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MULTI-DIMENSIONAL WAVELETS ON SOBOLEV SPACES
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Abstract. For admissible and integrable function ψ in L2(Rn), the multi-
dimensional continuous wavelet transform on Sobolev spaces is defined. The
inversion formula for this transform on Sobolev spaces is established, and as a
result, it is concluded that there is an isometry of Sobolev spaces Hs(Rn) into
H0,s(Rn × R+

0 × Sn−1), for arbitrary real s. Also, among other things, it is
shown that the range of this transform is a reproducing kernel Hilbert space
and the reproducing kernel is found.

1. Introduction and preliminaries

Wavelet analysis is a particular time-scale or space-scale representation of sig-
nals, which has become popular in physics, mathematics, and engineering in the
last decade. The transformed signal composed of the inner product with shifted
and scaled versions of a fixed function is called analyzing or basic wavelets. In the
literature, one often defines wavelet transform via an irreducible unitary repre-
sentation of group of affine linear transformations of the real axis (′ax+b′-group).
For a detailed description of these group theoretical aspects, we refer to [5–7].

Multi-dimensional wavelets may be derived from the similitude group of Rn(n >
1) denoted by SIM(n) = Rn × (R+

0 × So(n)), consisting of dilations, rotations,
and translations. This group has the following natural action on an n-dimensional
signal

fb,a,R(x) = [π(b, a, R)f ](x) = a−n/2f(a−1R−1(x− b)), (1.1)
for all (b, a, R) ∈ SIM(n). In [1, Theorem 14.2.1], it has been shown that the
operator defined in (1.1) is a unitary irreducible representation of SIM(n) in
L2(Rn). Also, this representation is square integrable. A vector 0 6= ψ ∈ L2(Rn)
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is called admissible if ≺ ψb,a,R, ψ �L2(Rn) is in L2(SIM(n)). Moreover, one can
check a vector ψ ∈ L2(Rn) is admissible if and only if it satisfies

cψ = (2π)nAn−1

∫
Rn

|ψ̂(k)|2 dk
|k|n

<∞, (1.2)

where An−1 =
∏n−1

k=2
2πk/2

Γ(k/2)
is the volume of So(n − 1). The admissible vector ψ

is called an admissible wavelet if ‖ψ‖ = 1. The continuous wavelet transform
corresponding to the wavelet ψ ∈ L2(Rn) is defined as

Wψf(b, a, R) = c
−1/2
ψ ≺ ψb,a,R, f �, (1.3)

for all f ∈ L2(Rn). Note that if the wavelet ψ is axially symmetric, that is,
So(n− 1)−invariant, then one can replace everywhere So(n) by So(n)

So(n−1)
' Sn−1,

the unit sphere in Rn. The rotation R becomes R ≡ R(ϖ), ϖ ∈ So(n− 1), and
continuous wavelet transform leads to Wψf(b, a,ϖ) ∈ L2(X, dυ), in which

X =
SIM(n)

So(n− 1)
= Rn × (R+

0 × Sn−1),

and dυ = da
an+1dϖdb is an SIM(n)−invariant measure for X (for more details

see [1]).

In [3], the discrete wavelet transform has been extended to the Sobolev spaces
by Daubechies, and the continuous wavelet transform on affine group has been
studied in [7]. In this article, we verify some known results for the extension of
multi-dimensional wavelet transform to Sobolev spaces. In particular, we show
that this continuous wavelet transform on Sobolev spaces is an isometry. Among
other things, we show that the range of multi-dimensional continuous wavelet
transform on Sobolev space is a reproducing kernel Hilbert space.

2. Main results

In this section, it is shown that the multi-dimensional wavelet transform of
Sobolev space Hs(Rn) into H0,s(Rn×R+

0 ×Sn−1) is an isometry, for arbitrary real
s. Also, we investigate that the range of this continuous wavelet is a reproducing
kernel Hilbert space and determine it. For the reader’s convenience, we review
the definition of Sobolev spaces (for more details one may see [4, 8]).

Suppose that k ∈ N, and let Hk be the space of all f ∈ L2(Rn) whose distri-
bution derivatives ∂αf are L2-functions, for multi-index α with |α| ≤ k. It has
been shown that Hk is a Hilbert space with the inner product

(f, g)k =
∑
|α|≤k

∫
Rn

(∂αf)(x)(∂αg)(x)dx,

for f, g ∈ Hk. It is more convenient to use an equivalent inner product defined
in terms of the Fourier transform. One can check that f ∈ Hk if and only if
(1 + |ξ|2)k/2f̂ ∈ L2(Rn) and that the norms f 7→ (

∑
|α|≤k ‖∂αf‖22)1/2 and f 7→
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‖(1+ |ξ|2)k/2f̂‖2 are equivalent. Furthermore, the Sobolev space Hs for any s ∈ R
is defined as

Hs(Rn) = {f ∈ S ′(Rn);

∫
(1 + |ξ|2)s|f̂(ξ)|2dξ <∞},

in which S ′(Rn) is the tempered distribution space. Moreover, the inner product
and norm on Hs(Rn) are given by

(f, g)s =

∫
Rn

(1 + |ξ|2)sf̂(ξ)ĝ(ξ)dξ

and
‖f‖s =

∫
Rn

(1 + |ξ|2)s|f̂(ξ)|2dξ.

In what follows, we assume that ψ ∈ L2(Rn) is an admissible wavelet and in-
tegrable. The multi-dimensional continuous wavelet transform is defined on the
similitude group SIM(n) as

Wψf(b, a,ϖ) = c
−1/2
ψ ≺ ψb,a,ϖ, f �, (2.1)

where f ∈ L2(Rn) and ψb,a,ϖ, cψ are as in (1.1) and (1.2), respectively. We now
prove that for f ∈ Hs(Rn), Wψf is in L2((R+

0 × Sn−1, da
an+1dϖ), Hs(Rn)) in which

L2((R+
0 × Sn−1,

da

an+1
dϖ), Hs(Rn))

={f ∈ Hs(Rn),

∫
R+
0 ×Sn−1

‖f(·, a,ϖ)‖2s
da

an+1
dϖ <∞}.

To this end, we need two auxiliary lemmas (Lemmas 2.1 and 2.3) as follows.

Lemma 2.1. For an admissible wavelet ψ ∈ L2(Rn), we have

(Wψf(·, a,ϖ))̂(ξ) = c
−1/2
ψ an/2ψ̂(−aϖξ)f̂(ξ), (2.2)

in which f ∈ Hs(Rn).
Proof. Let ψ ∈ L2(Rn) be an admissible wavelet. For f ∈ Hs(Rn), we have

Wψf(b, a,ϖ) = c
−1/2
ψ ≺ ψb,a,ϖ, f �

= c
−1/2
ψ

∫
Rn

ψb,a,ϖ(x)f(x)dx

= c
−1/2
ψ

∫
Rn

a−n/2ψ(a−1ϖ−1(x− b))f(x)dx

= c
−1/2
ψ

∫
Rn

D−aLϖψ(b− x)f(x)dx

= c
−1/2
ψ (D−aLϖψ ∗ f)(b).

Then
(Wψf(·, a,ϖ))̂(ξ) = c

−1/2
ψ (D−aLϖψ ∗ f)̂(ξ)
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= c
−1/2
ψ (D−aLϖψ)̂(ξ)f̂(ξ)

= c
−1/2
ψ an/2ψ̂(−aϖξ)f̂(ξ),

in which the operators Daψ(x) := 1√
an
ψ(a−1x) and Lϖψ(x) := ψ(ϖ−1x) are

dilation and rotation operators, respectively.
□

For the next lemma, we need to recall some notations and [4, Theorem 2.49],
which we point out them here.

For x ∈ Rn \ {0}, the polar coordinate of x is r = |x|, x′ = x
|x| ∈ Sn−1. The

map ϕ(x) = (r, x′) is continuous bijection from Rn \ {0} to (0,∞)× Sn−1 whose
continuous inverse is ϕ−1(r, x′) = rx′. The Borel measure on (0,∞)×Sn−1, which
is induced by ϕ from Lebesgue measure on Rn, is denoted by m∗ . Moreover, the
measure ρ on (0,∞) is defined by ρ(E) =

∫
E
rn−1dr (see [4]).

Theorem 2.2 ([4, Theorem 2.49]). There is a unique Borel measure σ on Sn−1

such that m∗ = ρ× σ. If f is Borel measurable on Rn and f ≥ 0 or f ∈ L1(Rn),
then ∫

Rn

f(x)dx =

∫
(0,∞)

∫
Sn−1

f(rx′)rn−1dσ(x′)dr. (2.3)

Lemma 2.3. With the above notations, let ψ ∈ L2(Rn) be admissible and inte-
grable. Then ∫

R+
0 ×Sn−1

|ψ̂(aϖ.ξ)|2da
a
dϖ =

∫
Rn

|ψ̂(η)|2

|η|n
dη. (2.4)

Proof. Set η = a|ξ|ϖξ|ξ| , in which a|ξ| = r = |η| and ϖξ
|ξ| = x′ are introduced as

above. We have da = dr
|ξ| and |ξ| = |η|

a
. So by substituting in (2.3), we get∫

R+
0 ×Sn−1

|ψ̂(aϖξ)|2da
a
dϖ =

∫
Rn

|ψ̂(η)|2

|η|n
dη.

□
Proposition 2.4. Let ψ ∈ L2(Rn) be admissible and integrable. For f ∈ Hs(Rn),
the continuous wavelet transform Wψf is in L2((R+

0 × Sn−1, da
an+1dϖ), Hs(Rn)).

Proof. Fix (a,ϖ) ∈ R+
0 × Sn−1, and let f ∈ Hs(Rn). First of all, we investigate

that Wψf(·, a,ϖ) is in Hs(Rn). By using Lemma 2.1 and the fact

|ψ̂(ξ)| ≤ ‖ψ‖1,
we get

‖Wψf(·, a,ϖ)‖2s =

∫
Rn

(1 + |ξ|2)s|(Wψf(·, a,ϖ))̂(ξ)|2dξ
= c−1

ψ

∫
Rn

(1 + |ξ|2)s|Da(Lϖψ)̂(ξ)|2|f̂(ξ)|2dξ



MULTI-DIMENSIONAL WAVELETS ON SOBOLEV SPACES 215

≤ c−1
ψ ‖Lϖψ‖21‖f‖2s

≤ c−1
ψ ‖ψ‖21‖f‖2s.

Also, ∫
R+
0 ×Sn−1

‖Wψf(·, a,ϖ)‖2s
da

an+1
dϖ <∞.

Now by using Lemma 2.3, we have∫
R+
0 ×Sn−1

‖Wψf(·, a,ϖ)‖2s
da

an+1
dϖ

= c−1
ψ

∫
R+
0 ×Sn−1

∫
Rn

an(1 + |ξ|2)s|f̂(ξ)|2|ψ̂(aξϖ)|2 da

an+1
dϖdξ

= c−1
ψ (

∫
Rn

|ψ̂(ξ)|2

|ξ|n
dξ)(

∫
Rn

(1 + |ξ|2)s|f̂(ξ)|2)

= ‖f‖2s.
□

It is worthwhile to note that the inner product and the norm on L2((R+
0 ×

Sn−1, da
an+1dϖ), Hs(Rn)) are

≺≺ φ, ψ ��=

∫
R+
0 ×Sn−1

(φ(·, a,ϖ), ψ(·, a,ϖ))s
da

an+1
dϖ

and
|||φ||| =

∫
R+
0 ×Sn−1

‖φ(·, a,ϖ)‖2s
da

an+1
dϖ,

for φ, ψ in L2((R+
0 × Sn−1, da

an+1dϖ), Hs(Rn)).
The inversion formula for the wavelet transform on the Sobolev spaces is given
in the next theorem.

Theorem 2.5 (Inversion formula). Let ψ ∈ L2(Rn) be admissible and integrable.
Then for f, g ∈ Hs(Rn), it follows that

(f, g)s =≺≺ Wψf,Wψg �� .

Proof. By Lemmas 2.1 and 2.3, for f, g ∈ Hs(Rn), we have

≺≺ Wψf,Wψg �� =
1

cψ

∫
SIM(n)

(1 + |ξ|2)sf̂(ξ)ĝ(ξ)|ψ̂(aξϖ)|2 da

an+1
dϖ)dξ

=
1

cψ

∫
Rn

∫
R+
0 ×Sn−1

|ψ̂(aϖξ)|2(1 + |ξ|2)sf̂(ξ)ĝ(ξ) da
an+1

dϖ)dξ

=
1

cψ
(

∫
Rn

|ψ̂(ξ)|2

|ξ|n
dξ)(f, g)s

= (f, g)s.
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□
As an important consequence of the inversion formula is that, the continuous

multi-dimensional wavelet transform is an isometry from Hs(Rn) into H0,s(Rn ×
R+

0 × Sn−1).
Corollary 2.6. The multi-dimensional continuous wavelet transform is an isom-
etry from Hs(Rn) into H0,s(Rn × R+

0 × Sn−1). In particular, |||Wψf ||| = ‖f‖s.
Proof. By using [2, Theorems 12.6.1 and 12.7.2], we have

L2((R+
0 × Sn−1,

da

an+1
dϖ), Hs(Rn)) ' L2(R+

0 × Sn−1)⊗Hs(Rn)

' H0,s(Rn × R+
0 × Sn−1).

□
Proposition 2.7. Let φ, ψ ∈ L2(Rn) be two admissible wavelets. For f, g ∈
Hs(Rn), we have

≺≺ Wφf,Wψg ��=
cφ,ψ√
cφcψ

(f, g)s,

in which cφ,ψ =
∫
Rn |φ̂(ξ)||ψ̂(ξ)| dξ|ξ|n .

Proof. Let f, g ∈ Hs(Rn). Then by Lemma 2.3, we have
≺≺ Wφf,Wψg ��

=
1

√
cψcφ

∫
SIM(n)

(1 + |ξ|2)sf̂(ξ)ĝ(ξ)|φ̂(aϖξ)||ψ̂(aϖξ)| da
an+1

dϖ)dξ

=
1

√
cψcφ

∫
Rn

∫
R+
0 ×Sn−1

|φ̂(aϖ−1.ξ)||ψ̂(aϖ−1.ξ)|(1 + |ξ|2)sf̂(ξ)ĝ(ξ) da
an+1

dϖ)dξ

=
1

√
cψcφ

(f, g)s

∫
Rn

|φ̂(ξ)||ψ̂(ξ)|
|ξ|n

dξ

=
cφ,ψ√
cφcψ

(f, g)s.

□
In the next theorem, we obtain an explicit expression for W ∗

ψ defined from
H0,s(Rn × R+

0 × Sn−1) into Hs(Rn).
Theorem 2.8. The range of continuous wavelet transform defined as (2.1) on
Sobolev space is a reproducing kernel Hilbert space with the reproducing kernel

K((b2, a2, ϖ2), (b1, a1, ϖ1)) =
1

√
cψ
Wψψ(a

−1
2 ϖ−1

2 (b2 − b1), a
−1
1 a2, ϖ

−1
1 ϖ2). (2.5)

Proof. Let f ∈ S(Rn) and let g(b, a,ϖ) = g1(b)g2(a,ϖ), in which g1 ∈ S(Rn), g2 ∈
C∞

0 (R+
0 × Sn−1). We have
≺≺Wψf, g ��
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=

∫
R+
0 ×Sn−1

(Wψf(·, a,ϖ), g(·, a,ϖ))s
da

an+1
dϖ

=

∫
R+
0 ×Sn−1

∫
Rn

(1 + |ξ|2)s(Wψf(·, a,ϖ))̂(ξ)ĝ(·, a,ϖ)(ξ)
da

an+1
dϖdξ

≤
∫
R+
0 ×Sn−1

(∫
Rn

(1 + |ξ|2)s|(Wψf(·, a,ϖ))̂(ξ)|2dξ)1/2

.

(∫
Rn

(1 + |ξ|2)s|ĝ(·, a,ϖ)(ξ)|2dξ
)1/2

da

an+1
dϖ

≤
∫
R+
0 ×Sn−1

‖Wψf(·, a,ϖ)‖s‖g(·, a,ϖ)‖s
da

an+1
dϖ

≤|||Wψf |||.|||g|||,

which allows one to change the order of integration, so

≺≺Wψf, g ��

=c
−1/2
ψ

∫
Rn

(1 + |ξ|2)sf̂(ξ)
∫
R+
0 ×Sn−1

(D−aLϖψ)̂(ξ)ĝ(·, a,ϖ)(ξ)
da

an+1
dϖdξ.

Set
Tg(ξ) = c

−1/2
ψ

∫
R+
0 ×Sn−1

(D−aLϖψ)̂(ξ)ĝ(·, a,ϖ)(ξ)
da

an+1
dϖ.

Then Tg ∈ L2(Rn). In fact,

|Tg(ξ)|2 ≤ c−1
ψ

∫
R+
0 ×Sn−1

|(D−aLϖψ)̂(ξ)|2|ĝ(·, a,ϖ)(ξ)|2 da

an+1
dϖ

≤ c−1
ψ ‖D−aLϖψ‖21

∫
R+
0 ×Sn−1

|ĝ(·, a,ϖ)(ξ)|2 da

an+1
dϖ,

and using the Cauchy Schwarz inequality, we have∫
Rn

|Tg(ξ)|2dξ ≤ c−1
ψ ‖D−aLϖψ‖21

∫
Rn

∫
R+
0 ×Sn−1

|ĝ(·, a,ϖ)(ξ)|2 da

an+1
dϖ

≤ c−1
ψ ‖D−aLϖψ‖21|||g|||s=0.

Therefore, there exists W ∗
ψg ∈ L2(Rn) such that (W ∗

ψg)̂(ξ) = Tg(ξ). Then we
get

≺≺ Wψf, g ��=

∫
Rn

(1 + |ξ|2)sf̂(ξ)T̂ g(ξ)dξ = (f,W ∗
ψg)s.

Moreover,

W ∗
ψg(x) =

1

(2π)n/2

∫
Rn

T̂ g(ξ)eiξ.xdξ
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=
1

(2π)n/2
1

√
cψ

∫
R+
0 ×Sn−1

∫
Rn

(D−aLϖψ ∗ g(·, a,ϖ))̂(ξ)eiξxdξ da

an+1
dϖ

=
1

√
cψ

∫
R+
0 ×Sn−1

D−aLϖψ ∗ g(x, a,ϖ)
da

an+1
dϖ.

Now, we show that the range of Wψ is a reproducing kernel Hilbert space with
reproducing kernel:

K((b2, a2, ϖ2), (b1, a1, ϖ1)) =
1

√
cψ
Wψψ(a

−1
2 ϖ−1

2 (b2 − b1), a
−1
1 a2, ϖ

−1
1 ϖ2).

Indeed, g ∈ rangeWψ if and only if WψW
∗
ψg = g. So,

g(b2, a2, ϖ2) = WψW
∗
ψg(b2, a2, ϖ2)

=
1

√
cψ

≺ ψb2,a2,ϖ2 ,W
∗
ψg �

=
1

√
cψ

≺ Wψψb2,a2,ϖ2 , g �

=
1

√
cψ

∫
R+
0 ×Sn−1

∫
Rn

Wψψb2,a2,ϖ2(b1, a1, ϖ1)g(b1, a1, ϖ1)db1
da1

an+1
1

dϖ1

=
1

cψ

∫
R+
0 ×Sn−1

∫
Rn

≺ ψb1,a1,ϖ1 , ψb2,a2,ϖ2 � g(b1, a1, ϖ1)db1
da1

an+1
1

dϖ1.

□
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