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Abstract. For a monic polynomial f with integer coefficients such that zero is
a critical point of f , we consider the zero orbit, namely the sequence (fn(0))n≥1.
If this sequence contains an infinite number of integer numbers, then we show
that the Zsigmondy set of this sequence is either empty or it has at most two
elements.

1. Introduction

For a sequence of integers A = (an)n≥1, a prime divisor p of an is called primitive
if there is no m < n such that p|am. The Zsigmondy set of A denoted by Z(A)
is the set of those n for which an has no primitive prime divisor. In recent
years, the study of Zsigmondy sets has been the subject of many articles (see, for
example, [1, 3, 4]).

For a set S and a function f : S → S, we recall that the orbit of x ∈ S under
f is the set of all iterations of x under f , that is,

Of (x) = {fn(x) : n ≥ 1},

where f 1(x) = f(x) and for n ≥ 2, fn(x) = f ◦ fn−1(x). We say that an element
x ∈ S is preperiodic if its orbit is finite, otherwise x is wandering. Now consider
a monic integral polynomial f of the form f(x) = x2g(x) + c, where g(x) is a
polynomial. Rice [5] proved the finiteness of the Zsigmondy set (without giving a
uniform bound) of the zero orbit Of (0) when 0 is a wandering point. The proof is
elementary, and it is based on the property of rigid divisibility of the polynomial
f . In [2], the authors completely determined the Zsigmondy set of the wandering
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zero orbit of f(z) = zd + c, where c ∈ Z and d ≥ 2, and for c ∈ Q, Krieger [4]
found a uniform bound. She showed that Z has at most 23 elements.

Ingram and Silverman [3] generalized the result of Rice to rational functions.
They showed that, under mild assumptions for a rational function ϕ(z) ∈ Q(z)
and α ∈ Q, the Zsigmondy set of the sequence of the numerators Oϕ(α) is finite.
The proof is based on Roth’s theorem, which is ineffective. Hence finding a
uniform bound (if such bound exists) is challenging. So far, only few cases have
been characterized.

The motivation of this article is to generalize the work of [2] to the class of
rigid polynomials and classify the Zsigmondy set of zero orbit of such polynomials.
More precisely, we obtain the following result.

Theorem 1.1. Let f(x) ∈ Z[x] be a rigid polynomial, that is, f(x) = x2g(x)+ c,
where g(x) ∈ Z[x]. If x = 0 is a wandering point, that is, the set Of (0) = {fn(0) :
n ≥ 1} is infinite, then the Zsigmondy set of Of (0) has at most two elements.
Indeed, we have the following properties:

(1) If |c| = 1, then {1} ⊆ Z(Of (0)) ⊆ {1, 2}.
(2) If |c| = 2, then Z(Of (0)) ⊆ {2}.
(3) If |c| > 2, then Z(Of (0)) is empty.

From now, for simplicity, we set O := Of (0) and Z := Z(O). The idea
behind this theorem is that the element of the orbit O rapidly grows and the
rigid divisibility property (see Definition 2.1) implies that fn(0) has a primitive
prime divisor.

Remark 1.2. For |c| = 1, the case Z = {1, 2} can occur. For example, let
f(x) = x2(x − 3) + 1; then f(0) = 1 and f ◦ f(0) = −1. Also for |c| = 2 and
f(x) = x2(x2 − 5x+ 5) + 2, we have Z = {2}.

In the following section, we review some basic properties of rigid polynomials,
and in section 3, we give a proof of Theorem 1.1

2. Rigid divisibility property

In this section, first we review basic definitions and results from [5].

Definition 2.1. A sequence (σn)n≥1 of integers is a rigid divisible sequence if for
every prime p, the following two properties hold:

(1) If vp(σn) > 0, then vp(σkn) = vp(σn) for all k ≥ 1.

(2) If vp(σn) > 0 and vp(σm) > 0, then vp(σ(n,m)) > 0.
Here vp denotes the p-adic valuation with respect to p and (m,n) means the

greatest common divisor of m and n.

Remark 2.2. It follows from Definition 2.1 that for a sequence (σn)n≥1 with rigid
divisibility, if vp(σn) > 0 and vp(σm) > 0, then vp(σn) = vp(σ(n,m)).
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Definition 2.3. A monic polynomial defined over Z is called rigid if x = 0 is a
critical value for f . In other words, f ∈ Z[x] is rigid if f(x) = x2g(x)+ c for some
c ∈ Z and a monic polynomial g(x) ∈ Z[x].
Proposition 2.4. Let f(x) be a rigid polynomial and let f(0) ̸= 0. Then the
sequence (fn(0))n≥1 has the rigid divisibility property.
Proof. We write f(x) = x2g(x)+ c, where c ̸= 0 and g(x) ∈ Z[x]. Let cn = fn(0),
for fixed n ≥ 1, and let vp(cn) = i > 0. We have

cn+1 = f(cn) = c2ng(cn) + c ≡ c (mod pi+1),

and by induction
cn+m = f(cn+m−1) ≡ f(cm−1) = cm (mod pi+1).

In particular, for m = (k − 1)n+ r with 1 ≤ r < n, we have
ckn+r ≡ c(k−1)n+r ≡ · · · ≡ cr (mod pi+1).

This identity shows two properties of rigid divisibility. □
Corollary 2.5. Let f be a polynomial as before and let O = (cn)n≥1 = (fn(0))n≥1.
If n belongs to Z(O), then

cn|
∏
m|n
m ̸=n

cm.

Proof. Let p be a prime such that p|cn and let vp(cn) = i > 0. Since n ∈ Z(O),
there exists some m < n such that p|cm and vp(cm) = i. The sequence (cn) is
a rigid sequence, so p|c(n,m), vp(c(n,m)) = i, and (n,m) is a proper divisor of n.
Hence pi divides the above product. □

3. Proof

Now we are ready to prove Theorems 1.1. We start with the following lemma.
Lemma 3.1. Let f(x) = x2g(x) + c be a rigid polynomial of degree d ≥ 2 such
that zero is a wandering point. Let cn = fn(0) for n ≥ 1.

(1) If |c| > 2, then the sequence (|cn|)n≥1 is strictly increasing. Furthermore,
for n ≥ 2, we have |cn+1| > |cn|(|cn| − 1).

(2) If |c| = 1, 2, then the sequence (cn)n≥2 is strictly increasing. Furthermore,
for n ≥ 3, we have |cn+1| > |cn|(|cn| − 1).

Proof. We prove by induction on n. We note that since zero is wandering so for
all k ≥ 1, g(ck) ̸= 0. Now, for |c| > 2, we have

|c2| = |f(c)| = |c2g(c) + c| ≥ |c2g(c)| − |c|
≥ c2 − |c| > |c| = |c1|.

Suppose that the sequence is strictly increasing for all k ≤ n. Then
|cn+1| = |f(cn)| = |c2ng(cn) + c| ≥ |c2ng(cn)| − |c|

≥ |c2n| − |c|,
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> 2|cn| − |c| > |cn| (|cn| > |c| > 2).

This completes the induction step. Now, for the second claim, we have |cn| > |c|
for n > 1. Hence from the above inequality, we have

|cn+1| ≥ c2n − |c| > c2n − |cn|.
The proof of the second part is similar and we omit it. The only point is that it
might be |c1| = |c2|, but then certainly |c3| > |c2|, otherwise x = 0 is a preperiodic
point and is not wandering. □
Lemma 3.2. With the same assumptions as in Lemma 3.1, we have

(1) if |c| > 2, for n ≥ 2, then |cn| >
∏n−1

k=1 |ck|;

(2) if |c| = 1, 2, for n ≥ 3, then |cn| >
∏n−1

k=1 |ck|.
Proof. We prove by induction. For |c| > 2, according to Lemma 3.1, |c2| > |c1|.
If |cn| >

∏n−1
k=1 |ck|, then |cn| − 1 ≥

∏n−1
k=1 |ck|. Hence from Lemma 3.1, we have

|cn+1| > |cn||(cn| − 1) ≥
n∏

k=1

|ck|.

For the second part, if |c2| > |c1|, then the above argument holds without a
change, otherwise |c3| > |c2|. Now if |c| = 1, then |c3| > |c1c2|, and we can
continue the inductive argument as before. If |c| = 2, then | c3 |≠ 2 is of the form
| c3 |= 4m+2 with m ̸= 0. Hence |c3| > |c1c2| = 4 and the proof can be repeated
as before. □
Proof of Theorem 1.1. First we show that independent of the value of c, there is

no n ≥ 3 in the Zsigmondy set Z of zero orbit of f . Suppose that n ≥ 3 belongs
to Z. Then from Corollary 2.5, we have

cn|
∏
m|n
m ̸=n

cm.

In particular, we have

|cn| ≤
∏
m|n
m̸=n

cm ≤
n−1∏
k=1

|ck|.

This is a contradiction, according to Lemma 3.2, which shows that n /∈ Z.
For n = 1, 2, we distinguish three cases. If |c| > 2, then |c1| = |c| ̸= 1, which
implies that 1 /∈ Z. For n = 2, from Lemma 3.1, we have |c2| > |c1| and
| c2 |=| c2g(c) + c |= |c|.|c g(c) + 1|. Since |c g(c) + 1| is greater than 1 and is
coprime to c, it has a primitive prime divisor. Hence 2 /∈ Z. Therefore Z is
empty for |c| > 2.
For |c| = 2, evidently 1 /∈ Z. If |c2| ̸= |c1|, the the previous argument can
be repeated and we find that the Zsigmondy set Z is empty in this case. For
|c1| = |c2| = 2, we have 2 ∈ Z. Hence we conclude that for |c| = 2, we have
Z ⊆ {2}.
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Finally for |c| = 1, we have 1 ∈ Z. Now if |c2| > |c1|, in a similar vein, then
we find that Z = {1}, otherwise Z = {1, 2}, and the proof is complete. □
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