

Khayyam Journal of Mathematics

emis.de/journals/KJMkjm-math.org

TOEPLITZ AND HANKEL OPERATORS ON A VECTOR-VALUED BERGMAN SPACE

NAMITA DAS

Communicated by A.R. Mirmostafaee

ABSTRACT. In this paper we derive certain algebraic properties of Toeplitz and Hankel operators defined on the vector-valued Bergman spaces $L_a^{2,\mathbb{C}^n}(\mathbb{D})$ where \mathbb{D} is the open unit disk in \mathbb{C} and $n \geq 1$. We show that the set of all Toeplitz operators $T_{\Phi}, \Phi \in L_{M_n}^{\infty}(\mathbb{D})$ is strongly dense in the set of all bounded linear operators $\mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D}))$ and characterize all finite rank little Hankel operators.

1. Introduction

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disc in the complex plane \mathbb{C} and let $dA(z) = \frac{1}{\pi} dx dy = \frac{1}{\pi} r dr d\theta$ be the area measure on \mathbb{D} normalised so that the area of \mathbb{D} is 1. For $1 \leq p < \infty$, the Bergman space $L_a^p(\mathbb{D})$ is the space of all holomorphic functions f in \mathbb{D} for which

$$||f||_{L^p_a(\mathbb{D})} = \left(\int_{\mathbb{D}} |f(z)|^p dA(z)\right)^{\frac{1}{p}} < \infty.$$

The quantity $\|.\|_{L^p_a(\mathbb{D})}$ is a norm if $p \geq 1$. Thus $L^p_a(\mathbb{D})$ is the subspace of holomorphic functions that are in the space $L^p(\mathbb{D}, dA)$. The Bergman spaces are Banach spaces, which is a consequence of the estimate:

$$\sup_{z \in K} |f(z)| \le C_K ||f||_{L_a^p(\mathbb{D})}$$

valid on compact subsets K of \mathbb{D} . If p=2, then $L_a^p(\mathbb{D})$ is a Hilbert space. Since point evaluation at $z \in \mathbb{D}$ is a bounded linear functional [12] on the Hilbert

Date: Received: 07 November 2014; Accepted: 18 December 2015.

²⁰¹⁰ Mathematics Subject Classification. 47B38, 47B35, 46E40, 46E22.

Key words and phrases. Bergman space, Toeplitz operators, little Hankel operators, strongoperator topology, finite rank operators.

space $L_a^2(\mathbb{D})$, the Riesz representation theorem implies that there exists a unique function K_z in $L_a^2(\mathbb{D})$ such that

$$f(z) = \int_{\mathbb{D}} f(w) \overline{K_z(w)} dA(w)$$

for all f in $L_a^2(\mathbb{D})$. Let K(z,w) be the function on $\mathbb{D} \times \mathbb{D}$ defined by

$$K(z,w) = \overline{K_z(w)}.$$

The function K(z,w) is thus the reproducing kernel for the Bergman space $L_a^2(\mathbb{D})$ and is called the Bergman kernel. The sequence $\{e_n(z)\}_{n\geq 0} = \{\sqrt{n+1}z^n\}_{n\geq 0}$ of functions [12] form the standard orthonormal basis for $L_a^2(\mathbb{D})$ and

$$K(z, w) = \sum_{n=1}^{\infty} e_n(z) \overline{e_n(w)}.$$

The Bergman kernel is independent of the choice of orthonormal basis and $K(z,w)=\frac{1}{(1-z\bar{w})^2}$. Let $k_a(z)=\frac{K(z,a)}{\sqrt{K(a,a)}}=\frac{1-|a|^2}{(1-\bar{a}z)^2}$. These functions k_a are called the normalized reproducing kernels of $L_a^2(\mathbb{D})$; it is clear that they are unit vectors in $L_a^2(\mathbb{D})$. Let $L^\infty(\mathbb{D},dA)$ denote the Banach space of Lebesgue measurable functions f on \mathbb{D} with

$$||f||_{\infty} = \operatorname{esssup}\{|f(z)| : z \in \mathbb{D}\} < \infty$$

and $H^{\infty}(\mathbb{D})$ be the space of bounded analytic functions on \mathbb{D} .

Let $L_a^{2,\mathbb{C}^n}(\mathbb{D}) = L_a^2(\mathbb{D}) \otimes \mathbb{C}^n$ and $L_{M_n}^{\infty}(\mathbb{D}) = L^{\infty}(\mathbb{D}) \otimes M_n$ where $M_n(\mathbb{C}) = M_n, n \geq 1$ is the set of all $n \times n$ matrices with entries in \mathbb{C} . The space $L_a^{2,\mathbb{C}^n}(\mathbb{D}), n \geq 1$ is called the vector-valued Bergman space. The inner product on $L_a^{2,\mathbb{C}^n}(\mathbb{D})$ is defined as

$$\langle f,g\rangle_{L^{2,\mathbb{C}^n}_a(\mathbb{D})}=\int_{\mathbb{D}}\langle f(z),g(z)\rangle_{\mathbb{C}^n}dA(z).$$

With this inner product $L_a^{2,\mathbb{C}^n}(\mathbb{D})$ is a Hilbert space. The norm defined on $L_a^{2,\mathbb{C}^n}(\mathbb{D})$ is given by

$$||f||_{L_a^{2,\mathbb{C}^n}(\mathbb{D},dA)}^2 = \int_{\mathbb{D}} ||f(z)||_{\mathbb{C}^n}^2 dA(z).$$

It is a closed subspace of $L^{2,\mathbb{C}^n}(\mathbb{D},dA)=L^2(\mathbb{D},dA)\otimes \mathbb{C}^n$. Let P denote the orthogonal projection from $L^{2,\mathbb{C}^n}(\mathbb{D},dA)$ onto $L^{2,\mathbb{C}^n}_a(\mathbb{D})$. For $\Phi\in L^\infty_{M_n}(\mathbb{D})$, we define the Toeplitz operator T_Φ from $L^{2,\mathbb{C}^n}_a(\mathbb{D})$ into itself as $T_\Phi f=P(\Phi f)$ and the Hankel operator H_Φ from $L^{2,\mathbb{C}^n}_a(\mathbb{D})$ into $(L^{2,\mathbb{C}^n}_a(\mathbb{D}))^\perp=L^{2,\mathbb{C}^n}(\mathbb{D},dA)\ominus L^{2,\mathbb{C}^n}_a(\mathbb{D})$ as $H_\Phi f=(I-P)(\Phi f)$. For $\Phi\in L^\infty_{M_n}(\mathbb{D})$, define $\|\Phi\|_\infty=\mathrm{esssup}_{z\in\mathbb{D}}\|\Phi(z)\|$. If $\Phi\in L^\infty_{M_n}(\mathbb{D})$, then it is not difficult to see that $\|T_\Phi\|\leq \|\Phi\|_\infty$ and $\|H_\Phi\|\leq \|\Phi\|_\infty$. This is so as $\|P\|\leq 1$ and $\|I-P\|\leq 1$.

For $\Phi \in L^{\infty}_{M_n}(\overline{\mathbb{D}})$, we define the little Hankel operator S_{Φ} from $L^{2,\mathbb{C}^n}_a(\mathbb{D})$ into itself as $S_{\Phi}f = PJ(\Phi f)$ where $J: L^{2,\mathbb{C}^n}(\mathbb{D}, dA) \to L^{2,\mathbb{C}^n}(\mathbb{D}, dA)$ is defined as $Jf(z) = f(\overline{z})$. The map J is unitary. There are also many equivalent ways of defining little Hankel operators. Let $\overline{L^{2,\mathbb{C}^n}_a(\mathbb{D})} = \overline{L^2_a(\mathbb{D})} \otimes \mathbb{C}^n$. For $\Phi \in L^{\infty}_{M_n}(\mathbb{D})$, define h_{Φ} from $L^{2,\mathbb{C}^n}_a(\mathbb{D})$ into $\overline{L^{2,\mathbb{C}^n}_a(\mathbb{D})}$ as $h_{\Phi}f = \overline{P}(\Phi f)$ where \overline{P} is the orthogonal

projection from $L^{2,\mathbb{C}^n}(\mathbb{D}, dA)$ onto $L_a^{2,\mathbb{C}^n}(\mathbb{D})$. It is not difficult to verify that $h_{\Phi} = JS_{\Phi}$.

Let $\mathcal{L}(H)$ be the set of all bounded linear operators from the Hilbert space H into itself and $\mathcal{L}C(H)$ be the set of all compact operators in $\mathcal{L}(H)$.

Consider the direct sum $\sum_{k=1}^{n} \oplus L_k$, with each L_k the same Hilbert space $L_a^2(\mathbb{D})$.

Define the bounded linear operators

$$U_i: L_a^2(\mathbb{D}) \longrightarrow \sum_{k=1}^n \oplus L_k, \ V_i: \sum_{k=1}^n \oplus L_k \longrightarrow L_a^2(\mathbb{D}),$$

for each $i \in \{1, 2, \dots, n\}$ as follows. When $f \in L_a^2(\mathbb{D})$ and $g = \{g_k\} \in \sum_{k=1}^n \oplus L_k, V_i g = g_i$ and $U_i f$ is the family $\{h_k\}$ in which $h_i = f$ and all other h_k are 0. Let L_i' be the range of U_i . It consists of all elements $\{h_k\}$ of $\sum_{k=1}^n \oplus L_k$ in which $h_k = 0$ when $k \neq i$. The space L_i' is a closed subspace of $\sum_{k=1}^n \oplus L_k$ and observe that $V_i U_i$ is the identity operator on $L_a^2(\mathbb{D})$ and $U_i V_i$ is the projection E_i from $\sum_{k=1}^n \oplus L_k$ onto L_i' . Since the subspace L_i' , $i \in \{1, 2, \dots, n\}$ are pairwise orthogonal, and $\bigvee_{i=1}^n L_i' = \sum_{k=1}^n \oplus L_k$, it follows that the sum $\sum_{i=1}^n E_i = I$. Note that $U_i = V_i^*$, since

$$\langle U_i f, \{ f_k \} \rangle = \langle f, f_i \rangle = \langle f, V_i \{ f_k \} \rangle$$

whenever $f \in L_a^2(\mathbb{D})$ and $\{f_k\} \in \sum_{k=1}^n \oplus L_k$. With each bounded linear operator T acting on $\sum_{k=1}^n \oplus L_k$, we associate a matrix $(T_{ij})_{1 \leq i,j \leq n}$, with entries T_{ij} in $\mathcal{L}(L_a^2(\mathbb{D}))$ defined by

$$T_{ij} = V_i T U_j. (1.1)$$

If $g = \{g_k\} \in \sum_{k=1}^n \oplus L_k$, then Tg is an element $\{p_k\}$ of $\sum_{k=1}^n \oplus L_k$ and

$$p_i = V_i Tg = V_i T \left(\sum_{k=1}^n E_k g \right) = \sum_{k=1}^n V_i T U_j V_j g = \sum_{j=1}^n T_{ij} g_j.$$

Thus

$$T\left(\sum_{k=1}^{n} \oplus g_{k}\right) = \sum_{k=1}^{n} \oplus p_{k} \text{ where } p_{i} = \sum_{j=1}^{n} T_{ij}g_{j}, i \in \{1, 2, \cdots, n\}.$$
 (1.2)

The usual rules of matrix algebra have natural analogues in this situation. From (1.1), the matrix elements T_{ij} depend linearly on T. Since

$$V_i T^* U_j = U_i^* T^* V_i^* = (V_j T U_i)^* = (T_{ji})^*,$$

the matrix of T^* has $(T_{ji})^*$ in the (i,j) position. If S and T are bounded linear operators acting on $\sum_{k=1}^n \oplus L_k$, and R = ST, then

$$R_{ij} = V_i R U_j = V_i S T U_j = \sum_{k=1}^n V_i S E_k T U_j$$
$$= \sum_{k=1}^n V_i S U_k V_k T U_j = \sum_{k=1}^n S_{ik} T_{kj}.$$

Thus we establish a one-to-one correspondence between elements of $\mathcal{L}\left(\sum_{k=1}^{n} \oplus L_{k}\right)$ and certain matrices $(T_{ij})_{i,j=1}^{n}$ with entries T_{ij} in $\mathcal{L}(L_{a}^{2}(\mathbb{D}))$. Each such matrix corresponds to some bounded operator T acting on $\sum_{k=1}^{n} \oplus L_{k}$; indeed, T is defined by (1.2), and its boundedness follows at once from the relations

$$||\{p_k\}||^2 = \sum_{i=1}^n ||p_i||^2 = \sum_{i=1}^n ||\sum_{j=1}^n T_{ij}g_j||^2 \le \sum_{i=1}^n \left(\sum_{j=1}^n ||T_{ij}|| \ ||g_j||\right)^2$$

$$\leq \sum_{i=1}^{n} \left(\sum_{j=1}^{n} ||T_{ij}||^{2} \right) \left(\sum_{j=1}^{n} ||g_{j}||^{2} \right) = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} ||T_{ij}||^{2} \right) ||\{g_{k}\}||^{2}.$$

In this paper we derive certain algebraic properties of Toeplitz and Hankel operators defined on the vector-valued Bergman spaces $L_a^{2,\mathbb{C}^n}(\mathbb{D}), n \geq 1$. We have shown that if there exists $A, B \in \mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D}))$ such that $AT_{\Phi}B = T_{\Phi}$ for all $\Phi \in L_{M_n}^{\infty}(\mathbb{D})$, then $A = \alpha I_{\mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D}))}, B = \beta I_{\mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D}))}, \alpha, \beta \in \mathbb{C}$ and $\alpha\beta = 1$ and that the set of all Toeplitz operators $T_{\Phi}, \Phi \in L_{M_n}^{\infty}(\mathbb{D})$ is strongly dense in the set of all bounded linear operators $\mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D}))$ and characterize all finite rank little Hankel operators defined on the vector-valued Bergman space. The layout of this paper is as follows. In section 2, we establish that if $AT_{\Phi}B = T_{\Phi}$ for all $\Phi \in L_{M_n}^{\infty}(\mathbb{D})$, then $A = \alpha I_{\mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D}))}, B = \beta I_{\mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D}))}, \alpha, \beta \in \mathbb{C}$ and $\alpha\beta = 1$. Furthermore, it is shown that the set of all Toeplitz operators $T_{\Phi}, \Phi \in L_{M_n}^{\infty}(\mathbb{D})$ from $L_a^{2,\mathbb{C}^n}(\mathbb{D})$ into itself is strongly dense in the Banach space $\mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D}))$. In section 3, we prove that there exists no finite rank Hankel operator H_{Φ} with nonconstant matrix-valued symbol Φ that is diagonal. We further establish certain elementary properties of little Hankel operators and characterize all finite rank little Hankel operators with diagonal matrix-valued symbols.

2. Toeplitz operators with symbols in $L_{M_n}^{\infty}(\mathbb{D})$

In this section we have shown that if there exists $A, B \in \mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D}))$ such that $AT_{\Phi}B = T_{\Phi}$ for all $\Phi \in L_{M_n}^{\infty}(\mathbb{D})$, then $A = \alpha I_{\mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D}))}, B = \beta I_{\mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D}))}, \alpha, \beta \in \mathbb{C}$ and $\alpha\beta = 1$. Here $I_{\mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D}))}$ is the identity operator from the space $L_a^{2,\mathbb{C}^n}(\mathbb{D})$ into itself. Further, we show that the set of all Toeplitz operators $T_{\Phi}, \Phi \in L_{M_n}^{\infty}(\mathbb{D})$ from $L_a^{2,\mathbb{C}^n}(\mathbb{D})$ into itself is strongly dense in the Banach space $\mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D}))$.

Theorem 2.1. If $A, B \in \mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D})), n \geq 1$ and $AT_{\Phi}B = T_{\Phi}$ for all $\Phi \in L_{M_n}^{\infty}(\mathbb{D})$, then $A = \alpha I_{\mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D}))}, B = \beta I_{\mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D}))}, \alpha, \beta \in \mathbb{C}$ and $\alpha\beta = 1$.

Proof. Suppose $A, B \in \mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D})), n \geq 1$ and $AT_{\Phi}B = T_{\Phi}$ for all $\Phi \in L_{M_n}^{\infty}(\mathbb{D})$. Since $L_a^{2,\mathbb{C}^n}(\mathbb{D}) = L_a^2(\mathbb{D}) \otimes \mathbb{C}^n$, we obtain

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{pmatrix} \text{ and } B = \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1n} \\ B_{21} & B_{22} & \cdots & B_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ B_{n1} & B_{n2} & \cdots & B_{nn} \end{pmatrix}, \text{ where } A_{ij}, B_{ij} \in \mathcal{L}(L_a^2(\mathbb{D})) \text{ for all } i, j \in \{1, 2, \cdots, n\}. \text{ Here } A_{ij} = V_i A U_j \text{ and } B_{ij} = V_i A U_j A U_j \text{ and }$$

 V_iBU_j for all $i,j\in\{1,2,\cdots,n\}$. Further, as $\Phi\in L^\infty_{M_n}(\mathbb{D})=L^\infty(\mathbb{D})\otimes M_n$, we have

$$\Phi = \begin{pmatrix} \phi_{11} & \phi_{12} & \cdots & \phi_{1n} \\ \phi_{21} & \phi_{22} & \cdots & \phi_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ \phi_{n1} & \phi_{n2} & \cdots & \phi_{nn} \end{pmatrix}, \text{ where } \phi_{ij} \in L^{\infty}(\mathbb{D}) \text{ for all } i, j \in \{1, 2, \cdots, n\}.$$

Hence

$$T_{\Phi} = \begin{pmatrix} T_{\phi_{11}} & T_{\phi_{12}} & \cdots & T_{\phi_{1n}} \\ T_{\phi_{21}} & T_{\phi_{22}} & \cdots & T_{\phi_{2n}} \\ \vdots & \vdots & \cdots & \vdots \\ T_{\phi_{n1}} & T_{\phi_{n2}} & \cdots & T_{\phi_{nn}} \end{pmatrix}.$$

By considering elementary matrices of the type

with just one nonzero (i, j)th entry $T_{\phi_{ij}}, \phi_{ij} \in L^{\infty}(\mathbb{D}), i, j \in \{1, 2, \dots, n\}$ and using the operator equations

$$\begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \dots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{pmatrix} \begin{pmatrix} 0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & T_{\phi_{ij}} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 & 0 \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1n} \\ B_{21} & B_{22} & \cdots & B_{2n} \\ \vdots & \vdots & \dots & \vdots \\ B_{n1} & B_{n2} & \cdots & B_{nn} \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & T_{\phi_{ij}} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 & 0 \end{pmatrix},$$

it follows from [5] that $V_iAU_j=V_iBU_j=0$ if $i\neq j,\ i,j=1,2,\cdots,n$ and $V_iAU_i=\alpha I_{\mathcal{L}(L^2_a(\mathbb{D}))},\ V_iBU_i=\beta I_{\mathcal{L}(L^2_a(\mathbb{D}))}$ for all $i=1,2,\cdots,n$ and for some $\alpha,\beta\in\mathbb{C}$ such that $\alpha\beta=1$. This implies $A=\alpha I_{\mathcal{L}(L^2_a(\mathbb{D}))}$ and $B=\beta I_{\mathcal{L}(L^2_a(\mathbb{D}))}$. The theorem follows. \square

Theorem 2.2. Let
$$T \in \mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D})), n \geq 1, F_i = \begin{pmatrix} F_{i1} \\ \vdots \\ F_{in} \end{pmatrix} \in L_a^{2,\mathbb{C}^n}(\mathbb{D}), G_i =$$

$$\begin{pmatrix} G_{i1} \\ \vdots \\ G_{in} \end{pmatrix} \in L_a^{2,\mathbb{C}^n}(\mathbb{D}), i = 1, \cdots, N. \text{ Then there exists } \Phi \in L_{M_n}^{\infty}(\mathbb{D}) \text{ such that }$$

$$\langle T_{\Phi}F_i, G_i \rangle = \langle TF_i, G_i \rangle, i = 1, \cdots, N.$$

Proof. Let f_1, f_2, \dots, f_k and g_1, g_2, \dots, g_m respectively be bases of the finite-dimensional subspaces of $L_a^{2,\mathbb{C}^n}(\mathbb{D})$ generated by F_1, \dots, F_N and G_1, \dots, G_N . We shall find $\Phi \in L_{M_n}^{\infty}(\mathbb{D})$ such that $\langle T_{\Phi}f_i, g_j \rangle = \langle Tf_i, g_j \rangle$ for all $i = 1, \dots, k$ and $j = 1, \dots, m$.

Consider the operator $R: L^{\infty}_{M_n}(\mathbb{D}) \to \mathbb{C}^{k \times m}$, defined by $(R\Phi)_{ij} = \langle T_{\Phi}f_i, g_j \rangle$, $i = 1, \dots, k$ and $j = 1, \dots, m$. Suppose $u \in \mathbb{C}^{k \times m}$ is orthogonal to the range of R. That is, let

$$\sum_{i=1}^{k} \sum_{j=1}^{m} (R\Phi)_{ij} \overline{u_{ij}} = 0$$

for all $\Phi \in L_{M_n}^{\infty}(\mathbb{D})$. This implies (taking $\Phi = I_{n \times n}$, the identity matrix)

$$\sum_{i=1}^{k} \sum_{j=1}^{m} \langle f_i, g_j \rangle_{L_a^{2,\mathbb{C}^n}(\mathbb{D})} \overline{u_{ij}} = 0.$$

Hence

$$\sum_{i=1}^{k} \sum_{j=1}^{m} \langle f_i(z), g_j(z) \rangle_{\mathbb{C}^n} \overline{u_{ij}} = 0$$

almost everywhere on \mathbb{D} . Since the left hand side is obviously continuous on \mathbb{D} , this equality holds, in fact, on the whole of \mathbb{D} . Thus the function

$$\Omega(x,y) = \sum_{i=1}^{k} \sum_{j=1}^{m} \langle f_i(x), g_j(\overline{y}) \rangle_{\mathbb{C}^n} \overline{u_{ij}}$$

which is analytic in $\mathbb{D} \times \mathbb{D}$, equals zero when $x = \overline{y}$. By the uniqueness theorem [11], this implies that $\Omega \equiv 0$ on $\mathbb{D} \times \mathbb{D}$. Because, functions $f_i, i = 1, 2, \dots, k$, are linearly independent, we obtain

$$\sum_{j=1}^{m} u_{ij} g_j(\overline{y}) = 0$$

for all $y \in \mathbb{D}$, $i = 1, 2, \dots, k$; but $g_j, j = 1, 2, \dots, m$, are also linearly independent, and so $u_{ij} = 0$ for all i, j; i.e., u = 0. This means that the range of R is all of $\mathbb{C}^{k \times m}$ and the result follows.

Theorem 2.3. The set of all Toeplitz operators $T_{\Phi}, \Phi \in L_{M_n}^{\infty}(\mathbb{D})$ is dense in $\mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D}))$ in the strong operator topology.

Proof. From Theorem 2.2, it follows that the collection $\mathcal{N} = \{T_{\Phi} : \Phi \in L_{M_n}^{\infty}(\mathbb{D})\}$ is dense in $\mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D}))$ in the weak operator topology. As \mathcal{N} is a subspace, i.e., a convex set, its weak operator topology and strong operator topology closures coincide. Hence \mathcal{N} is dense in $\mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D}))$ in the strong operator topology. Let $T \in \mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D}))$. Then there exists $\Phi_N \in L_{M_n}^{\infty}(\mathbb{D})$ such that $T_{\Phi_N} \to T$ in the strong operator topology. This can also be verified as follows: Let T =

$$\begin{pmatrix} T_{11} & T_{12} & \cdots & T_{1n} \\ T_{21} & T_{22} & \cdots & T_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ T_{n1} & T_{n2} & \cdots & T_{nn} \end{pmatrix} \text{ where } T_{ij} = V_i T U_j \in \mathcal{L}(L_a^2(\mathbb{D})). \text{ From [6] and [7], it}$$

follows that $\{T_{\phi}: \phi \in L^{\infty}(\mathbb{D})\}$ is dense in $\mathcal{L}(L_{a}^{2}(\mathbb{D}))$ in the strong operator topology. Thus there exists a sequence $T_{\phi_{m}^{ij}}$ that converges to T_{ij} strongly for all $i, j \in \{1, 2, \dots, n\}$. Let $\Phi_{m} = (\phi_{m}^{ij})_{i,j=1}^{n}$. Then for $F = (f_{1}, f_{2}, \dots, f_{n})^{T} \in L_{a}^{2,\mathbb{C}^{n}}(\mathbb{D})$, we obtain

$$\begin{aligned} \|T_{\Phi_m}F - TF\|^2 &= \left\| \begin{pmatrix} T_{\phi_m^{11}} - T_{11} & T_{\phi_m^{12}} - T_{12} & \cdots & T_{\phi_m^{1n}} - T_{1n} \\ T_{\phi_m^{21}} - T_{21} & T_{\phi_m^{22}} - T_{22} & \cdots & T_{\phi_m^{2n}} - T_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ T_{\phi_m^{n1}} - T_{n1} & T_{\phi_m^{n2}} - T_{n2} & \cdots & T_{\phi_m^{nn}} - T_{nn} \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix} \right\|^2 \\ &= \left\| \begin{pmatrix} (T_{\phi_m^{11}} - T_{11})f_1 + (T_{\phi_m^{12}} - T_{12})f_2 + \cdots + (T_{\phi_m^{1n}} - T_{1n})f_n \\ (T_{\phi_m^{21}} - T_{21})f_1 + (T_{\phi_m^{22}} - T_{22})f_2 + \cdots + (T_{\phi_m^{2n}} - T_{2n})f_n \\ \vdots \\ (T_{\phi_m^{n1}} - T_{n1})f_1 + (T_{\phi_m^{n2}} - T_{n2})f_2 + \cdots + (T_{\phi_m^{nn}} - T_{nn})f_n \end{pmatrix} \right\|^2 \\ &\leq \sum_{i=1}^n \|T_{\phi_m^{ij}} f_j - T_{ij} f_j \|^2 \to 0 \end{aligned}$$

as $m \to \infty$. Hence the set of all Toeplitz operators $\{T_{\Phi}, \Phi \in L_{M_n}^{\infty}(\mathbb{D})\}$ is dense in $\mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D}))$ in the strong operator topology.

3. Hankel operators with matrix-valued symbols

Suppose $\Phi \in L^{\infty}_{M_n}(\mathbb{D})$. In this section we show that $H_{\Phi} \equiv 0$ if and only if $\Phi \in H^{\infty}_{M_n}(\mathbb{D})$ and that there exists no finite rank Hankel operator H_{Φ} with nonconstant matrix-valued symbol Φ that is diagonal. We further establish certain elementary properties of little Hankel operators and characterize all finite rank little Hankel operators with diagonal matrix-valued symbols.

Theorem 3.1. Let
$$\Phi \in L_{M_n}^{\infty}(\mathbb{D})$$
 and $\Phi = \begin{pmatrix} \phi_{11} & 0 & \cdots & 0 \\ 0 & \phi_{22} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \phi_{nn} \end{pmatrix}$, where $\phi_{ii} \in$

 $L^{\infty}(\mathbb{D}), 1 \leq i \leq n$. The following hold:

(i) The operator $H_{\Phi} \equiv 0$ if and only if $\Phi \in H_{M_n}^{\infty}(\mathbb{D})$.

- (ii) The operator $H_{\phi_{jj}} \neq 0$ for all $j \in \{1, 2, \dots, n\}$ if and only if $\ker H_{\Phi} = \{0\}$. Further $H_{\Phi} \equiv 0$ if and only if $\ker H_{\Phi} = L_a^{2,\mathbb{C}^n}(\mathbb{D})$.
- (iii) If in addition, $\Phi \in H^{\infty}_{M_n}(\mathbb{D})$, then the operator H_{Φ^*} is a finite rank Hankel operator if and only if Φ is a diagonal matrix with entries in \mathbb{C} .

Proof. It is not difficult to see that
$$H_{\Phi} = \begin{pmatrix} H_{\phi_{11}} & 0 & \cdots & 0 \\ 0 & H_{\phi_{22}} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & H_{\phi_{nn}} \end{pmatrix}$$
 where

 $H_{\phi_{ii}} \in \mathcal{L}(L_a^2(\mathbb{D}))$ is a Hankel operator with symbol $\phi_{ii} \in L^{\infty}(\mathbb{D})$.

Suppose $\phi \in L^{\infty}(\mathbb{D})$. Before we begin the proof of the theorem, the points to note are the following:

- (a) If $\phi f \in L_a^2(\mathbb{D})$ for all $f \in L_a^2(\mathbb{D})$ then $\phi \in H^{\infty}(\mathbb{D})$.
- (b) $H_{\phi} \equiv 0$ if and only if $\phi \in H^{\infty}(\mathbb{D})$.

The statement (a) can be verified as follows: Suppose $\phi L_a^2(\mathbb{D}) \subset L_a^2(\mathbb{D})$. Then $T_{\phi}f = \phi f$ and therefore $\phi(z) = \frac{T_{\phi}f(z)}{f(z)}$. Hence ϕ is analytic on $\mathbb{D} - \{$ zeros of $f \}$. Each isolated singularity of ϕ in \mathbb{D} is removable, since ϕ is assumed to be bounded. Thus ϕ is analytic on \mathbb{D} . Since $\phi \in L^{\infty}(\mathbb{D})$, we have $\phi \in H^{\infty}(\mathbb{D})$.

To establish (b), suppose $H_{\phi} \equiv 0$. Then $H_{\phi}f = 0$ for all $f \in L_a^2(\mathbb{D})$. That is, $T_{\phi}f = \phi f$. From (a) it follows that $\phi \in H^{\infty}(\mathbb{D})$. Conversely, if $\phi \in H^{\infty}(\mathbb{D})$, then $\phi f \in L_a^2(\mathbb{D})$ for all $f \in L_a^2(\mathbb{D})$. Hence $H_{\phi}f = 0$ for all $f \in L_a^2(\mathbb{D})$. Therefore $H_{\phi} \equiv 0$.

Now (i) follows from (a) and (b) since $H_{\Phi} \equiv 0$ if and only if $H_{\phi_{jj}} \equiv 0$ for all $j \in \{1, 2, \dots, n\}$. That is, if and only if $\phi_{jj} \in H^{\infty}(\mathbb{D})$ for all $j \in \{1, 2, \dots, n\}$. Thus $H_{\Phi} \equiv 0$ if and only if $\Phi \in H_{M_n}^{\infty}(\mathbb{D})$. To prove (ii), suppose $\phi \in L^{\infty}(\mathbb{D})$. Then

$$\ker H_{\phi} = \{ f \in L_{a}^{2}(\mathbb{D}) : (I - P)(\phi f) = 0 \}$$
$$= \{ f \in L_{a}^{2}(\mathbb{D}) : \phi f \in L_{a}^{2}(\mathbb{D}) \}.$$

Now if $\ker H_{\phi} \neq \{0\}$, then $\phi \in H^{\infty}(\mathbb{D})$ (proceed as in (a)). This implies H_{ϕ} is equivalent to zero and $\ker H_{\phi} = L_a^2(\mathbb{D})$. Thus if $H_{\phi} \neq 0$, then $\ker H_{\phi} = \{0\}$. Further, if $\ker H_{\phi} = \{0\}$ then it follows that $\phi \notin H^{\infty}(\mathbb{D})$ and $H_{\phi} \not\equiv 0$. To prove (ii), let $\Phi \in L_{M_n}^{\infty}(\mathbb{D})$. Then $\ker H_{\Phi}$ is equal to

$$\left\{ (f_1, f_2, \cdots, f_n) \in L_a^{2,\mathbb{C}^n}(\mathbb{D}) : \begin{pmatrix} H_{\phi_{11}} & 0 & \cdots & 0 \\ 0 & H_{\phi_{22}} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & H_{\phi_{nn}} \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \right\} \\
= \left\{ (f_1, f_2, \cdots, f_n) \in L_a^{2,\mathbb{C}^n}(\mathbb{D}) : H_{\phi_{jj}} f_j = 0 \text{ for all } j \in \{1, 2, \cdots, n\} \right\}.$$

Thus it follows that $\ker H_{\Phi} = \{0\}$ if and only if $\ker H_{\phi_{jj}} = \{0\}$ for all $j \in \{1, 2, \dots, n\}$. But $\ker H_{\phi_{jj}} = \{0\}$ for all $j \in \{1, 2, \dots, n\}$ if and only if $H_{\phi_{jj}} \neq 0$ for all $j \in \{1, 2, \dots, n\}$.

To prove (iii), we shall first show that if $\phi \in H^{\infty}(\mathbb{D})$, then $H_{\overline{\phi}}$ is a finite rank Hankel operator if and only if ϕ is a constant. This can be verified as follows:

Sufficiency is obvious. For the necessity, suppose that $H_{\overline{\phi}}$ is a finite rank operator, where ϕ is analytic on \mathbb{D} . Then

$$\ker H_{\overline{\phi}} = \{ f \in L^2_a(\mathbb{D}) : (I-P)(\overline{\phi}f) = 0 \} = \{ f \in L^2_a(\mathbb{D}) : \overline{\phi}f \in L^2_a(\mathbb{D}) \}$$

has finite codimension and is invariant under multiplication by z. By the result of Axler and Bourdon [1], there exists a polynomial q whose roots lie in \mathbb{D} such that $\ker H_{\phi} = qL_a^2(\mathbb{D})$. Let $\phi(z) = \sum c_k z^k$; then $\overline{\phi}(z)q(z) \in L_a^2(\mathbb{D})$ implies that either ϕ is a constant or q = 0. If q = 0 then $\ker H_{\overline{\phi}} = \{0\}$. This implies $(\operatorname{Range} H_{\overline{\phi}}^*)^{\perp} = \{0\}$. Hence $\operatorname{Range} H_{\overline{\phi}}^* = L_a^2(\mathbb{D})$. This implies $H_{\overline{\phi}}$ is not of finite rank. Hence $q \neq 0$ since $H_{\overline{\phi}}$ has finite rank, so the claim is verified.

Now if $\Phi \in H^{\infty}_{M_n}(\mathbb{D})$ then H_{Φ^*} is a finite rank Hankel operator if and only if $H_{\overline{\phi_{jj}}}$ is of finite rank for all $j \in \{1, 2, \dots, n\}$. That is, if and only if $\overline{\phi_{jj}}$ is a constant for all $j \in \{1, 2, \dots, n\}$. That is, if and only if Φ is a diagonal matrix with entries in \mathbb{C} .

Definition-3.1 A function $G \in L_a^2(\mathbb{D})$ is called an inner function in $L_a^2(\mathbb{D})$ if $|G|^2 - 1$ is orthogonal to H^{∞} .

This definition of inner function in a Bergman space was given by Korenblum and Stessin [10]. If N is a subspace of $L_a^2(\mathbb{D})$, let $Z(N) = \{z \in \mathbb{D} : f(z) = 0 \text{ for all } f \in N\}$, which is called the common zero set of functions in N. Hence if z_1 is a zero of multiplicity at most n of all functions in N, then z_1 appears n times in the set Z(N), and each z_1 is treated as a distinct element of Z(N).

Theorem 3.2. Let $\Phi = (\phi_{ij})$ where $\phi_{ij} \in L^{\infty}(\mathbb{D}), 1 \leq i, j \leq n$. Suppose $\phi_{ij} = 0$ if $i \neq j$ and let $S_{\Phi} \in \mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D}))$ be the little Hankel operator with symbol Φ . The following hold:

- (i) The operator $S_{\Phi} \equiv 0$ if and only if $\Phi \in \overline{(L_a^{2,\mathbb{C}^n}(\mathbb{D}))}^{\perp}$.
- (ii) The operator $S \in \mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D}))$ is a little Hankel operator if and only if $T_{zI_{n\times n}}^*S = ST_{zI_{n\times n}}$ where $I_{n\times n}$ is the identity matrix of order n.
- (iii) If $\Psi \in L_{M_n}^{\infty}(\mathbb{D})$, then the subspace $\ker S_{\Psi}$ is an invariant subspace of $T_{zI_{n\times n}}$.
- (iv) Let $\Psi = (\psi_{ij}), \ \psi_{ij} \in L^{\infty}(\mathbb{D})$ and $\psi_{ij}^{+}(z) = \overline{\psi_{ij}(\overline{z})}, 1 \leq i, j \leq n$. Then $S_{\Psi}^{*} = S_{\Psi^{+}}$ where $\Psi^{+} = (\psi_{ij}^{+})_{1 \leq i, j \leq n}$.
- (v) If for j ∈ {1,2,···,n}, ker S_{φjj} = {f ∈ L²_a(D) : f = 0 on b_{jj}} where b_{jj} = {b^k_{jj}}[∞]_{k=1} is an infinite sequence of points in D, then there exists an inner function G ∈ L²_a(D) such that ker S_Φ = GL^{2,Cn}_a(D) ∩ L^{2,Cn}_a(D).
 (vi) If S_Φ is a finite rank little Hankel operator on L^{2,Cn}_a(D) then ker S_Φ =
- (vi) If S_Φ is a finite rank little Hankel operator on L_a^{2,C*}(D) then ker S_Φ = GL_a^{2,C*}(D) for some inner function G ∈ L_a²(D) and the following hold: (1) G vanishes on **a**= {a_j}_{j=1}^N, a finite sequence of points in D. (2) ||G||_{L²} = 1.
 (3) G is equal to a constant plus a linear combination of the Bergman kernel functions K(z, a₁), K(z, a₂),..., K(z, a_n) and certain of their derivatives. (4) |G|² − 1 is orthogonal to L_h¹, the class of harmonic functions in L¹ of the disc.

Proof. To prove (i), assume $\phi \in L^{\infty}(\mathbb{D})$. We shall first verify that $S_{\phi} \equiv 0$ if and only if $\phi \in (\overline{L_a^2(\mathbb{D})})^{\perp}$. Suppose $S_{\phi} \equiv 0$. Then $S_{\phi}f = 0$ for all $f \in L_a^2(\mathbb{D})$. Thus $PJ(\phi f) = 0$ and hence $\phi f \in (\overline{L_a^2(\mathbb{D})})^{\perp}$, for all $f \in L_a^2(\mathbb{D})$. Since $1 \in L_a^2(\mathbb{D})$,

 $\phi \in (\overline{L_a^2(\mathbb{D})})^{\perp}$. Now suppose $\phi \in (\overline{L_a^2(\mathbb{D})})^{\perp}$. This implies $\langle \phi, \overline{g} \rangle = 0$ for all $g \in L_a^2(\mathbb{D})$. Hence $\langle \phi f, \overline{g} \rangle = \langle \phi, \overline{fg} \rangle = 0$ for all $g \in L_a^2(\mathbb{D})$ and $f \in H^{\infty}(\mathbb{D})$. Thus $\langle h_{\phi}f, \overline{g} \rangle = \langle \overline{P}(\phi f), \overline{g} \rangle = 0$ for all $g \in L_a^2(\mathbb{D})$ and $f \in H^{\infty}(\mathbb{D})$. Thus $h_{\phi}f = 0$ for all $f \in H^{\infty}(\mathbb{D})$. Since $H^{\infty}(\mathbb{D})$ is dense in $L_a^2(\mathbb{D})$, we obtain $h_{\phi} \equiv 0$. That is, $S_{\phi} = Jh_{\phi} \equiv 0$.

Now to prove (i), notice that $S_{\Phi} \equiv 0$ if and only if $S_{\phi_{jj}} \equiv 0$ for all $j \in \{1, 2, \dots, n\}$. This is true if and only if $\phi_{jj} \in (\overline{L_a^2(\mathbb{D})})^{\perp}$. That is, if $\Phi \in (\overline{L_a^{2,\mathbb{C}^n}}(\mathbb{D}))^{\perp}$. Now we prove (ii). Let $S \in \mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D}))$. Since $L_a^{2,\mathbb{C}^n}(\mathbb{D}) = L_a^2(\mathbb{D}) \oplus L_a^2(\mathbb{D}) \oplus \cdots \oplus (S_{n-1}, S_{n-1}, S_{$

$$L_a^2(\mathbb{D}), \text{ the operator } S = \begin{pmatrix} S_{11} & S_{12} & \cdots & S_{1n} \\ S_{21} & S_{22} & \cdots & S_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ S_{n1} & S_{n2} & \cdots & S_{nn} \end{pmatrix} \text{ for some } S_{ij} \in \mathcal{L}(L_a^2(\mathbb{D})), 1 \leq 1$$

 $i, j \leq n$. Suppose $T_{zI_{n\times n}}^*S = ST_{zI_{n\times n}}$. This implies $T_z^*S_{ij} = S_{ij}T_z$. From [8], it follows that $S_{ij} = S_{\psi_{ij}}$ for $\psi_{ij} \in L^{\infty}(\mathbb{D}), 1 \leq i, j \leq n$. Thus

$$S = \begin{pmatrix} S_{\psi_{11}} & S_{\psi_{12}} & \cdots & S_{\psi_{1n}} \\ S_{\psi_{21}} & S_{\psi_{22}} & \cdots & S_{\psi_{2n}} \\ \vdots & \vdots & \cdots & \vdots \\ S_{\psi_{n1}} & S_{\psi_{n2}} & \cdots & S_{\psi_{nn}} \end{pmatrix}.$$

That is,
$$S = S_{\Psi}$$
 where $\Psi = \begin{pmatrix} \psi_{11} & \psi_{12} & \cdots & \psi_{1n} \\ \psi_{21} & \psi_{22} & \cdots & \psi_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ \psi_{n1} & \psi_{n2} & \cdots & \psi_{nn} \end{pmatrix}$. Conversely, suppose

 $S \in \mathcal{L}(L_a^{2,\mathbb{C}^n}(\mathbb{D}))$ is a little Hankel operator. That is, $S = S_{\Psi}$ where $\Psi \in L_{M_n}^{\infty}(\mathbb{D})$. Let $\Psi = (\psi_{ij})_{1 \leq i,j \leq n}$. Then $S_{\Psi} = (S_{\psi_{ij}})_{1 \leq i,j \leq n}$. From [8], it follows that $T_z^* S_{\psi_{ij}} = S_{\psi_{ij}} T_z$. This implies $T_{zI_{n \times n}}^* S_{\Psi} = S_{\Psi} T_{zI_{n \times n}}$.

To prove (iii), let $f \in \ker S_{\Psi}$. Then $S_{\Psi}T_{zI_{n\times n}}f = T^*_{zI_{n\times n}}S_{\Psi}f = 0$. That is, $T_{zI_{n\times n}}f \in \ker S_{\Psi}$.

To prove (iv), we shall first verify that if $\psi \in L^{\infty}(\mathbb{D})$ then $S_{\psi}^* = S_{\psi^+}$ where $\psi^+(z) = \overline{\psi(\overline{z})}$. Let $f, g \in L_a^2(\mathbb{D})$. Then

$$\langle S_{\psi}^* f, g \rangle = \langle f, S_{\psi} g \rangle$$

$$= \langle f, PJ(\psi g) \rangle$$

$$= \langle f, (J\psi)Jg \rangle$$

$$= \langle \overline{J\psi}f, Jg \rangle$$

$$= \langle \psi^+ f, Jg \rangle$$

$$= \langle J(\psi^+ f), g \rangle$$

$$= \langle PJ(\psi^+ f), g \rangle$$

$$= \langle S_{\psi^+} f, g \rangle.$$

Thus $S_{\psi}^* = S_{\psi^+}$. Now if $\Psi = (\psi_{ij})_{1 \leq i,j \leq n}$ then $S_{\Psi} = (S_{\psi_{ij}})_{1 \leq i,j \leq n}$. Then $S_{\Psi}^* = (S_{\psi_{ij}}^*)_{1 \leq i,j \leq n} = (S_{\psi_{ij}}^*)_{1 \leq i,j \leq n} = S_{\Psi^+}$.

Now we prove (v). Notice that for $1 \leq j \leq n$, ker $S_{\phi_{jj}}$ is an invariant subspace of T_z . If ker $S_{\phi_{jj}}$ can be expressed in terms of its common zero set, i.e., if ker $S_{\phi_{jj}} = 1$

 $\{f \in L_a^2(\mathbb{D}) : f = 0 \text{ on } \boldsymbol{b_{jj}} \}$, then by [3],[4] and [9], $\ker S_{\phi_{jj}} = G_{jj}L_a^2(\mathbb{D}) \cap L_a^2(\mathbb{D})$ for some inner functions $G_{jj} \in L_a^2(\mathbb{D})$ formed by the corresponding zeros $\{b_{jj}^k\}_{k=1}^{\infty}, j = 1, 2, \cdots, n$. Let G be the inner function formed by the union of zeros of the functions $G_{jj}, j = 1, 2, \cdots, n$ counting multiplicities. It is not difficult to see that $\ker S_{\Phi} = GL_a^{2,\mathbb{C}^n}(\mathbb{D}) \cap L_a^{2,\mathbb{C}^n}(\mathbb{D})$ as $\ker S_{\Phi}$ is an invariant subspace of $T_{zI_{n\times n}}$.

To prove (vi), first we shall verify that if $\phi \in L^{\infty}(\mathbb{D})$ and S_{ϕ} is a finite rank little Hankel operator on $L_a^2(\mathbb{D})$, then $\ker S_{\phi} = GL_a^2(\mathbb{D})$ for some inner function $G \in L_a^2(\mathbb{D})$.

Since S_{ϕ} is a little Hankel operator on $L_a^2(\mathbb{D})$, hence $T_z^*S_{\phi} = S_{\phi}T_z$. So $\ker S_{\phi}$ is invariant under multiplication by z and $\ker S_{\phi}$ has finite codimension since S_{ϕ} is of finite rank. Let $\mathbf{a} = \{a_j\}_{j=1}^N$ be the common zeroes (counting multiplicities) of functions in $\ker S_{\phi}$ i.e., $\mathcal{Z}(\ker S_{\phi}) = \{a_j\}_{j=1}^N$. Let G be the extremal function for the problem

$$\sup\{Ref^{(k)}(0): f \in L_a^2, ||f||_{L^2} \le 1, f = 0 \text{ on } \mathbf{a}\},\$$

where k is the multiplicity of the number of times zero appears in $\mathbf{a} = \{a_j\}_{j=1}^N (k = 0 \text{ if } 0 \notin \{a_j\}_{j=1}^N)$. It is clear from [2],[3], [4] and [9] that G satisfies the conditions (1)-(4) and G vanishes precisely on \mathbf{a} in $\overline{\mathbb{D}}$ counting multiplicities. Moreover, for every function $f \in L_a^2(\mathbb{D})$ that vanishes on $\mathbf{a} = \{a_j\}_{j=1}^N$ there exists $g \in L_a^2(\mathbb{D})$ such that f = Gg. Hence $\ker S_\phi = GL_a^2(\mathbb{D})$.

Now suppose
$$\Phi \in L^{\infty}_{M_n}(\mathbb{D})$$
 and $\Phi = \begin{pmatrix} \phi_{11} & 0 & \cdots & 0 \\ 0 & \phi_{22} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \phi_{nn} \end{pmatrix}, \phi_{jj} \in L^{\infty}(\mathbb{D})$

and S_{Φ} is a finite rank little Hankel operator on $L_a^{2,\mathbb{C}^n}(\mathbb{D})$. Then

$$S_{\Phi} = \begin{pmatrix} S_{\phi_{11}} & 0 & \cdots & 0 \\ 0 & S_{\phi_{22}} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & S_{\phi_{nn}} \end{pmatrix} \text{ and each } S_{\phi_{jj}}, 1 \leq j \leq n \text{ is a finite rank little}$$

Hankel operator on $L_a^2(\mathbb{D})$. From the argument above, it follows that $\ker S_{\phi_{jj}} = G_{jj}L_a^2(\mathbb{D}), 1 \leq j \leq n$ where $G_{jj} \in L_a^2(\mathbb{D})$ is an inner function and each G_{jj} vanishes on a finite set of points in \mathbb{D} , $||G_{jj}||_{L^2} = 1$ and each G_{jj} is a linear combination of the Bergman kernels and some of their derivatives and $|G_{jj}|^2 - 1$ is orthogonal to L_h^1 . Let $\{\gamma_1, \gamma_2, \cdots, \gamma_l\}$ be the union of the zeros of the functions $G_{jj}, 1 \leq j \leq n$ counting multiplicities. Let $G \in L_a^2(\mathbb{D})$ be the inner function formed by the zeros $\gamma_1, \gamma_2, \cdots, \gamma_l$ taking multiplicities into account. It is not difficult to verify that $\ker S_\phi = GL_a^{2,\mathbb{C}^n}(\mathbb{D})$ and G is formed by a linear combination of (see [2],[3], [4] and [9]) the Bergman kernels and some of their derivatives and G satisfies the conditions (1)-(4).

Theorem 3.3. If $\Psi = (\psi_{ij}) \in L^{\infty}_{M_n}(\mathbb{D})$ where $\psi_{ij} = 0, i \neq j$ and S_{Ψ} is a finite rank little Hankel operator on $L^{2,\mathbb{C}^n}_a(\mathbb{D})$ then $\Psi = \Phi + \chi$ where $\Phi = (\phi_{ij}), \phi_{ij} \in L^{\infty}(\mathbb{D}), 1 \leq i, j \leq n, \ \phi_{ij} = 0, i \neq j \ and \ each \ \overline{\phi_{jj}}$ is a linear combination of

the Bergman kernels and some of their derivatives and $\chi = (\theta_{ij})$ where $\theta_{ij} \in$ $(\overline{L_a^2})^{\perp} \cap L^{\infty}(\mathbb{D}) \text{ and } \theta_{ij} = 0, i \neq j.$

Proof. Since
$$\Psi = (\psi_{ij})_{1 \leq i,j \leq n} \in L^{\infty}_{M_n}(\mathbb{D})$$
 and $\psi_{ij} = 0, i \neq j$, we have
$$S_{\Psi} = \begin{pmatrix} S_{\psi_{11}} & 0 & \cdots & 0 \\ 0 & S_{\psi_{22}} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & S_{\psi_{nn}} \end{pmatrix}.$$
 The operator S_{Ψ} is a finite rank little Hankel

operator if and only if each $S_{\psi_{ij}}$ is a finite rank little Hankel operator on $L_a^2(\mathbb{D})$ for all $j \in \{1, 2, \dots, n\}$. Now let $1 \leq j \leq n$. Since for each j, $S_{\psi_{jj}}$ is a finite rank little Hankel operator on $L_a^2(\mathbb{D})$, there exist inner functions $G_{ij} \in L_a^2(\mathbb{D})$ such that $\ker S_{\psi_{jj}} = G_{jj}L_a^2(\mathbb{D})$. Thus $\psi_{jj}G_{jj} \in (\overline{L_a^2})^{\perp}$. So $\langle \psi_{jj}G_{jj}, \bar{h} \rangle = 0$ for all $h \in L_a^2(\mathbb{D})$, that is, $\langle G_{jj}h, \overline{\psi_{jj}} \rangle = 0$ for all $h \in L_a^2(\mathbb{D})$ and so $\overline{\psi_{jj}} = \overline{\phi_{jj}} + \overline{\theta_{jj}}$ where $\overline{\theta_{jj}} \in (L_a^2)^{\perp}$, the orthogonal complement of $L_a^2(\mathbb{D})$ with respect to $L^2(\mathbb{D}, dA)$ and $\overline{\phi_{jj}} \in (G_{jj}L_a^2)^{\perp}$, the orthogonal complement of $G_{jj}L_a^2(\mathbb{D})$ with respect to $L_a^2(\mathbb{D})$. Suppose the function G_{jj} vanishes precisely at $\mathbf{d}^j = \{d_1^j, d_2^j, \cdots, d_{m_i}^j\}$, a finite number of points in $\mathbb D$ counting multiplicities. Since $K_{d_1^j}, K_{d_2^j}, \dots, K_{d_{m_i}^j}$ and their derivatives (where if the point $\alpha \in \mathbb{D}$ occurs k times in \mathbf{d}^{j} then we include the functions $(1-\bar{\alpha}z)^{-2}, z(1-\bar{\alpha}z)^{-3}, \ldots, z^{k-1}(1-\bar{\alpha}z)^{-k-1}$) form a basis for $(G_{jj}L_a^2(\mathbb{D}))^{\perp}, j \in \{1, 2, \cdots, n\}$, hence $\overline{\phi_{jj}}$ is a linear combination of the Bergman kernels and some of their derivatives and $\overline{\theta_{jj}} \in (L_a^2(\mathbb{D}))^{\perp} \cap L^{\infty}(\mathbb{D})$ since $\overline{\psi_{jj}}, \overline{\phi_{jj}} \in L^{\infty}(\mathbb{D})$. Thus $\Psi = \Phi + \chi$ where $\Phi = (\phi_{jj}), \chi = (\theta_{jj})$ and $\overline{\phi_{jj}}$ is a linear combination of the Bergman kernels and some of their derivatives and $\theta_{ij} \in (\overline{L_a^2(\mathbb{D})})^{\perp} \cap L^{\infty}(\mathbb{D}).$

Now let $\mathbf{b} = \{b_j\}_{j=1}^{\infty}$ be an infinite sequence of points in \mathbb{D} . Let $\mathcal{I} = I(\mathbf{b}) =$ $\{f \in L_a^2(\mathbb{D}) : f = 0 \text{ on } \mathbf{b}\}$. Let $G_{\mathbf{b}}$ be the solution of the extremal problem

$$\sup\{Ref^{(n)}(0): f \in \mathcal{I}, \|f\|_{L^2} \le 1\},\tag{3.1}$$

where n is the number of times zero appears in the sequence **b** (i.e., the functions in \mathcal{I} have a common zero of order n at the origin). The natural question that arises at this point is to see if it is possible to construct a little Hankel operator $S_{\Phi}, \Phi \in L_{M_n}^{\infty}(\mathbb{D})$ whose kernel is $G_{\mathbf{b}}L_a^{2,\mathbb{C}^n}(\mathbb{D}) \cap L_a^{2,\mathbb{C}^n}(\mathbb{D})$. In the case that \mathbf{b} = $\{b_j\}_{j=1}^N$ is a finite set of points in \mathbb{D} , it is possible to construct a little Hankel operator $S_{\Phi}, \Phi \in L_{M_{\infty}^{\infty}(\mathbb{D})}$ such that $\ker S_{\Phi} = G_{\mathbf{b}} L_{a}^{2,\mathbb{C}^{n}}(\mathbb{D})$ as follows:

Theorem 3.4. Let $\mathbf{b} = (b_j)_{j=1}^N$ be a finite set of points in \mathbb{D} and $\mathcal{I} = I(\mathbf{b}) =$ $\{f \in L^2_a(\mathbb{D}) : f = 0 \text{ on } \mathbf{b}\}\$ and let $G_{\mathbf{b}}$ be the solution of the extremal problem (3.1). Let

$$\bar{\phi} = \sum_{j=1}^{N} \sum_{\nu=0}^{m_j - 1} c_{j\nu} \frac{\partial^{\nu}}{\partial \overline{b_j}^{\nu}} K_{b_j}(z),$$

where $c_{j\nu} \neq 0$ for all j, ν and m_j is the number of times b_j appears in **b**. Then $\ker S_{\Phi} = G_{\mathbf{b}} L_a^{2,\mathbb{C}^n}(\mathbb{D})$ where $\Phi = (\phi_{rs})_{r,s=1}^n$ and $\phi_{rs} = \phi$ if r = s and 0, if $r \neq s$.

Proof. The set of vectors $\{K_{b_1},\ldots,\frac{\partial^{m_1-1}}{\partial \bar{b}_1^{m_1-1}}K_{b_1},\ldots,K_{b_N},\ldots,\frac{\partial^{m_n-1}}{\partial \bar{b}_N^{m_n-1}}K_{b_N}\}$ forms a basis [9] for $(G_{\mathbf{b}}L_a^2(\mathbb{D}))^{\perp}$. By the Gram-Schmidt orthogonalization process we can get an orthonormal basis $\{\psi_j\}_{j=1}^l$ for $(G_{\mathbf{b}}L_a^2(\mathbb{D}))^{\perp}$. If $\bar{\phi} \in (G_{\mathbf{b}}L_a^2)^{\perp}$ then $\langle \bar{\phi}, G_{\mathbf{b}}t \rangle = 0$ for all $t \in L_a^2(\mathbb{D})$, i.e., $\langle \bar{t}, \phi G_{\mathbf{b}} \rangle = 0$ for all $t \in L_a^2(\mathbb{D})$ and so $G_{\mathbf{b}} \in \ker S_{\phi}$. Since $\ker S_{\phi}$ is invariant under the operator of multiplication by z we have that

$$G_{\mathbf{b}}L_a^2(\mathbb{D}) \subset \ker S_{\phi}.$$
 (3.2)

Suppose $f \in \ker S_{\phi}$; then $\langle \phi f, \bar{h} \rangle = 0$ for all $h \in L_a^2(\mathbb{D})$, so in particular $\langle \phi f, \overline{K_{b_j}} \rangle = 0$ for all j = 1, 2, ..., N. Therefore, $\langle \bar{\phi} \bar{f}, K_{b_j} \rangle = 0$ for all j = 1, 2, ..., N. Thus $\overline{\phi(b_j)f(b_j)} = 0$ for all j = 1, 2, ..., N. Since $\overline{\phi(b_j)} \neq 0$ for all j = 1, 2, ..., N, hence $\overline{f(b_j)} = 0$ for all j = 1, 2, ..., N. Thus $f \in \mathcal{I}$. Since $G_{\mathbf{b}}$ is the solution of the extremal problem (3.1) therefore, $f \in G_{\mathbf{b}}L_a^2$. Hence

$$\ker S_{\phi} \subset G_{\mathbf{b}} L_a^2. \tag{3.3}$$

From (3.2) and (3.3), $\ker S_{\phi} = G_{\mathbf{b}}L_a^2(\mathbb{D}) = \mathcal{I}$. Now let $\Phi = (\phi_{rs})_{r,s=1}^n$ where $\phi_{rs} = \phi$ if r = s and 0, if $r \neq s$. It is not difficult now to verify that $\ker S_{\Phi} = G_{\mathbf{b}}L_a^{2,\mathbb{C}^n}(\mathbb{D})$.

References

- S. Axler and P. Bourdon, Finite co-dimensional invariant subspaces of Bergman spaces, Trans. Amer. Math. Soc. 306 (1988), 805-817.
- 2. N. Das, The kernel of a Hankel operator on the Bergman space, Bull. London Math. Soc. **31** (1999), 75-80.
- 3. P.L. Duren, D. Khavinson, H.S. Shapiro and C. Sundberg, Contractive zero-divisors in Bergman spaces, Pacific J. Math. 157 (1993), 37-56.
- 4. P.L. Duren, D. Khavinson, H.S. Shapiro and C. Sundberg, *Invariant subspaces in Bergman spaces and the biharmonic equation*, Michigan Math. J. **41** (1994), 247-259.
- 5. M. Engliś, A note on Toeplitz operators on Bergman spaces, Comm. Math. Univ. Carolinae 29 (1988), 217-219.
- M. Engliś, Some density theorems for Toeplitz operators on Bergman spaces, Czechoslovak Math. J. 40 (1990), 491-502.
- M. Engliś, Density of algebras generated by Toeplitz operators on Bergman spaces, Ark. Mat. 30 (1992), 227-243.
- 8. N.S. Faour, A theorem of Nehari type, Illinois J. Math. **35** (1991), 533-535.
- 9. H. Hedenmalm, A factorization theorem for square area-integrable analytic functions, J. Reine. Angew. Math. **422** (1991), 45-68.
- B. Korenblum and M. Stessin On Toeplitz-invariant subspaces of the Bergman space, J. Funct. Anal. 111 (1993), 76-96.
- 11. S.G. Krantz, Function Theory of Several Complex Variables,, John Wiley, New York, 1982.
- 12. K. Zhu, Operator Theory in Function Spaces, Monographs and Textbooks in Pure and Applied Mathematics, Marcell Dekker Inc. 139, New York and Basel, 1990.
- P.G. Department of Mathematics, Utkal University, Vanivihar, Bhubaneswar, 751004,, Odisha, India

E-mail address: namitadas440@yahoo.co.in