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ABSTRACT. This article presents an account of the fundamentals of the dis-
crete group approach for analysis and integration of practical differential equa-
tions. In this article, by means of appropriate transformations, the nonlinear
Burgers equation is transformed into the other class of the second-order dif-
ferential equation of the Emden—Fowler type, and this Emden—Fowler equa-
tion reduces to nonlinear Abel equations. This approach shows that, under
these transformations of discrete group, the solution of reference equation can
be transformed into the solution of the transformed equation. Under such
conditions, we approach to determine some solutions for the Abel, Burgers,
Emden—Fowler, and heat equations.

1. INTRODUCTION AND PRELIMINARIES

It is well known that the theory of differential equations takes a central place
among possible instruments for the modeling of different processes and phenom-
ena. The classical concepts of groups introduced by Lie and Béacklund, which con-
stitute the foundation of modern group analysis, are responsible for out standing
achievements in the theory of partial differential equations. However, a similar
approach based on a search for continuous transformation groups, which map
the equation under investigation into itself (i.e., exactly into the same equation),
was proved to be ineffective for solving ordinary differential equations (ODEs);
see [1,5,9-13].
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In [10,11,13], the authors analyzed the discrete group analysis for some classes
of ODEs. Also, we study some classes of fundamentals of the discrete group
approach for analysis and integration of practical differential equations to the
exact solution of the nonlinear partial differential equations [7], nonlinear ODEs
[6], and nonlinear Volterra integral equations [3].

This article presents new methods for the analysis of ODEs based on the search
for discrete transformation groups closed on the class of equations under consid-
eration (i.e., the original equation here may turn in to another equation of the
same class). This approach enables us to find a great number of new integrable

equations, which thus far, could not be integrated by using the classical methods.

Definition 1.1. The class of generalized Emden—Fowler equations is written as

n, m, Il

Yo, = Ax"y™y", a = (n,m,l), (1.1)

where it is determined by a three-dimensional parameter vector a = (n,m,1l) €
R3.

Definition 1.2. The general Abel equation is written as

[01(2)y + do(x)]y), = a(2)y® + 1 (2)y + ().

Definition 1.3. A set D of ODEs is referred to as a class of equations D(x,y, a) €
D uniquely defined by a vector a of parameters.

Let D be a class of ODE and let
D(z,y,a) =0 (1.2)

be an equation in this class, where a is a vector parameters.
We shall seek the transformations F; that are closed in the class (1.2), that is,
they change only the vector a as follows:

F;: D(x,y,a) — D(t,u,b;). (1.3)

If each F; has inverses, then the collection {F;} defines a D.T.G (Discrete Trans-
formation Group) on the class (1.2).
All the existing methods of exact solution of ODEs can be conditionally divided
in two groups (see [0]):
(A) A search for transformation of the original class D of ODE to some other
class D; in which a method of solutions is available.
(B) A search for transformations leaving the original class D invariant, that
is, a transformation into itself, that gives independent information about
solution.

Practically, all the classic methods of exact solution of ODE use approach
(A) based on a rather restricted number of standard soluble ODE; therefore
transformations often are artificial. To develop approach (A), one can apply
different transformations to standard soluble equations infinitely extending the
set of such equations. However the probability that the ODE chosen for the
investigation belonging to the extended set is very small; see [1,5,9,12].

The DGM does not operate with a single equation as in applications of Lie
method (see [14]) but operates with a class of equations D, depending on a vector
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a of parameters, containing the investigated equation, but contrary to approach
(A), one considers the transformations of the given class D, which are closed in
itself on a chosen class of ODE.

There are two methods for searching discrete group transformations: point
transformations and Bécklund transformation. In the class of point transforma-
tions

y:f(tvu)v ng(t7u)v J:fugt_guft%ov (14)
the following two methods are effectively applicable: The direct method and the
method based on Lie Algorithm (LA) [6,11,13]. The direct method is based on
the substitution of the transformation (1.3) into (1.1). Imposing condition (1.3)
leads to a partial differential equation with unknown functions f and g, which can
be split with respect to the independent variables into the lower order differential
equations with respect to v and t. As a result, we obtain an over determined
system of nonlinear partial differential equations with respect to f and g; for
more details see [14].

There are many methods of search for Backlund transformations such as the
direct method, RF-pair method, and support equation method. Each of which
is fully discussed in [5, 12].

Definition 1.4. An RF-Pair is an operation of consecutive raising and lowering
the order of equation.

Now, we define the following R-operations and F-operations:

i) Termwise m-fold differentiation of the original equation, type RD™.

ii) Termwise one- or two-fold differentiation of original equation with respect
to the independent variable, type accordingly RX or RX?2.

iii) The equation is an exact derivative of the mth-order: termwise integration
m times, type FI™.

iv) The equation is autonomous, that is, it does not conclude an independent
variable in an explicit form, type FX:

FX gy =uly), Y =uu,

v) The equation is homogeneous in the extended sense, type FU: the trans-
formation z = e’ and y = ue*, with an appropriate choice of k, leads to
an autonomous form followed by a transformation F'.X.

If an R(F)-operating RZ™(FZ™) is inverted, then it is denoted by
RZ=™(FZ~™). The RF-pair will be written in a contracted form by means
of an ordered pair, the second letters used in the designation of the operation
symbol and the left letter corresponding to the transformation performed first

RF(D,X) = (FX)® (RD)=FX(RD).

This article presents some transformations for the analysis of differential equa-
tions based on the search for discrete transformation groups closed on the class
of equations under consideration (i.e., the original equation here may turn in to
another equation of the same class). This approach enables us to find a great
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number of new integrable equations, which thus far, could not be integrated by
using the classical methods.

Also, in this work, we present a new analytical method based on Lie group
method and Bécklund transformations [5, 10-13] to simulate Abel and Burgers
equations, by using Cole-Hopf transformation [2,8]. In fact, using a nonlinear
Cole-Hopf transformation, the nonlinear Burgers equation is reduced to diffu-
sion equation. Under the Lie group method and Bécklund transformations, the
solution of the transformed equation can be converted into the solution of the
reference equation.

2. ANALYSIS OF THE METHOD

Consider the nonlinear Burgers equations (see [4]):

2
ou U&U o0°U

o + % ~ Vaxe (2.1)
subject to the initial conditions
U(X,0) = Uy(X), (2.2)
and boundary conditions
U(0,t) = Fi(t), (2.3)
U(L,t) = Fy(t), (2.4)

where 0 < X < L, t > 0 and Fj, F; are known functions, v is a given viscosity

1
coefficient defined by v = T and Re is the Reynolds number.

The nonlinear coupled Burgers equation is a special form of incompressible
Navier—Stokes equation without having pressure term and continuity equation.
Burgers equation is an important partial differential equation from fluid dynam-
ics and widely used for various physical applications, such as shock flows, wave
propagation in combustion chambers, vehicular traffic movement, acoustic trans-
mission, and so on; see [2,4,8].

Here a procedure is developed for generating analytical exact solutions of the
Burgers equations. It has been pointed out by Cole [2] and Hopf [8] that the Cole—
Hopf transformation can be interpreted as a multi-dimensional transformation.
In one dimensions, the Cole-Hopf transformation 7o relates a function 7" to U
in the following way:

2T(X,1)
: _ _9,0X ’
Ter: U(X,t) = —2v T(X) (2.5)
Then equations (2.1) become
T(X T(X
o1 ’t)zya X,?) (2.6)

ot 0x2
subject to the initial-boundary conditions
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T(X,0) = exp ——/ Uo(s s), 0< X <L,
aTXt)| 0= aT(Xt | ;=0 £>0

(2.7)

Now, the nonlinear problem under 1nvest1gat10n is described by the following
equation with initial and boundary conditions (2.7):

or 82T
— <X<ZL,t> 2.
ETi 8 X 0 t>0. (2.8)
We introduce dimensionless variables
X v
Ti: =7 Tzﬁt, y="T, (2.9)

where L is a constant chosen as the length scale. Problem (2.8) by using 77 of
(2.9) is written in the following form:

dy 0%y
-2 27 2.1
or  0x? (2.10)
Equation (2.10), by employment of a new self-similarity variable
To: w=—— (2.11)

VT
reduces to a two-point boundary value problem for an ODE of second-order of
the following Emden—Fowler equations:

Yo = —%wy{v, a=(1,1,0). (2.12)
This boundary value problem via substitution of hodograph transformation
Ts: y=t, w=u, (2.13)
is transformed to
uy, = 1u(uft)2, a=1(0,1,2). (2.14)

2
Therefore, it follows that the boundary value problem (2.14) is integrable by
quadratures, as a consequence of which, we have been able to construct some
solutions for the Burgers equation (for further details see [3]).
Now, we shall describe some transformations [14], in which equation (2.14) is
reduced to the Abel equations. Applying the operation

t 1
Ti: z= au;, v = §u2, (2.15)

into (2.14) leads to the equation
(%0 — 22 + 2)v] = 220, (2.16)
and by using the substitution
E:n:v+%, (2.17)
equation (2.16) reduces to the following equation:
' = (2z — 1)z + (222 — 22)27°. (2.18)
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Also, substituting
6 = 2t exp(—u?),

&2
To:§ w= /exp(;)ds,
s = /2u,

transforms equation (2.14) to the Abel equation
60, — 60 = 0. (2.19)

Note that, all the transformations applied for the conversion of Burgers equa-
tion are invertible, and this invertibility clearly allows us to avoid some lengthy
computations for the conversion of the initial and boundary condition. Also,
under these transformations, the solution of the transformed equation can be
converted into the solution of the reference equation.

3. EXACT SOLUTIONS

In this section, we give some applications of the proposed scheme obtaining the
solution of the Burgers equation.

Now, by using the operators 7.s, 71, ..., T¢ with the consideration of equations
(2.1)—(2.19), we obtain Table 1. It is necessary to pay attention to the point that
using the properties of discrete groups and inevitability of the applied transfor-
mations, we can reach the analytic solution of any equation appearing in Table
1, if we can obtain the solution of a single equation by using classical methods.

The exact solution of equation (2.14) is given by [0]

t= Cif(Q)+Ca u=2C, (3.1)

where C;,7 = 1,2, are arbitrary constants and

£(0) = / exp(—C?)dc, (3.2)

where f(() is the Gaussian integral.

Now, by the application of inverse transformations on (3.1) and (3.2), we obtain
the exact solution of Burgers equation. We summarize the selected results form
this procedure for exact solution of Burgers equation and Abel equations in Tables
2 and 3, respectively.

Now, to integrate equation (2.1), we start from (2.14). By using the operators
and inverse operators on (3.1) and (3.2), according to Table 1, we obtain the
analytical solution of Burgers and Abel equations. Some results of this method
are summarized in Table 2.

4. CONCLUSION

This approach can reveal that, under the group action, the solution of the ref-
erence equation can be transformed into the solution of the transformed equation.
The action of the group upon an element of the class generates the orbit of this
element, that is, the set of all equations of the given class obtained through the
action of transformations of the group. By using an application of the discrete
transformation group analysis, an ODE belonging to a class can be transformed
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TABLE 1.
Equation Exact Solution (E.S.)
Eq. 7 E.S. of Eq. 7
L Ter T T
Eq. 14 E.S. of Eq. 14
LTi T
Eq. 16 E.S. of Eq. 16
LT T
Eq. 18 E.S. of Eq. 18
LT T 75
Eq. 20 Solvable E.S. Eq. 20
L Ta I Ta
Eq. 22 E.S. of Eq. 22
L Ts L Ts
Eq. 24 E.S. of Eq. 24
76 L Te
Eq. 25 E.S. of Eq. 25
TABLE 2.
Equation Exact solution
ufy = yu(uy;)® t=Crf(Q) +Co
u=2¢
76) = [ expl~¢c
C;,1=1,2,are arbitrary constants
y'Z)w = —%wy:u w = 2¢
y(w) = C1f(¢) + C2
dy _ 2y (=1z
T~ Ox2 247
y(@,m) = (I 2) + G
2
=ik T(X.1) = O f(5 %) + O
=T
ou U _ ., 9%U _ 1 X ) 1 X
WUl =vZG | UK =-2C [Cf (G 2) + 0] o [ 5)]
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TABLE 3.
Equation Exact solution
ufy = gu(up)? t=C1f(¢) + o
u = 2(¢

1) = / exp(—C)d(

C;,i = 1,2, are arbitrary constants

(220 — 22 + 2l = 220 v =2¢?
5 — G1f(O+Co
AT
1 dC
d
Ci¢ J(;(CC)
m' = (22 —1)272n+ (222 —22)273 | n =22+ G O1C
00 — 0 =0 0 = 2V2(C1£()+C2) exp(—4¢?)
= Q)
1 dC
s =2v2(

w = /eXp(482)ds

to a reduced form in some other classes, which may be integrated by using classi-
cal methods. By introducing some useful transformations, the nonlinear Burgers
equation in applied physics and Abel equations, can be transformed into the
classical Emden—Fowler equation, which may be integrated by using classical
methods. This approach shows that, under these transformations, the solution of
transformed equation can be converted into the solution of the reference equation.

Acknowledgement. The author would like to express their gratitude for the
referees of the article for their valuable suggestions that improved the final form
of the article.

REFERENCES

1. M.B. Abd-el-Malek, Appliaction of group-theoretical method to physical problems, J. Non-
linear Phys. 5 (1998), no. 3, 314-330.

2. J.D. Cole, On a quasi-linear parabolic equation occurring in aerodynamics, Quart. Appl.
Math. 9 (1951) 225-236.

3. P. Darania and M. Hadizadeh, On the RF-pair operations for the exact solutions of some
classes of nonlinear Volterra integral equations, Math. Probl. Eng. 2006 (2006), Art. ID
97020, 11 pp.

4. S.E. Esipov, Coupled Burgers equations: a model of poly-dispersive sedimentation, Physical
Rev. E. 52 (1995) 3711-3718.

5. A.V. Flegontov, DIGRAN-Computerized reference book new generation for exact solutions
of differential equations, Differ. Equ. Control Processes 2 (1998) 14—20.



10.

11.

12.
13.

14.

ON THE DISCRETE GROUP ANALYSIS FOR THE EXACT SOLUTIONS OF... 265

. M. Hadizadeh, A.R. Zokayi and P. Darania, On the discrete group analysis for solving some
classes of Emden—Fowler equations, AMRX Appl. Math. Res. Express 5 (2004) 169-178.
M. Hadizadeh, A.R. Zokayi, P. Darania and A. Rajabi, The relation between the Emden-
Fowler equation and the nonlinear heat conduction problem with variable transfer coefficient,
Commun. Nonlinear Sci. Numer. Simul. 11 (2006) 845-853.

E. Hopf, The partial differential equation u; + uu, = ptg,, Comm. Pure Appl. Math. 3
(1950) 201-230.

C.D. Luning and W.L. Perry, Positive solutions of negative exponent generalized Emden—
Fowler boundary value problems, SIAM J. Math. Anal. 12 (1981), no. 6, 874-879.

L.V. Ovsyannikov, Group Analysis of Differential Equations, Academic Press, New York-
London, 1982.

V.F. Zaitsev, On discrete group analysis of ordinary differential equations, Soviet Math.
Dolk. 2 (1988), no. 37, 403—406.

V.F. Zaitsev, Discrete group analysis of ODEs, Differ. Equ. 3 (1989), no. 25, 254-261.
V.F. Zaitsev, Discrete- group analysis and the construction of exact models, Differ. Equ.
Control Processes 2 (1998) 21-28.

V.F. Zaitsev and A.D. Polyanin, Discrete Group Methods for Integrating Equations of
Nonlinear Mechanics, CRC Press, Boca Raton, FL, 1994.

!DEPARTMENT OF MATHEMATICS, URMIA UNIVERSITY, P.O.Box 165, URMIA, IRAN.
Email address: p.darania@urmia.ac.ir



	1. Introduction and preliminaries
	2. Analysis of the method
	3. Exact solutions
	4. Conclusion 
	References

