n‖y‖22-tight frame.

3. Correspondence between Fusion frames in Cn and frames
in Hilbert C∗-module B (Cn)

We start by briefly reviewing fusion frames in finite-dimensional Hilbert spaces
and frames in Hilbert C∗-modules. In this section, we present a relationship be-
tween fusion frames in Cn and frames in Hilbert C∗-module B (Cn). Moreover,
B (Cn) is a C∗-algebra with multiplication as the matrix multiplication. There-
fore, it is a Hilbert C∗-module on itself with the inner product defined as

〈A,B〉 = AB∗, A,B ∈ B (Cn) ,

where ∗ is the usual conjugate transpose of a matrix. Then, we explore some
properties of these two notions and find out how they are related.

First, we investigate how the fusion frame elements can be represented in
B (Cn). Let W be a subspace of Cn and let {e1, . . . , em} be an orthonormal
basis for W . We present the subspace W by the projection matrix PW , which is
equal to UWU∗

W , where the matrix UW is of the form
UW = [e1| · · · |em] ,

and {e1, . . . , em} are the columns of UW . We define a map ˜ i : Cn → Cn×n

by adding some zero vectors to rows of a matrix, so that a vector x ∈ Cn is
transferred to an n× n matrix X̃ i := [0| · · · |x|0| · · · |0]T , where the ith row of X̃
is equal to x and other rows are equal to 0 and T is the transpose of a matrix.
By this process, we have PW and X̃1 as two elements of B (Cn), which lead the
product of these two elements are well-defined.

Our next theorem shows that fusion frames are frames in Hilbert C∗-module,
and as a result, they share similar properties.

Theorem 3.1. Assume that {Wi}Ni=1 is a family of subspaces of Cn and that PWi

is the matrix associated to Wi. Then, the following statements are equivalent:
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(i) {Wi}Ni=1 is a fusion frame for Cn.
(ii) {PWi

}Ni=1 is a frame for B (Cn).

Proof. (i) → (ii) Let {Wi}Ni=1 be a fusion frame with the minimum and the max-
imum bounds A and B, respectively. Therefore, for every x ∈ Cn

A‖x‖2 ≤
N∑
i=1

‖PWi
x‖2 ≤ B‖x‖2.

Let X̃1 be the associated matrix with x. Then,

〈X̃1, PWi
〉 = [x, 0, . . . , 0]T

[
ei1, . . . , e

i
m

] [
ei1, . . . , e

i
m

]T
=

[
m∑
j=1

〈x, eij〉eij, 0, . . . , 0

]T

= P̃Wi
x
1
.

Assume that Z = [x1, . . . ,xn]
T ∈ B (Cn) is given. We have

‖
N∑
k=1

〈Z, PWk
〉〈PWk

, Z〉‖1,1 = ‖
N∑
k=1

〈
n∑

j=1

X̃j
j, PWk

〉〈PWk
,

n∑
l=1

X̃ l
l〉‖1,1

= ‖
N∑
k=1

n∑
j=1

n∑
l=1

X̃j
jP

∗
Wk

PWk
X̃ l∗

l‖1,1

= ‖
N∑
k=1

n∑
j=1

n∑
l=1

X̃j
jPWk

X̃ l∗
l‖1,1

=
n∑

j=1

n∑
l=1

|
N∑
k=1

m∑
i=1

〈xj, ei
k〉〈eik,xl〉|

=
n∑

j=1

N∑
k=1

m∑
i=1

|〈xj, ei
k〉|2

+
n∑

j,l=1,j ̸=l

|
N∑
k=1

m∑
i=1

〈xj, ei
k〉〈eik, xl〉|

=
n∑

j=1

N∑
k=1

‖PWk
xj‖2 +

n∑
j,l=1,j ̸=l

|
N∑
k=1

m∑
i=1

〈xj, ei
k〉〈eik,xl〉|

≥ A

n∑
j=1

‖xj‖2.

(3.1)
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On the other hand,

‖〈Z,Z〉‖1,1 =
n∑

j,l=1

|〈xj,xl〉| ≤
n∑

j=1

‖xj‖2 +
∑

j,l=1n,j ̸=l

‖xj‖‖xl‖

≤
n∑

j=1

‖xj‖2 +
∑

j,l=1n,j ̸=l

1

2

(
‖xj‖2 + ‖xl‖2

)
=

n∑
j=1

‖xj‖2

+ (n− 1)
n∑

j=1

‖xj‖2 = n

n∑
j=1

‖xj‖2.

(3.2)

By equations (3.1) and (3.2), we have

‖
N∑
k=1

〈Z, PWk
〉〈PWk

, Z〉‖1,1 ≥ A
n∑

j=1

‖xj‖2 ≥
A

n
‖〈Z,Z〉‖1,1. (3.3)

All norms are equivalent on the finite-dimensional Hilbert C∗-module B (Cn), so
inequality (3.3) satisfies in the operator norm.

On the other hand, by (3.1), we have

‖
N∑
k=1

〈Z, PWk
〉〈PWk

, Z〉‖1,1 =
n∑

j=1

N∑
k=1

‖PWk
xj‖2 +

n∑
j,l=1,j ̸=l

|
N∑
k=1

m∑
i=1

〈xj, ei
k〉〈eik,xl〉|

=
n∑

j=1

N∑
k=1

‖PWk
xj‖2 +

n∑
j,l=1,j ̸=l

|
N∑
k=1

|〈PWk
xj, PWk

xl〉|.

(3.4)

By the same process as we have done in (3.2), the following inequalities are
resulted from (3.4):

‖
N∑
k=1

〈Z, PWk
〉〈PWk

, Z〉‖1,1 ≤ n
N∑
k=1

n∑
j=1

‖PWk
xj‖2 ≤ nB

n∑
j=1

‖xj‖2. (3.5)

Moreover,

‖〈Z,Z〉‖1,1 =
n∑

j,l=1

|〈xj,xl〉| ≥
n∑

j=1

‖xj‖2. (3.6)

By equations (3.5) and (3.6), we have

‖
N∑
k=1

〈Z, PWk
〉〈PWk

, Z〉‖1,1 ≤ nB‖〈Z,Z〉‖1,1. (3.7)

The inequality (3.7) satisfies in the operator norm. Because, all norms are equiv-
alent in B (Cn).
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(ii) → (i) Let {PWi
}Ni=1 be a frame in the Hilbert C∗-module B (Cn). Therefore,

there exist two positive constants A ≤ B such that for every Z ∈ B (Cn), we have

A‖〈Z,Z〉‖op ≤ ‖
N∑
k=1

〈Z, PWk
〉〈PWk

, Z〉‖op ≤ B‖〈Z,Z〉‖op.

Since, all norms are equivalent in B (Cn), we have

A‖〈Z,Z〉‖1,1 ≤ ‖
N∑
k=1

〈Z, PWk
〉〈PWk

, Z〉‖1,1 ≤ B‖〈Z,Z〉‖1,1. (3.8)

For every x ∈ Cn, we assume the associated matrix X̃1. Therefore,
‖〈X̃1, X̃1〉‖1,1 = |〈x,x〉| = ‖x‖2 (3.9)

and

‖
N∑
k=1

〈X̃1, PWk
〉〈PWk

, X̃1〉‖1,1 = |
N∑
k=1

m∑
i=1

|〈x, eik〉|2| =
N∑
k=1

‖PWk
x‖2. (3.10)

By (3.8)–(3.10), the following inequality satisfies for every x ∈ Cn:

A‖x‖2 ≤
N∑
i=1

‖PWi
x‖2 ≤ B‖x‖2.

□
Now we check the correspondence between the analysis, synthesis, and frame

operators of a fusion frame {Wi}Ni=1 in Cn and its associated frame {PWi
}Ni=1 in the

C∗-algebra B (Cn). The analysis operator for {PWi
}Ni=1 in the C∗-algebra B (Cn)

is
T : B (Cn) → (B (Cn))N

X 7→ {〈X,PWi
〉}Ni=1,

and the analysis operator for X̃1 = [x|0| · · · |0]T is

T
(
X̃1

)
= {〈X̃1, PWi

〉}Ni=1 = {P̃Wi
x
1
}Ni=1,

which corresponds to the analysis operator of the fusion frame {Wi}Ni=1 in Cn. As
a result, the synthesis and frame operators of {PWi

}Ni=1 in the C∗-algebra B (Cn)
must be equal to those of the fusion frame {Wi}Ni=1 in Cn;

T ∗ = (B (Cn))N → B (Cn) ,

{Xi}Ni=1 7→
N∑
i=1

XiPWi
.

Let xi ∈ Wi for each i = 1, . . . , N and let X̃1
i be the associated matrix of xi.

Then, the synthesis operator of {PWi
}Ni=1 in the C∗-algebra B (Cn) is equal to

T ∗
(
{X̃1

i }Ni=1

)
=

N∑
i=1

X̃1
i P

∗
Wi

=
N∑
i=1

P̃Wi
xi

1

=
N∑
i=1

X̃1
i .
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Note that the equality XPWi
= P̃Wi

x
1

is true, since {eij}ni
j=1 is also an orthonormal

basis for Wi, where {eij}ni
j=1 is an orthonormal basis for Wi. The frame operator

is concluded as the combination of the synthesis and analysis operators, so it is
the same as the frame operator of the fusion frame {Wi}Ni=1. More precisely,

S
(
X̃1

)
=

N∑
i=1

〈X̃1, PWi
〉PWi

=
N∑
i=1

X̃1P ∗
Wi
PWi

=
N∑
i=1

P̃Wi
x
1
PWi

=
N∑
i=1

˜PWi
PWi

x
1

=
N∑
i=1

P̃Wi
x
1
.

One of the most favorite types of frames is tight frames, which attract the atten-
tion of many researchers. In the next theorem, we show that the fusion frame
{Wi}Ni=1 is tight if and only if {PWi

}Ni=1 is a tight frame in the Hilbert C∗-module
B (Cn).
Theorem 3.2. Assume that {Wi}Ni=1 is a sequence of subspaces in Cn. The
following statements are equivalent:

(i) {Wi}Ni=1 is an A-tight fusion frame in Cn.
(ii) {PWi

}Ni=1 is an A-tight frame in the Hilbert C∗-module B (Cn).
Proof. (i) → (ii) By the assumption, {Wi}Ni=1 is an A-tight fusion frame, so for
every x ∈ Cn, we have

x =
1

A

N∑
i=1

PWi
x (3.11)

or

X̃1 =
1

A

N∑
i=1

〈X̃1, PWi
〉PWi

. (3.12)

We assume X = [x1| · · · |xn] ∈ B (Cn) as
∑N

i=1 X̃
i
i , where each X̃ i

i contains the
ith row of X and other rows are equal to zero. Since (3.11) holds for every xi,
(3.12) is valid for every X ∈ B (Cn). Thus, {PWi

}Ni=1 is an A-tight frame in the
Hilbert C∗-module B (Cn).

(ii) → (i) Assume that {PWi
}Ni=1 is an A-tight frame, so for every X ∈ B (Cn),

we have

X =
1

A

N∑
i=1

〈X,PWi
〉PWi

.

Thus, for every x ∈ Cn

X̃1 =
1

A

N∑
i=1

〈X̃1, PWi
〉PWi

. (3.13)

Now equality (3.13) can be written as

X̃1 =
1

A

N∑
i=1

X̃1P ∗
Wi
PWi

=
1

A

N∑
i=1

X̃1PWi
=

1

A

N∑
i=1

P̃Wi
x
1
.

Therefore, {Wi}Ni=1 is an A-tight frame. □
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Now we introduce the notion of Riesz fusion bases using Riesz bases in Hilbert
C∗-module and show that it coincides with Riesz decomposition of fusion frames.
We recall that a frame {Xj}Nj=1 is a Riesz basis if and only if for each j = 1, . . . , N ,
Xj 6= 0 and that if

∑N
j=1AjXj = 0 for some sequence {Aj}Nj=1 ∈ ℓ2 (B (Cn)), then

AjXj = 0, for each j = 1, . . . , N ; see [17]. The next theorem shows that every
fusion Riesz basis in Cn is a Riesz basis in the Hilbert C∗-module B (Cn) and vice
versa.

Theorem 3.3. Let {Wj}Nj=1 be a fusion frame in Cn. The following statements
are equivalent:

(i) {PWj
}Nj=1 is a Riesz basis in B (Cn).

(ii) {Wj}Nj=1 is a Riesz fusion basis in Cn.

Proof. (i) → (ii) Assume
∑N

i=1 xi = 0. So,
∑N

i=1 PWi
xi = 0 and

∑N
i=1 X̃

1
i PWi

= 0.
Since {PWi

}Ni=1 is a Riesz basis in B (Cn), we have X̃1
i PWi

= 0 for each i = 1, . . . , N
or PWi

xi = xi = 0, which means that {Wj}Nj=1 is a Riesz fusion basis in Cn.
(ii) → (i) Assume that {Wi}Ni=1 is a Riesz fusion basis. Then every x ∈ Cn has

a unique representation based on {Wi}Ni=1, which means that if
∑N

i=1 PWi
xi = 0,

then PWi
xi = 0 for all i = 1, . . . , N for all {xi}Ni=1 ∈ ⊕N

i=1Wi. Now assume∑N
i=1XiPWi

= 0. We can rewrite it as
∑N

i=1

∑n
j=1 X̃

j
ij
PWi

= 0, where X̃j
ij

is the
matrix with jth row is equal to the jth row of Xi and other rows are equal to
zero. Therefore, for each i = 1, . . . , n, we have

∑N
j=1 X̃

j
ij
PWi

= 0. As a result∑N
ji=1 PWi

xij = 0. Hence, PWi
xij = 0 since {Wi}Ni=1 is a Riesz fusion basis.

Therefore, X̃j
ij
PWi

= 0 and then XiPWi
= 0. □

We recall that a sequence {X}Ni=1 is a dual frame of {Yi}Ni=1 in B (Cn) if

X =
N∑
i=1

〈X,Yi〉Xi

for all X ∈ B (Cn). Therefore, we call the sequence of subspaces {Vi}Ni=1 of Cn a
dual of the fusion frame {Wi}Ni=1 if for all x ∈ Cn,

X̃1 =
N∑
i=1

〈X̃1, PWi
〉PVi

=
N∑
i=1

˜PVi
PWi

x
1

or

x =
N∑
i=1

PVi
PWi

x.

Now we study the dual of Riesz fusion bases in Cn. It is worth mentioning that
contrary to the Hilbert space situation, Riesz bases of Hilbert C∗-modules may
possess infinitely many dual frames due to the existence of zero divisors in C∗-
algebra of coefficients. Consequently, this property is satisfied for Riesz fusion
bases; see [17].

In the next corollary, we characterize the dual sequence of Riesz fusion bases,
which is a direct conclusion of Theorem 4.12 in [17].
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Corollary 3.4. Suppose that {Wi}Ni=1 is a fusion Riesz basis in Cn. Let {Vi}Ni=1

be a sequence of subspaces in Cn. The following statements are equivalent.
(i) {Vi}Ni=1 is a dual fusion frame of {Wi}Ni=1.
(ii) {Vi}Ni=1 is a dual fusion Bessel sequence of {Wi}Ni=1.
(iii) For each i = 1, . . . , N , PVi

= S−1PWi
+Zi, where S is the frame operator of

{Wi}Ni=1 and {Zi}Ni=1 is a Bessel sequence of B (Cn) satisfying 〈X,Zi〉PWi
=

0 for all X ∈ B (Cn) and i = 1, . . . , N .
Proof. Using Theorem 3.3, one may conclude that {PWi

}Ni=1 is a Riesz basis in
Hilbert C∗-module B (Cn). So by [17, Theorem 4.12], the proof is completed. □

The next Corollary concerns the dual fusion Riesz basis of a fusion Riesz basis
in Cn.

Corollary 3.5. Let {Wi}Ni=1 be a fusion Riesz basis and let {Vi}Ni=1 be a collection
of subspaces in Cn. Then {Vi}Ni=1 is a dual fusion Riesz basis of {Wi}Ni=1 if and
only if for each i = 1, . . . , N , PVi

= S−1PWi
+ Zi, where S is the frame operator

of {PWi
}Ni=1 and {Zi}Ni=1 is a Bessel sequence of B (Cn) with the property that

for each i = 1, . . . , N , there exists Ai ∈ B (Cn) such that Zi = AiS
−1PWi

and
〈X̃, PWi

〉AiX̃i = 0 for all x ∈ Cn.
Proof. Suppose that {Wi}Ni=1 is a Riesz fusion basis. Then by the Theorem 3.3,
{PWi

}Ni=1 is a Riesz basis for B (Cn). Now by the Theorem 4.13 in [17], the proof
is completed. □

Note that the only dual of a Riesz fusion basis of a Riesz fusion basis is its
canonical dual; see [1,10]. Therefore, {Zi}Ni=1 in Corollary 3.5 is the zero sequence.

4. Finite Gabor Fusion frames

The aim of this section is to introduce the Gabor fusion frame through modular
frames in Hilbert C∗-module B (Cn). Gabor frames on a finite-dimensional Hilbert
space were discussed in [13, 18]. We recall that a unitary system U on B (Cn) is
a set of unitary operators on B (Cn), which contains the identity operator. The
translation operator Tk on B (Cn) is defined as

Tk :B (Cn) → B (Cn) ,

Tk (X) = Tk

(
(x1, . . . ,xn)

T
)
= (Tk (x1) , . . . , Tk (xn))

T ,

where Tk is the usual translation operator on Cn. It is clear that the matrix Tk

is a unitary operator for B (Cn) and that T ∗
k = T −1

k = Tn−k.
Now the modulation operator on B (Cn) is

Ml :B (Cn) → B (Cn) ,

Ml (X) = Ml

(
(x1, . . . ,xn)

T
)
= (Ml (x1) , . . . ,Ml (xn))

T ,

where Ml is the usual modulation operator on Cn. Like the translation operator,
the modulation operator is also a unitary operator and M∗

l = M−1
l = Mn−l.

It is obvious that the combination of two unitary operators is a unitary opera-
tor. Therefore, the set {MlTk}N−1

k,l=0 constitutes a unitary system, which includes
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the identity operator when k = l = 0. The Gabor transform is then defined on
B (Cn) for the window matrix Φ ∈ B (Cn) as

VΦX (k, l) = 〈X,MlTkΦ〉.

Now we assume W as a subspace of Cn and PW ∈ B (Cn) as the projection
associated to W . Moreover, X̃ = (x,0, . . . ,0)T ∈ B (Cn) for any x ∈ Cn. Then,
the Gabor transform on B (Cn) can easily be transfered to the Gabor fusion
transform on Cn, which is defined by

VΦX (k, l) = 〈X̃1,MlTkPW 〉.

Indeed, the Gabor fusion transform is obtained through the projection of a signal
on the translation and modulation of a window subspace. The set {MlTkPW}N−1

k,l=0

is called a Gabor fusion system. If it constitutes a fusion frame in Cn, we call it a
Gabor fusion frame. In the next theorem, we show that for any subspace W of Cn

that satisfies some specified conditions, the Gabor fusion system {MlTkPW}N−1
k,l=0

is a Gabor fusion frame.

Theorem 4.1. Let W be a subspace of Cn and let {e1, . . . , et} be an orthonormal
basis for W with t ≤ n. Then, {TkMlPW}N−1

k,l=0 is a tight fusion frame for Cn.

Proof. For every x ∈ Cn, we have
n−1∑
k,l=0

‖MlTkPWx‖2 =
n−1∑
k,l=0

t∑
i=1

|〈x,MlTkei〉|2

=
t∑

i=1

n−1∑
k,l=0

|〈x,MlTkei〉|2

=
t∑

i=1

‖Veix‖22

= n
t∑

i=1

‖ei‖22‖x‖22

= tn‖x‖22.

Thus, {MlTkPW}N−1
k,l=0 is a tight fusion frame in Cn. □

The next theorem contains a relation between the notion of the canonical dual
of a Gabor fusion frame and of a Gabor fusion frame.

Theorem 4.2. If {TkMlPW}n−1
k,l=0 is a Gabor fusion frame for Cn in which W

is a subspace of Cn, then there exists a dual window subspace V in Cn such that
{TkMlPV }n−1

k,l=0 is a Gabor fusion frame.

Proof. Assume that SW is the Gabor fusion frame operator for {MlTkPW}n−1
k,l=0.

We first show that SW commutes with time-frequency shifts MsTr for r, s =
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0, . . . , n− 1. Indeed

(MsTr)
−1 SWMsTrX = (MsTr)

−1
n−1∑
k,l=0

〈MsTrX,MlTkPW 〉MlTkPW

=
n−1∑
k,l=0

〈X, (MsTr)
−1MlTkPW 〉 (MsTr)

−1MlTkPW

=
n−1∑
k,=0

〈X,Ml−sTk−rPW 〉Ml−sTk−rPW (4.1)

=
n−1∑
k,l=0

〈X,MlTkPW 〉MlTkPW

= SWX,

for x ∈ Cn. Equality (4.1) is achieved, since
(MsTr)

−1MlTkPW

=
(
(MsTr)

−1MlTky1, . . . , (MsTr)
−1MlTkyn

)T
=

(
e+2πil(k−r)Ml−sTk−ry1, . . . , e

+2πil(k−r)Ml−sTk−ryn

)T
= e−2πil(k−r)Ml−sTk−rPW .

So it is shown that SW commutes with MsTr for all r, s = 0, . . . , n − 1. Now
replacing X by S−1

W X, we get
SWMsTrS

−1
W X = MsTrSWS−1

W X = MsTrX.

□
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