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ABSTRACT. In this paper we derive certain algebraic properties of Toeplitz and
Hankel operators defined on the vector-valued Bergman spaces L>C" (D) where
D is the open unit disk in C and n > 1. We show that the set of all Toeplitz
operators Ty, ® € L3; (D) is strongly dense in the set of all bounded linear

operators £(L>C" (D)) and characterize all finite rank little Hankel operators.

1. INTRODUCTION

Let D = {z € C: |z] < 1} be the open unit disc in the complex plane C and
let dA(z) = %dxdy = %Tdrde be the area measure on D) normalised so that the
area of D is 1. For 1 < p < oo, the Bergman space LP(D) is the space of all
holomorphic functions f in D for which

112z = ( / | f<z>\pdA<z>)‘l’ .

The quantity [|.||zzmp) is a norm if p > 1. Thus L (D) is the subspace of holomor-
phic functions that are in the space LP(ID,dA). The Bergman spaces are Banach
spaces, which is a consequence of the estimate:

sup | f(2)| < Ckll fllzzw)
zeK

valid on compact subsets K of D. If p = 2, then L?(DD) is a Hilbert space. Since
point evaluation at z € D is a bounded linear functional [12] on the Hilbert
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space L2(D), the Riesz representation theorem implies that there exists a unique
function K, in L?(D) such that

:Afwmxmmmw

for all f in L2(D). Let K(z,w) be the function on D x D defined by
K(z,w) = K,(w).

The function K (z,w) is thus the reproducing kernel for the Bergman space L?(ID)
and is called the Bergman kernel. The sequence {e,(2)}n>0 = {v/n + 12" },>0 of
functions [12] form the standard orthonormal basis for L?(ID) and

K(z,w) = Z en(2)en(w).

The Bergman kernel is independent of the choice of orthonormal basis and

K(z,w) = m Let kq(z) = \;{I(:(:)a) = (t';z\;. These functions k, are called

the normalized reproducing kernels of L?(D); it is clear that they are unit vec-
tors in L2(D). Let L>(D,dA) denote the Banach space of Lebesgue measurable
functions f on D with

|/ lloo = esssup{|f(2)| : 2 € D} < co
and H*(ID) be the space of bounded analytic functions on D.
Let L2®"(D) = LZ(D) ® C" and L3; (D) = L>(D) ® M, where M,(C) =
M,,n > 1is the set of all n xn matrices with entries in C. The space L>¢" (D), n >

1 is called the vector-valued Bergman space. The inner product on L>C"(D) is
defined as

)z = [ (). g2hendA).

D
With this inner product L2¢" (D) is a Hilbert space. The norm defined on L2¢" (D)
is given by

1 en g = [ 1FC)E-AA)

It is a closed subspace of L>®"(D,dA) = L*(D,dA) ® C". Let P denote the
orthogonal projection from L*C" (DD, dA) onto L2%"(D). For ® € L35 (D), we
define the Toeplitz operator Ty from L2C" (D) into itself as Tp f = P(®f) and the
Hankel operator Hg from L2C"(D) into (L>®" (D))t = L2>C"(D,dA) © L>" (D)
as Hof = (I — P)(®f). For ® € L§; (D), define ||®[|o = esssup,cp|P(2)]|. If
® € L7 (D), then it is not difficult to see that ||Te | < [[®]|o and ||He|| < |||
This is so as ||P|| <1 and || — P|| < 1.

For ® € L3; (D), we define the little Hankel operator Sg from L2¢" (D) into
itself as Sgf = PJ(®f) where J : L>®"(D,dA) — L>®"(D,dA) is defined as
Jf(z) = f(Z). The map J is unitary. There are also many equivalent ways of
defining little Hankel operators. Let L2 (D) = L2(D) ® C". For ® € L% (D),

define hg from L2 (D) into L2“" (D) as he f = P(®f) where P is the orthogonal
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projection from L2C" (D, dA) onto L=“" (D). It is not difficult to verify that he =
JSs.

Let £(H) be the set of all bounded linear operators from the Hilbert space H
into itself and LC(H) be the set of all compact operators in L(H).

Consider the direct sum Z &Ly, with each Ly, the same Hilbert space L2(D).

k=1
Define the bounded linear operators

Ui: LA(D) — Y@Ly, Vi Y ®Ly — L2(D),
k=1 k=1

for each ¢« € {1,2,--- ,n} as follows. When f € L3(D) and g = {gx} €
S op_ Lk, Vig = g; and U, f is the family {h;} in which h; = f and all other hy
are 0. Let L/ be the range of U;. It consists of all elements {hy} of >°,_ @Ly in
which by, = 0 when k # i. The space L] is a closed subspace of Y ,_, &L and
observe that V;U; is the identity operator on Lz(]D) and U;V; is the projection
E; from )"}, &Ly, onto L. Since the subspace L}, i € {1,2,--- ,n} are pairwise
orthogonal, and \/!_, L; = >~ | @ Ly, it follows that the sum ) ., E; = I. Note
that U; = V*, since

(Uif Afed) = {f fi) = (£ Vid e d)

whenever f € L2(D) and {f,} € > p_, ®Lj. With each bounded linear operator
T acting on > ;_, &Ly, we associate a matrix (7T5;)1<;j<n, With entries T;; in
L(L*(D)) defined by

Ti; = ViTU;. (1.1)
If g={gx} € > p_, ®Lg, then Tg is an element {p;} of > ;_, ®L; and

pi=ViTg=VT (Z Ek9> = ViTUVg = _Tyg;.
j=1

k=1 k=1
Thus

T (Z @gk) = Z@pk where p; = ZTijgj,z' e{1,2,--- ,n}. (1.2)
k=1 k=1 j=1

The usual rules of matrix algebra have natural analogues in this situation. From
(1.1), the matrix elements 7;; depend linearly on 7'. Since

VI'U; = UV = (VTU)' = (L)

the matrix of 7" has (7};)* in the (4, j) position. If S and T" are bounded linear
operators acting on > ;_, @®Ly, and R = ST, then

Ry = V;RU; = ViSTU; = Y V;SE,TU;,

k=1

= zn: ViSULVTU; = zn: SikThj-

k=1 k=1
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Thus we establish a one-to-one correspondence between elements of £ (Y, _, L)
and certain matrices (Tj;)7;—, with entries Tj; in £(L2(ID)). Each such matrix cor-
responds to some bounded operator 1" acting on Y, @ Ly; indeed, T is defined
by (1.2), and its boundedness follows at once from the relations

n n n n n 2
o 1P =D lillP =D 1D Tgill? <> (Z |1 T351| ||9j||>
i=1 i=1 j=1 i=1 \j=1

<3 (Somt) (S = (S0 m )
i=1 \j=1 j=1 i=1 j=1

In this paper we derive certain algebraic properties of Toeplitz and Hankel op-
erators defined on the vector-valued Bergman spaces L2"(D),n > 1. We have
shown that if there exists A, B € L(L>®" (D)) such that ATeB = Ty for all
® € L3; (D), then A = a]c(Lﬁ’C"(D))v B = BIL(L%’CR(]D)))’ a,f € Cand af =1 and
that the set of all Toeplitz operators Tp, ® € L37 (D) is strongly dense in the
set of all bounded linear operators £(L>®" (D)) and characterize all finite rank
little Hankel operators defined on the vector-valued Bergman space. The layout
of this paper is as follows. In section 2, we establish that if ATeB = Ty for all
® € L3; (D), then A = aIE(Lg’Cn(D))’ B = 6I£(L?;C"(JD>))7 a,p € Cand af = 1. Fur-
thermore, it is shown that the set of all Toeplitz operators Ty, ® € L37 (D) from
L>T" (D) into itself is strongly dense in the Banach space £(L>®"(D)). In section
3, we prove that there exists no finite rank Hankel operator He with nonconstant
matrix-valued symbol ¢ that is diagonal. We further establish certain elementary
properties of little Hankel operators and characterize all finite rank little Hankel
operators with diagonal matrix-valued symbols.

2. TOEPLITZ OPERATORS WITH SYMBOLS IN L3; (D)

In this section we have shown that if there exists A, B € £L(L*®" (D)) such that
ATeB = Ty for all ® € L (D), then A = O‘IL(L%C"(D))’ B = /B'[ﬁ(LZ’Cn(D))’a’nﬁ €
C and a8 = 1. Here 1 (L2 (D)) is the identity operator from the space L>C" (D)
into itself. Further, we show that the set of all Toeplitz operators T, ® € L5 (D)
from L2C"(D) into itself is strongly dense in the Banach space £(L2C"(D)).

Theorem 2.1. If A,B € L(L>®"(D)),n > 1 and ATsB = Ty for all €
L3; (D), then A = O“/IL(L?;C"(]DJ))’ B = BIL(LE‘M(]DJ))’ a,B €C and af = 1.

Proof. Suppose A, B € L(L*"(D)),n > 1 and ATsB = Ty for all ® € L3; (D).
Since L3¢ (D) = L2(D) ® C", we obtain

All A12 T Aln Bll Bl? e Bln
A= .21 _22 2 and B = .21 ,22 ’ , where
Anl An2 e Arm Bnl Bn2 e Bnn

Aiijij c ﬁ(Lz(D)) for all 1,] € {1,2, ,TL}. Here Aij = ‘/ZAUJ and Bij =
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ViBUj for alli,j € {1,2,--- ,n}. Further, as ® € L3 (D) = L>*(D)®M,,, we have

b11 P12 0 Din
o — ¢?1 ?22 ¢?" , where ¢;; € L®(D) for all 4,5 € {1,2,--- ,n}.
¢n1 ¢n2 e ¢nn
Hence
T¢11 T¢>12 Ty,
T(I) _ T¢21 T¢'>22 T¢2n
Topi Tip Ty,

00 - 0 0 0
00 - 0 0 0
0 0 T, 00 |’
0 0 0 0 0

with just one nonzero (7, j)th entry Ty, , ¢ € L>(D), 4,5 € {1,2,--- ,n} and
using the operator equations

0o0 --- 0O --- 00
A A o Ang oo .- 0 - 00 Bi1i B2 -+ By
Az Az o Az S I By By - By
: S 0 0 Ty, 0 0 : Lo
Ay Ane o Ann Poro : Lo B,i Bns -+ B

00 0 0 0

0 0 0 0 0

0 0 0 0 0

“loo Ty, 00 |’
0O0 .- 0O --- 0 0

it follows from [5] that V;AU; = V;BU; = 0 if i # j, 4,5 = 1,2,--- ,n and V;AU; =
alprzmy), ViBUi = BIprzmy) for all i = 1,2,--- ,n and for some «, 8 € C such that
af = 1. This implies A = O‘I[,(LQ’C" D)) and B = BIﬁ(LQ’C" ()" The theorem follows. [J



TOEPLITZ AND HANKEL OPERATORS 235

Fi
Theorem 2.2. Let T € L(L>*"(D)),n > 1, F, = : € L2Y"(D),G; =
Fin
Gi1
: € L2Y"(D),i = 1,---,N. Then there exists ® € L3; (D) such that
Gin

<T<I)Fi,Gi> = <TFZ,G1>,Z =1,---,N.

Proof. Let fi, fo, -+, fr and g¢1,90, -+, gm respectively be bases of the finite-
dimensional subspaces of L>%" (D) generated by F,--- , Fy and Gy,--- ,Gy. We
shall find ® € L3; (D) such that (Tofi, g;) = (T'fi,g;) for all i = 1,--- k and
j=1,,m.

Consider the operator R : L35 (D) — C"™, defined by (R®);; = (T fi, 9;),
i=1,---,kand j =1,---,m. Suppose u € C*¥*™ is orthogonal to the range of
R. That is, let

kK m
i=1 j=

(R®)u;; = 0
1

for all @ € L3 (D). This implies (taking ® = I,,,,, the identity matrix)

k. m
2 2 i 03z )i = 0.
i=1 j=1
Hence
kK m
Z fz (C"UZJ =0
i=1 j=1

almost everywhere on . Since the left hand side is obviously continuous on D,
this equality holds, in fact, on the whole of ID. Thus the function

k. m
=22 (i), ;@) e

i=1 j=1

which is analytic in D x D, equals zero when x = 7. By the uniqueness theorem
[11], this implies that 2 = 0 on D x D. Because, functions f;,i =1,2,--- , k, are
linearly independent, we obtain

forally e D,i =1,2,--- ,k;but g;,5 = 1,2,--- ,m, are also linearly independent,
and so u;; = 0 for all 7, j; i.e., u = 0. This means that the range of R is all of
Ck*™ and the result follows. OJ

Theorem 2.3. The set of all Toeplitz operators Te, ® € L35 (D) is dense in
L(L>"(D)) in the strong operator topology.
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Proof. From Theorem 2.2, it follows that the collection N'= {Ty : ® € L3; (D)}
is dense in L£(L2"(D)) in the weak operator topology. As A is a subspace,
i.e., a convex set, its weak operator topology and strong operator topology clo-
sures coincide. Hence A is dense in £(L2%" (D)) in the strong operator topology.
Let T € L£L(L%®"(D)). Then there exists &y € L3 (D) such that T, — T in
the strong operator topology. This can also be verified as follows: Let T =

Ty T - Ty

Toy Toy -+ Ty

where T;; = V;TU; € L(LZ(D)). From [6] and [7], it

Tnl Tn2 e Tnn
follows that {T}, : ¢ € L°(D)} is dense in £(L2(D)) in the strong operator topol-
ogy. Thus there exists a sequence Ty that converges to T;; strongly for all 4, j €

{1,2,--- ,n}. Let @, = (¢/3)7";—,. Then for F = (f1, fo, -, fo)" € L2 (D), we
obtain

Typ—Tu Ty =T - Ty =T \ [ |

Tyor — T Tyoo — T Tzn—Tn
HTq>mF—TFH2: ¢m. 21 ¢m. 22 ¢m. 2 sz

Ty — Tor Tynz — Tz -+ Tpn — T fn

(T¢},} —Tn)fi+ (T¢}3 —Tia)fo+ -+ (T¢,1,;l —Tn) fn
(Ty2r — Tor) f1 + (Tyee — Toz) fo + - -+ + (Tyer — Ton) fu

(T — Tox) fr + (Tgpz — Taa) fo + -+ (Tynn — Toun) fn

<Y Ty fi =Ty filI> =0
ij=1
as m — oo. Hence the set of all Toeplitz operators {Tg, ® € L3; (D)} is dense in
L(L>T"(D)) in the strong operator topology. O

3. Hankel operators with matrix-valued symbols

Suppose ® € L3; (D). In this section we show that He = 0 if and only if ® €
H3; (D) and that there exists no finite rank Hankel operator Hg with nonconstant
matrix-valued symbol ® that is diagonal. We further establish certain elementary
properties of little Hankel operators and characterize all finite rank little Hankel
operators with diagonal matrix-valued symbols.

b 0 - 0
0 g -+ 0
Theorem 3.1. Let ® € L3; (D) and & = , , . , where ¢y €
0 0 - ¢un

L>*(D),1 <i < n. The following hold:
(i) The operator Hy = 0 if and only if ® € Hp (D).
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(ii) The operator Hy,. # 0 for all j € {1,2,--- ,n} if and only if ker Hp =
{0}. Further Hp = 0 if and only if ker Hp = L>" (D).

(iii) If in addition, ® € H3; (D), then the operator He- is a finite rank Hankel
operator if and only if ® is a diagonal matriz with entries in C.

Hy,, 0o .- 0
0 Hy, - 0
Proof. 1t is not difficult to see that He = . ) ) where
0 0 - Hy,

Hy, € L(L?(D)) is a Hankel operator with symbol ¢;; € L=(D).

Suppose ¢ € L>(DD). Before we begin the proof of the theorem, the points to
note are the following:

(a)If ¢f € L2(D) for all f € L2(D) then ¢ € H*(D).

(b)Hs = 0 if and only if ¢ € H>*(D).

The statement (a) can be verified as follows: Suppose ¢L2(D) C L?(D). Then

Tyf = ¢f and therefore ¢(z) = T?{Z()Z). Hence ¢ is analytic on D — { zeros of f}.

Each isolated singularity of ¢ in ID is removable, since ¢ is assumed to be bounded.
Thus ¢ is analytic on D. Since ¢ € L>*(D), we have ¢ € H*(D).

To establish (b), suppose Hy = 0. Then Hyf = 0 for all f € L2(D). That is,
Tyf = ¢f. From (a) it follows that ¢ € H*(D). Conversely, if ¢ € H>(D), then
¢f € LA(D) for all f € L2(D). Hence H,f = 0 for all f € LZ(D). Therefore
Hd’ =0.

Now (i) follows from (a) and (b) since Hg = 0 if and only if Hy , = 0 for all
Jj€{1,2,---,n}. That is, if and only if ¢;; € H>*(D) for all j € {1,2,--- ,n}.
Thus He = 0 if and only if ® € Hyp (D).

To prove (ii), suppose ¢ € L>*(D). Then

ker Hy = {fe LiD): (I - P)(¢f) =0}
= {feLiD):¢f € L2(D)}.

Now if ker Hy # {0}, then ¢ € H*(D) (proceed as in (a)). This implies H, is
equivalent to zero and ker H, = L2(D). Thus if H,; # 0, then ker H, = {0}.
Further, if ker H, = {0} then it follows that ¢ ¢ H>(D) and H, # 0. To prove
(ii), let ® € L3; (D). Then ker Hy is equal to

Hyy, 0 - 0 fi 0

) 0 H,, -~ 0 f 0
oforeo fy ez my: | . | Sl=1
o o - H, ) \7f 0

= {(Fisfor e o fa) € L2 (D) Hy, f; = 0 for all j € {1,2, - ,n}}.

Thus it follows that ker Hp = {0} if and only if ker Hy, = {0} forall j €
{1,2,--- ,n}. But ker Hy,, = {0} forall j € {1,2,---,n}if and only if Hy, # 0
for all j € {1,2,--- ,n}.

To prove (iii), we shall first show that if ¢ € H>(D), then Hg is a finite rank
Hankel operator if and only if ¢ is a constant. This can be verified as follows:
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Sufficiency is obvious. For the necessity, suppose that Hy is a finite rank
operator, where ¢ is analytic on . Then

ker H; = {f € L;(D) : (I — P)(¢f) = 0} = {f € L;(D) : ¢f € Li(D)}

has finite codimension and is invariant under multiplication by z. By the result
of Axler and Bourdon [1], there exists a polynomial ¢ whose roots lie in D such
that ker Hy = qL?(D). Let ¢(z) = 3. cx2¥; then ¢(2)q(z) € L2(D) implies that
either ¢ is a constant or ¢ = 0. If ¢ = 0 then ker H; = {0}. This implies
(RangeH%)L = {0}. Hence RangeH} = L2(D). This implies Hy is not of finite
rank. Hence ¢ # 0 since Hy has finite rank, so the claim is verified.

Now if ® € Hy; (D) then Hg- is a finite rank Hankel operator if and only if

Ho— is of finite rank for all j € {1,2,---,n}. That is, if and only if ¢;; is a

constant for all j € {1,2,--- n}. That is, if and only if ® is a diagonal matrix
with entries in C. [

Definition-3.1 A function G € L?(D) is called an inner function in L?(D) if
|G|? — 1 is orthogonal to H*.

This definition of inner function in a Bergman space was given by Korenblum and
Stessin [10]. If NV is a subspace of L2(D), let Z(N) ={z € D: f(z) =0 for all f €
N}, which is called the common zero set of functions in N. Hence if z; is a zero
of multiplicity at most n of all functions in /N, then z; appears n times in the set
Z(N), and each z; is treated as a distinct element of Z(N).

Theorem 3.2. Let ® = (¢;;) where ¢;; € L=(D),1 <i,5 < n. Suppose ¢;; = 0 if
i # j and let Sy € L(L>C" (D)) be the little Hankel operator with symbol ®. The
following hold:

(i) The operator Se = 0 if and only if ® € (L¥“" (]D)))L.

(i) The operator S € L(L*C"(D)) is a little Hankel operator if and only if
Ty .S =51, where Ix, is the identity matriz of order n.

(iii) If ¥ € L3 (D), then the subspace ker Sy is an invariant subspace of T,y

nxn'

(iv) Let W = (1), iy € L>¥(D) and ¥5(2) = ¢(2),1 < 4,5 < n. Then
S} = Sy+ where U = (w;;)lg,jgn.
(v) If for j € {1,2,--- ,n}, ker Sy, = {f € LZD) : f = 0 on bj;} where
bj;j = {b;?j}gozl s an infinite sequence of points in D, then there exists an
inner function G € L2(D) such that ker Sp = GL>®" (D) N L2 (D).
(vi) If Sg is a finite rank little Hankel operator on L>T" (D) then ker Sg =
GL>C" (D) for some inner function G € L2(D) and the following hold: (1)
G vanishes on a= {a;}}_,, a finite sequence of points in D. (2) |G|l = 1.
(3) G is equal to a constant plus a linear combination of the Bergman ker-
nel functions K(z,a1), K(z,a3),...,K(z,a,) and certain of their deriva-
tives.(4) |G|? — 1 is orthogonal to Lj, the class of harmonic functions in
L' of the disc.
Proof. To prove (i), assume ¢ € L*(D). We shall first verify that S, = 0 if and
only if ¢ € (L2(D))*. Suppose Sy = 0. Then Syf = 0 for all f € L2(D). Thus

PJ(¢f) = 0 and hence ¢f € (L2(D))*, for all f € L2(D). Since 1 € L}(D),
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¢ € (L2(D))*. Now suppose ¢ € (L2(D))*. This implies (¢,g) = 0 for all
g € L2(D). Hence (¢f,q) = (¢, fg) = 0 for all g € L?(D) and f € H*(D). Thus
(hef,q) = (P(¢f),g) = 0 for all g € L2(D) and f € H*(D). Thus hyf = 0 for
all f € H*(D). Since H*(D) is dense in L?(D), we obtain hgy = 0. That is,
S¢ = Jh¢ =0.

Now to prove (i), notice that Se = 0 if and only if Sy, = 0 for all j €

{1,2,--- ,n}. This is true if and only if ¢;; € (L2(D))*. That is, if ® € (L2"" (D)) .
Now we prove (ii). Let S € £L(L>C"(D)). Since L>" (D) = L2(D)® L2(D)®- - -®

S Sz 0 Sia
) So1 S 0 S )
L%(D), the operator S = S : for some S;; € L(L3(D)),1 <
Snl SnQ e Snn
i,j < n. Suppose 17; S = ST.,,. This implies T7S;; = SiT.. From [8],

it follows that S;; = Sy, for v;; € L>(D),1 < 4,5 < n. Thus

Swn 511112 Swm
o St Si/.,gz, Sipon
Swnl S¢n2 e Sﬂ)nn
i Y2 o Y
That is, S = Sy where ¥ = ¢:21 1#:22 ¢:2n Conversely, suppose
Y1 Yoz 0 Una

S € L(L2%"(D)) is a little Hankel operator. That is, S = Sy where ¥ € L3 (D).
Let ¥ = (¢ij)1§i,j§n- Then S\p = (Swij)lﬁi,jﬁn‘ From [8]7 it follows that T:Swij =
Sy,; T This implies T7; Sy = SeT.r,.,-
To prove (iii), let f € kerSy. Then SyT.y,, . f = T4, .
TZ[anf € ker qu
To prove (iv), we shall first verify that if ¢ € L>(D) then Sj = Sy+ where

YT (2) = 9(2). Let f,g € L?(D). Then
(Sufig) =

Sy f = 0. That is,

(

(

(

=

= (Y*f, Jg)

= (JW" )9
(PI(W*f),9)
(Sy+f, ).

Thus S;Z = Sy+. Now if U = (¢4;)1<i j<n then Sy = (Swij)1Si7j§n. Then S =
(S;Zij)lﬁi:jﬁn = (Sd;;;)lgi,jgn = Sy+.

Now we prove (v). Notice that for 1 < j <n, ker.Sy, . is an invariant subspace of
T.,. If ker Sy, can be expressed in terms of its common zero set, i.e., if ker Sy, =
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{f € LZ(D) : f = 0 onby;}, then by [3,[4] and [9], ker S, = G;;LZ(D) N
L2(D) for some inner functions G;; € LZ(D) formed by the corresponding zeros
{03721, =1,2,--- ,n. Let G be the inner function formed by the union of zeros
of the functions Gj;,7 = 1,2,--- ,n counting multiplicities. It is not difficult to
see that ker Sp = GL2C" (D) N L2 (D) as ker Sp is an invariant subspace of
T .
To prove (vi), first we shall verify that if ¢ € L>(D) and S, is a finite rank
little Hankel operator on L?(ID), then ker Sy = GL?(D) for some inner function
G € L?(D).

Since Sy is a little Hankel operator on LZ(D), hence TS, = S,T%. So ker Sy is
invariant under multiplication by z and ker Sy has finite codimension since Sy is
of finite rank. Let a = {a;}}_, be the common zeroes (counting multiplicities) of
functions in ker Sy i.e., Z(ker Sy) = {a;}}_,. Let G be the extremal function for
the problem

sup{Ref®(0): f € L2, ||fllz2 <1,f =0 ona},

where k is the multiplicity of the number of times zero appears in a = {a; }}_, (k =
0 if 0¢ {a;}}2,). It is clear from [2],[3], [4] and [9] that G satisfies the conditions
(1)-(4) and G vanishes precisely on a in D counting multiplicities. Moreover, for
every function f € L7(D) that vanishes on a= {a;}7_, there exists g € L2(D)
such that f = Gg. Hence ker S, = GL(D).

¢11 0 R 0
0 @2
Now suppose ® € L3 (D) and ¢ = ' , 05 € L>(D)
0 0 - b
and Sy is a finite rank little Hankel operator on L2C"(D). Then
Sey 0 o 0
0 S¢22 T 0 . . . .
S = ) i ) and each Sd)jj, 1 < j < nis a finite rank little
0 0 - Sy,

Hankel operator on L2(ID). From the argument above, it follows that ker S, . =
G;;L2(D),1 < j < n where G;; € LZ(D) is an inner function and each G
vanishes on a finite set of points in D, ||G;;||z2 = 1 and each Gj; is a linear com-
bination of the Bergman kernels and some of their derivatives and |G,;|> — 1 is
orthogonal to L}. Let {71,72, - ,7} be the union of the zeros of the functions
Gj;1 < j < n counting multiplicities. Let G € L2(D) be the inner function
formed by the zeros 71,72, - - -,y taking multiplicities into account. It is not dif-
ficult to verify that ker S, = GL2>" (D) and G is formed by a linear combination
of ( see [2],[3], [4] and [9]) the Bergman kernels and some of their derivatives and
G satisfies the conditions (1)-(4). O

Theorem 3.3. If V = (v;;) € L3} (D) where 1;; = 0,4 # j and Sy is a finite
rank little Hankel operator on L>C" (D) then ¥ = ® + y where ® = (¢;;), ¢i; €
L*(D),1 < i,j < n, ¢j = 0,5 # j and each ¢j; is a linear combination of
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the Bergman kernels and some of their derivatives and x = (6;;) where 0;; €

(L2) N L=(D) and 0;; = 0,i # j.
Proof. Since U = (Yy)1<ij<n € L33 (D) and 1; = 0,4 # j, we have

Sew 0 - 0
0 51/122 . . .
Sy = ) i . The operator Sy is a finite rank little Hankel
0 0 - Sy,
operator if and only if each Sy, is a finite rank little Hankel operator on L2(DD)
for all j € {1,2,---,n}. Now let 1 < j < n. Since for each j, Sy, is a finite

rank little Hankel operator on L2(D), there exist inner functions G;; € L(D)
such that ker S¢jj = G”L?L(D) Thus ¢ijjj S (L_Z)J'. So <77Z)ijjj7 B> = 0 for all
h € L}(D), that is, (Gj;h,;;) = 0 for all h € L2(D) and so ¥;; = ¢;; + 0,; where
0;; € (L2)*, the orthogonal complement of L?(D) with respect to L?(ID,dA)
and ¢;; € (G;;L?)*, the orthogonal complement of G;;L2(D) with respect to
L2(D). Suppose the function Gj; vanishes precisely at d' = {d}, d3, - NCHS
a finite number of points in D counting multiplicities. Since K i K FERERE Ky )
and their derivatives (where if the point a € I occurs k times in d’ then we
include the functions (1 —az)72, 2(1 —az)3,..., 287 1(1 —az)* 1) form a ba-
sis for (G;L2(D))*,5 € {1,2,--- ,n}, hence ¢;; is a linear combination of the
Bergman kernels and some of their derivatives and ,; € (L2(D))* N L>(D) since
Uiy 055 € L(D). Thus ¥ = & + x where ® = (¢;;),x = (0;;) and ¢, is a
linear combination of the Bergman kernels and some of their derivatives and

6;; € (L2(D))*: N L>(D). 0J
Now let b = {b;}32; be an infinite sequence of points in D. Let Z = I(b) =
{f € L?2(D) : f =0 on b}. Let Gy, be the solution of the extremal problem

sup{Ref™(0): f € T, || f|l> < 1}, (3.1)

where n is the number of times zero appears in the sequence b (i.e., the functions
in Z have a common zero of order n at the origin). The natural question that
arises at this point is to see if it is possible to construct a little Hankel operator
Se,® € L35 (D) whose kernel is G, L2®" (D) N L2®"(D). In the case that b=
{bj}évzl is a finite set of points in D, it is possible to construct a little Hankel
operator S¢, ® € Ly (p) such that ker So = G, L2C" (D) as follows:

Theorem 3.4. Let b = (b;)".; be a finite set of points in D and T = I(b) =
{f € L2(D) : f =0 onb} and let Gy be the solution of the extremal problem
(3.1). Let

N m]‘—l 81/

¢ - Z Z le,T,,Kb].<Z)7

— = " 0b;

j=1 v=
where c;, # 0 for all j, v and m; is the number of times b; appears in b. Then

ker Sp = GpL>C" (D) where ® = (brs)ys=1 and s = ¢ if 1 = s and 0, if r # s.
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mp—1

Proof. The set of vectors {Kjp,, ... omi—] Kpyyoo s Kiys o -

7T1—1 KbN} fOl“mS a
b,

Tobn !
basis [9] for (GpL2(D))t. By the Gram-Schmidt orthogonalization process we
can get an orthonormal basis {1;}._; for (GpL2(D))*. If ¢ € (GpL2)* then
(p,Gpt) = 0 for all t € L2(D), ie., (t,¢Gp) = 0 for all t € L2(D) and so
Gy € ker S,. Since ker Sy is invariant under the operator of multiplication by z
we have that

GpL2(D) C ker S,. (3.2)
Suppose f € ker Sg; then (¢ f, h) = 0 for all b € L2(D), so in particular (¢f, K_bj) =
0 for all j = 1,2,...N. Therefore, (gz_ﬁf,ij) = 0 for all j = 1,2,...N. Thus

o(b;)f(bj) =0forall j =1,2,...N. Since ¢(b;) # 0 for all j =1,2,... N, hence
f(bj) = 0forall j =1,2,...N. Thus f € Z. Since G}, is the solution of the
extremal problem (3.1) therefore, f € G}, L2. Hence

ker Sy C GpL2. (3.3)
From (3.2) and (3.3), ker Sy = GpL2(D) = Z. Now let ® = (¢,);',_; where

Ors = ¢ if r = s and 0, if r # s. It is not difficult now to verify that ker Sp =
GbLz’Cn (]D))

O
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