
Khayyam J. Math. 9 (2023), no. 2, 175-185
DOI: 10.22034/KJM.2023.341952.2542

A NOTE ON AN ALGORITHM FOR SOLUTION OF THE
LYAPUNOV MATRIX EQUATION

NAWAL HELAL AL-HARBI1,3, MUSTAPHA RAÏSSOULI2* AND DAOUD SULEIMAN
MASHAT1

Communicated by B. Kuzma

Abstract. In this paper, a matrix iterative algorithm is resorted to in the
aim to solve numerically the well-known Lyapunov matrix equation AX +
XAT = C, which arises in some areas of applied science. Numerical examples
illustrating the significance of our approach are provided as well.

1. Introduction and preliminaries

The so-called Sylvester matrix equation is given by
AX +XB = C, (1.1)

where A,B ∈ Mn and C ∈ Mn are given real n × n matrices and X ∈ Mn is
an unknown real n × n matrix. The Sylvester equation is the most studied in
the literature by virtue of its numerous applications in various scientific fields.
Indeed, Sylvester equation is a good tool for finding the direct solution of the dis-
crete Poisson equation in partial differential equations; see [4,7]. In many control
theory issues, like those involving dynamical systems, the Sylvester equation is
used for completing the resolution of such systems [3, 9]. Furthermore, Sylvester
equation arises in the restoration of two-dimensional images by Wiener’s mini-
mum mean square error filter when the noise is white and Gaussian [5,9]. Finally,
the study of stability of systems in Clifford’s geometric algebra needs to solve a
linear quaternion equation of Sylvester type; see [6, 13].

It is well known that (1.1) has one and only one solution if and only if
λi + µj ̸= 0 for any i, j = 1, . . . , n, (1.2)

Date: Received: 11 May 2022; Revised: 13 February 2023 ; Accepted: 16 June 2023.
*Corresponding author.
2020 Mathematics Subject Classification. Primary 65F30; Secondary 15A24.
Key words and phrases. Lyapunov matrix equation, Algorithm.

175



176 N. ALHARBI, M. RAÏSSOULI, D. MASHAT

where λ1, . . . , λn and µ1, . . . , µn are the eigenvalues of A and B, respectively.
If B = AT , where AT is the transpose matrix of A, then we have a special case

of the Sylvester equation,
AX +XAT = C, (1.3)

known as the (symmetric) Lyapunov matrix equation [10,11]. If A is symmetric,
then we have a particular case of (1.3), namely,

AX +XA = C. (1.4)
We need more basic notions and notations. A real matrix P = (pij) ∈ Mn is
called positive, in short P ≥ 0, if P is symmetric and

∑n
i,j=1 pijxixj ≥ 0 for all

(x1, . . . , xn) ∈ Rn. For P ≥ 0, the notation P 1/2 refers to the positive square root
of P ; that is, X := P 1/2 is the unique positive matrix solution of X2 = P . For
P,Q ∈ Mn, we write P ≤ Q if P and Q are both symmetric and Q − P ≥ 0.
Since Mn is a finite-dimensional Banach algebra, then the limit and convergence
in Mn, considered throughout this paper, are defined in the matrix topology
sense when Mn is endowed with any norm ∥ · ∥ among its equivalent norms.

Let P ∈ Mn be positive invertible and let Q ∈ Mn be symmetric. Then we
set [

P,Q
]
:= lim

t↓0

(
P + tQ

)1/2 − P 1/2

t
. (1.5)

Following [12],
[
P,Q

]
exists. In particular,

[
P 2, Q

]
exists for any symmetric

invertible matrix P . As pointed out in [12], Z :=
[
P 2, Q

]
is the unique solution

of the particular Lyapunov matrix equation PZ + ZP = Q. An explicit integral
expression of

[
P,Q

]
is given by (see [12])[

P,Q
]
= QP−1/2 − 1

π
P

∫ ∞

0

1√
s

(
P + sI

)−1
Q
(
P + sI

)−1
ds, (1.6)

where I denotes the n× n-matrix identity.
The purpose of this paper is to solve numerically (1.4), for symmetric X, when

A is positive invertible and C is symmetric. An algorithm is resorted to approach
a symmetric solution of (1.1). Afterwards, we derive the algorithm that corre-
sponds to the numerical resolution of (1.3). Some numerical examples illustrating
the significance of the considered algorithms are presented.

2. An algorithm approximating [P,Q]

In the practical context, (1.6) is not useful by virtue of the involved complicated
matrix integral. In order to solve numerically (1.1), (1.3), and (1.4), we will first
construct an iterative scheme approaching [P,Q]. We recall that if P is positive
invertible, then the matrix sequence Xk := Xk(P ) defined by

X0 = I, Xk+1 =
1

2
Xk +

1

2
PX−1

k (2.1)

converges quadratically to P 1/2. That is, for all k ≥ 0, the following inequality
∥Xk+1 − P 1/2∥ ≤ c∥Xk − P 1/2∥2 (2.2)
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holds for some fixed real number c > 0. The sequence (Xk) corresponds to the
(modified) Newton algorithm associated to the positive solution of the matrix
equation X2 = P ; see [1, 8], for instance. Note that (2.2) means that (Xk)
converges to P 1/2 with a speed of convergence of order equal to 2. Otherwise,
as investigated out in [2], the convergence of (Xk) to P 1/2 can be successively
accelerated into orders equal to 22, 23, . . ..

Inspired by the previous process and by virtue of (1.5) defining [P,Q], we then
consider the matrix sequence Yk := Yk(P,Q, t) that converges to (P + tQ)1/2,
when t > 0 is fixed. According to the algorithm (2.1), the matrix sequence (Yk)
can be defined as follows:

Y0 = I, Yk+1 =
1

2
Yk +

1

2
(P + tQ)Y −1

k . (2.3)

Because of (1.5) we have
(P + tQ)1/2 = P 1/2 + t[P,Q] + t o(t), o(t) = o(P,Q, t) → 0 as t → 0, (2.4)

and it is therefore natural to try searching Yk in the following form:
Yk = Xk + t Zk + t ok(t), ok(t) → 0, t → 0, (2.5)

where Zk = Zk(P,Q) is the researched matrix sequence, which is intended to tend
towards [P,Q]. Hence (2.3) with (2.5) yields

Yk+1 =
1

2
Xk +

1

2
tZk + t ok(t) +

1

2
(P + tQ)

(
Xk + tZk + t ok(t)

)−1

,

or, equivalently,

Yk+1 =
1

2
Xk +

1

2
tZk + t ok(t) +

1

2
(P + tQ)

(
X−1

k − tX−1
k

(
Zk + ok(t)

)
X−1

k

)
. (2.6)

Since X0 = I and Y0 = I, we then deduce from (2.5) that the initial data for
the matrix sequence (Zk) can be chosen as Z0 = 0. In another part, (2.5) implies
that

Yk+1 = Xk+1 + t Zk+1 + t ok+1(t), ok+1(t) → 0, t → 0. (2.7)
If we proceed by identification, (2.6) and (2.7) allow us to deduce that our desired
matrix sequence Zk = Zk(P,Q) may be defined as follows:

Z0 = 0, Zk+1 =
1

2
Zk +

1

2
QX−1

k − 1

2
PX−1

k ZkX
−1
k , (2.8)

where Xk := Xk(P ) is defined by (2.1).
Since (Xk) converges to P 1/2 and (Yk) converges to (P + tQ)1/2, then (2.5) with

(2.4) gives us a feeling that (Zk) converges to the suitable limit [P,Q]. Note that
if we put Z := limZk, then letting k ↑ ∞ in (1.2) and using limXk = P 1/2, we
get Z = QP−1/2 − P 1/2ZP−1/2, or, equivalently, P 1/2Z + ZP 1/2 = Q; that is,
Z = [P,Q].

3. Application for (1.4) and (1.1)
We preserve the same notations as in the previous section. Under convenient

hypothesis, we will apply in this section the algorithm (2.8) to resort to an algo-
rithm approximating the solution of (1.4) and then that of (1.1).



178 N. ALHARBI, M. RAÏSSOULI, D. MASHAT

3.1. Algorithm for the solution of (1.4). Following (1.2), if A is positive (resp.
negative) and invertible, then (1.4) has one and only one symmetric solution.
Using the generalized matrix product, this solution is given by X = [A2, C],
which is symmetric when C is. Following (1.6), the integral expression of X is
given by

X =
[
A2, C

]
= CA−1 − 1

π
A2

∫ ∞

0

1√
s

(
A2 + sI

)−1
C
(
A2 + sI

)−1
ds.

If moreover C is positive, then for t > 0 the Löwner implication allows us to write

A2 + tC ≥ A2 ≥ 0 =⇒
(
A2 + tC

)1/2 ≥ A,

which, with (1.5), implies that X =
[
A2, C

]
is positive.

We are in the position to resort to a sequence (Tk) approximating the solution
of (1.4). Let us define via (2.1) the sequence Vk = Vk(A) as follows:

V0 = I, Vk+1 =
1

2
Vk +

1

2
A2V −1

k . (3.1)

Following the construction of (Zk), we may define Tk = Tk(A;C) by demanding

T0 = 0, Tk+1 =
1

2
Tk +

1

2
CV −1

k − 1

2
A2V −1

k TkV
−1
k , (3.2)

where A is positive invertible and C is symmetric.
Now, we state the following example, which illustrates numerically the signifi-

cance of the algorithm (3.2).

Example 3.1. Let us consider the following matrices:

A =

 17 2 −5
2 7 −2
−5 −2 4

 and C =

 24 10 −5
10 30 −8
−5 −8 55

 .

Executing MATLAB 2021a with 3500 digits floating arithmetic and using (3.2)
with (3.1), we obtain the estimations as given in Table 1.

Clearly, the convergence of algorithms (3.2) and (3.1) turns out to be of order
4. It needs 18 iterations to satisfy (1.4). As a positive solution of (1.4), we can
adopt the approximative matrix Xa given by

X ≈ Xa := T18 =

[
1.39684253186054 0.629913567053681 2.60123003514731
0.629913567053681 2.39094082370622 1.49820645002545
2.60123003514731 1.49820645002545 10.8756407689469

]
,

with
∥AXa +XaA− C∥ = 4.0565e− 3495.

3.2. Algorithm for the solution of (1.1). We mention that, if A and B are
both positive (or both negative) with A or B invertible, then (1.1) has one and
only one solution. Let A,B ∈ Mn be symmetric. Assume that there is a symmet-
ric solution X ∈ Mn of AX+XB = C. By transposing, we get XA+BX = CT .
Adding side by side these two latter equations, we obtain

(A+B)X +X(A+B) = C + CT , (3.3)
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Table 1. Estimations of Example 3.1

k ∥Vk+1 − Vk∥2 ∥Tk+1 − Tk∥2

(3.1) (3.2)

1 184.42 29.548

2 91.711 13.929

3 44.879 6.2594

4 20.626 2.8645

5 7.5429 1.1687

6 1.3771 0.30504

7 0.049181 0.018487

8 0.000062888 0.000043567

9 1.0283e− 10 1.3691e− 10

10 2.749e− 22 7.1798e− 22

11 1.9648e− 45 1.0166e− 44

12 1.0037e− 91 1.0337e− 90

13 2.6191e− 184 5.3822e− 183

14 1.7835e− 369 7.3215e− 368

15 8.2701e− 740 6.786e− 738

16 1.7782e− 1480 2.9174e− 1478

17 8.2213e− 2962 2.6972e− 2959

18 2.3605e− 3498 2.3204e− 3496

which is a Lyapunov equation as (1.4). If A+B is positive (resp. negative) and
invertible, then (3.3) has a unique solution given by X =

[
(A + B)2, C + CT

]
,

which is obviously symmetric. Following (1.6), the integral expression of X is
given by

X =
[
(A+B)2, C + CT

]
= (C + CT )(A+B)−1

− 1

π
(A+B)2

∫ ∞

0

1√
s

(
(A+B)2 + sI

)−1

(C + CT )
(
(A+B)2 + sI

)−1

ds.

If moreover C is accretive (C +CT is positive), then X =
[
(A+B)2, C +CT

]
is

positive. In particular, if C is positive, then so is X, with X = 2
[
(A+B)2, C

]
.

To resort to a sequence (Uk) approximating the symmetric solution of (1.1) if
any, let us define via (2.1) the sequence Wk = Wk(A,B) as follows:

W0 = I, Wk+1 =
1

2
Wk +

1

2
(A+B)2W−1

k . (3.4)
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Following the construction of (Zk), we may define Uk = Uk(A,B;C) by demand-
ing

U0 = 0, Uk+1 =
1

2
Uk +

1

2

(
C + CT

)
W−1

k − 1

2

(
A+B

)2
W−1

k UkW
−1
k , (3.5)

where A and B are symmetric such that A + B is positive (resp., negative) and
invertible, and C ∈ Mn is an arbitrary matrix.

We end this section by presenting the following example, which illustrates
numerically the convergence of the algorithm (3.5).
Example 3.2. Let A,B,C ∈ M2 be given by

A =

[
44 −5
−5 75

]
, B =

[
−18 −2
−2 −15

]
, and C =

[
85 −45
−76 127

]
.

As in Example 3.1, by using (3.5) with (3.4), we find estimations concerning
the solution of (1.1) in Table 2.

Table 2. Estimations of Example 3.2

k ∥Wk+1 −Wk∥2 ∥Uk+1 − Uk∥2

(3.4) (3.5)

1 1883.5 170.04

2 941.27 85.02

3 469.64 42.509

4 232.84 21.247

5 112.57 10.575

6 49.417 5.0768

7 15.494 2.0381

8 1.896 0.39485

9 0.029268 0.010846

10 6.9774e− 6 4.871e− 6

11 3.9655e− 13 5.3727e− 13

12 1.2809e− 27 3.4191e− 27

13 1.3364e− 56 7.0812e− 56

14 1.4547e− 114 1.5359e− 113

15 1.7238e− 230 3.633e− 229

16 2.4203e− 462 1.0192e− 460

17 4.7714e− 926 4.0168e− 924

18 1.8544e− 1853 3.1215e− 1851

19 2.0025e− 3507 5.0063e− 3508

In this example, we use Table 2 to show the error analysis. It is obvious that the
effect of algorithms (3.5) with (3.4) is optimal compared with other algorithms.
It can be seen that the variant versions of the algorithms perform better.
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4. An algorithm for the solution of (1.3)
In this section, we shall be dealing with an algorithm derived from (2.8) for

approximating the solution of the matrix equation (1.3). Let A,C ∈ Mn with
C be symmetric. It is often of interest to search X ∈ Mn positive invertible
satisfying (1.3). Assume that further A satisfies the following condition:

A = MP for some (symmetric) positive invertible M,P ∈ Mn. (4.1)

Following [12], (1.3) has a unique positive invertible solution X given by

X = P−1/2
[
P 1/2A2P−1/2, P 1/2CP 1/2

]
P−1/2. (4.2)

We note that P 1/2A2P−1/2 is positive invertible, since

P 1/2A2P−1/2 = P 1/2MPMPP−1/2 = P 1/2(MPM)P 1/2.

Inspired by (2.8) and using (4.2), we will be interest to resort to an algorithm
approximating the solution X of (1.3). We can proceed in two different ways:

First way: Following (2.1), the matrix sequence (Ek) defined by

E0 = I, Ek+1 =
1

2
Ek +

1

2
P 1/2A2P−1/2E−1

k (4.3)

is an approximation of
(
P 1/2A2P−1/2

)1/2

when k ↑ ∞. According to (2.8), the
matrix sequence (Fk) defined by

F0 = 0, Fk+1 =
1

2
Fk +

1

2
P 1/2CP 1/2E−1

k − 1

2
P 1/2A2P−1/2E−1

k FkE
−1
k (4.4)

is an approximation of F :=
[
P 1/2A2P−1/2, P 1/2CP 1/2

]
when k ↑ ∞. Multiplying

each side of (4.4) at left and at right by P−1/2 and setting Gk := P−1/2FkP
−1/2,

the matrix sequence (Gk) is defined through

G0 = 0, Gk+1 =
1

2
Gk +

1

2
CP 1/2E−1

k P−1/2 − 1

2
A2P−1/2E−1

k P 1/2GkP
1/2E−1

k P−1/2.

(4.5)
This with (4.2) asserts that (Gk) is an approximation for the solution X of (1.3)
when k ↑ ∞. Now, we will try to escape the term P 1/2 from (4.3) and (4.5)
for obtaining representative algorithms involving only elementary matrix oper-
ations. Multiplying each side of (4.3) at left and at right by P−1/2, setting
Kk := P−1/2EkP

−1/2 and remarking that Kk is positive invertible (since Ek is)
for each k ≥ 0, we get after a simple algebraic manipulation that

K0 = P−1, Kk+1 =
1

2
Kk +

1

2
A2P−1K−1

k P−1, (4.6)

which does not involve P 1/2 and represents equivalently (4.3). With this, if we
set

Hk =
(
PKk

)−1
, (4.7)
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then (4.5) becomes (after simple algebraic operations)

G0 = 0, Gk+1 =
1

2
Gk +

1

2
CHk −

1

2
A2HT

k GkHk, (4.8)

which also does not contain P 1/2 and is an equivalent definition for (Gk).
Summarizing, the matrix sequence (Gk) is an approximation of X when k ↑ ∞.

Second way: Here, we first approximate P 1/2 by Xk given by (2.1). By (4.2)
with an argument of continuity, the matrix sequence

Ek = X−1
k

[
XkA

2X−1
k , XkCXk

]
X−1

k (4.9)

is an approximation of X when k ↑ ∞. For k ≥ 0 fixed, let (Fk,m)m≥0 be defined
as

Fk,0 = I, Fk,m+1 =
1

2
Fk,m +

1

2
XkA

2X−1
k F−1

k,m. (4.10)

According to (2.1) again, Fk,m approximates
(
XkA

2X−1
k

)1/2 when m ↑ ∞. Fol-
lowing (2.8), the matrix double-sequence

Gk,0 = 0, Gk,m+1 =
1

2
Gk,m +

1

2
XkCXkF

−1
k,m − 1

2
XkA

2X−1
k F−1

k,mGk,mF
−1
k,m (4.11)

is an approximation of
[
XkA

2X−1
k , XkCXk

]
when m ↑ ∞. Multiplying all sides

of (4.11) at left and at right by X−1
k and then setting

Hk,m := X−1
k Gk,mX

−1
k and Kk,m :=

(
XkFk,mX

−1
k

)−1
, (4.12)

we infer that the matrix double-sequence given by

Hk,0 = 0, Hk,m+1 =
1

2
Hk,m +

1

2
CKk,m − 1

2
A2

(
Kk,m

)T
Hk,mKk,m (4.13)

is an approximation of Ek when m ↑ ∞. This, when combined with (4.9) and
the fact that Ek approximates X as k ↑ ∞, allows us to conclude that the matrix
double-sequence (Hk,m)k,m is an approximation of X, the solution of (1.3), when
k,m ↑ ∞.

The following remark may be of interest for the reader.

Remark 4.1. (i) If A is diagonalizable with spectra in (0,∞), then A satisfies the
condition (4.1). In fact, let A = Q−1DQ with D diagonal positive. Then we have
A = MP with M = Q−1DQ−T and P = QTQ.
(ii) The decomposition A = MP in (4.1) is not unique. However, when (1.3) has
a unique solution X given by (4.2) then X does not depend on the choice of P .

Using the two previous ways, we will present the following example in order to
illustrate numerically the convergence of (Gk) and (Hk,m) to the solution X of
(1.3).
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Example 4.2. Consider the following matrices:

A =

 10 −10 9
−11 16 −11
9 −10 10

 , C =

 98 −81 65
−81 64 −36
65 −36 38

 .

One can check that A can be decomposed as A = MP , with

M =

 2 −1 1
−1 3 −1
1 −1 2

 , P =

 3 −2 2
−2 4 −2
2 −2 3

 .

According to the two previous ways, we get the estimations about the solution
of (1.3) in Tables 3 and 4, respectively.

Table 3. Estimations of Example 4.2 by the first way

k ∥Kk+1 −Kk∥2 ∥Hk+1 −Hk∥2 ∥Gk+1 −Gk∥2

(4.6) (4.7) (4.8)

1 71.374 0 98.748

2 35.618 0.99826 49.335

3 17.674 0.098123 24.644

4 8.5741 0.027542 12.265

5 3.8126 0.006647 5.9809

6 1.2469 0.00924 2.5369

7 0.16969 0.0063593 0.55077

8 0.0032631 0.0011433 0.018913

9 1.2076e− 6 0.000022848 0.000013195

10 1.654e− 13 8.4619e− 9 3.5073e− 12

11 3.1027e− 27 1.159e− 15 1.296e− 25

12 1.0918e− 54 2.174e− 29 9.0515e− 53

13 1.3519e− 109 7.6502e− 57 2.2331e− 107

14 2.0729e− 219 9.4729e− 112 6.8346e− 217

15 4.8731e− 439 1.4524e− 221 3.2104e− 436

16 2.6932e− 878 3.4145e− 441 3.547e− 875

17 8.2263e− 1757 1.8871e− 880 2.1663e− 1753

18 7.6088e− 3490 5.7642e− 1759 2.5319e− 3487

19 1.1949e− 3488 1.7278e− 3490 3.9841e− 3486

In the iterative algorithm (4.8), choosing the initial matrix G0 = 0, we find
that the error between G19 and G18 is 3.9841e− 3486 which is the same as that
between G18 and G17. We then compare the errors of theses iterative methods by
tables. From Table 3, we can observe that the algorithms (4.6), (4.7), and (4.8)
are accurate and that the number of iteration steps is the same.
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Table 4. Estimations of Example 4.2 by the second way

k,m ∥Fk,m+1 − Fk,m∥2 ∥Gk,m+1 −Gk,m∥2 ∥Kk,m+1 −Kk,m∥2 ∥Hk,m+1 −Hk,m∥2

(4.10) (4.11) (4.12) (4.13)

15, 1 524.64 692.21 524.64 49.414

15, 2 261.82 346.09 261.82 24.644

15, 3 129.92 173.0 129.92 12.265

15, 4 63.028 86.347 63.028 5.9809

15, 5 28.026 42.469 28.026 2.5369

15, 6 9.1663 18.313 9.1663 0.55077

15, 7 1.2474 4.0295 1.2474 0.018913

15, 8 0.023987 0.13904 0.023987 0.000013195

15, 9 8.8774e− 6 0.000097088 8.8774e− 6 3.5073e− 12

15, 10 1.2159e− 12 2.58e− 11 1.2159e− 12 1.296e− 25

15, 11 2.2808e− 26 9.5309e− 25 2.2808e− 26 9.0515e− 53

15, 12 8.0259e− 54 6.6553e− 52 8.0259e− 54 2.2331e− 107

15, 13 9.938e− 109 1.6417e− 106 9.938e− 109 6.8346e− 217

15, 14 1.5238e− 218 5.0245e− 216 1.5238e− 218 3.2104e− 436

15, 15 3.5822e− 438 2.3601e− 435 3.5822e− 438 3.547e− 875

15, 16 1.9798e− 877 2.6074e− 874 1.9798e− 877 2.1663e− 1753

15, 17 6.0472e− 1756 1.5925e− 1752 6.0472e− 1756 1.9737e− 3486

15, 18 1.0576e− 3487 5.5141e− 3486 1.0576e− 3487 3.1533e− 3485

For the algorithm (4.13), the error between H15,18 and H15,17 is 3.1533e− 3485
and coincides with that between H15,17 and H15,16. As previous, Table 4 explains
the accuracy of the algorithms (4.10), (4.11), (4.12), and (4.13) with the same
number of iterations.
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