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SELECTION GAMES WITH MINIMAL USCO MAPS
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Abstract. We establish relationships between various topological selection
games involving the space of minimal usco maps with various topologies, in-
cluding the topology of pointwise convergence and the topology of uniform con-
vergence on compact sets, and the underlying domain using full- and limited-
information strategies. We also tie these relationships to analogous results re-
lated to spaces of continuous functions. The primary games we consider include
Rothberger-like games, generalized point-open games, strong fan-tightness games,
Tkachuk’s closed discrete selection game, and Gruenhage’s W -games.

1. Introduction and preliminaries

Minimal upper-semicontinuous compact-valued functions have a rich history,
apparently arising from the study of holomorphic functions and their so-called
cluster sets; see [11]. The phrase minimal usco was coined by Christensen [7],
where a topological game similar to the Banach–Mazur game was considered. In
this paper, using some techniques similar to those of Holá and Holý [19], we tie
connections between a space X and the space of minimal usco maps with the
topology of uniform convergence on certain kinds of subspaces of X similar in
spirit to those appearing in [2, 3, 9] (see also [10, 26]); in particular, most of the
results come in the form of selection game equivalences or dualities, which rely
on a variety of game-related results from [2,3,8,35–37]. We also tie some of these
results to existing results relating topological properties of a space X with the
space of continuous real-valued functions on X with various topologies.
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Consequences of these results include Corollary 2.12, which captures [19, Corol-
lary 4.5], that states that X is hemicompact if and only if MUk(X), the space
of minimal usco maps into R on X with the topology of uniform convergence on
compact subsets, is metrizable. Corollary 2.12 also shows that X is hemicompact
if and only if MUk(X) is not discretely selective. Corollary 2.17 contains the
assertion that X is k-Rothberger if and only if MUk(X) has strong countable
fan-tightness at 0, the constant {0} function. We end with Corollary 2.21, which
characterizes a space having a countable so-called weak k-covering number in
terms of strategic information in selection games.

We use the word space to mean topological space. When the parent space is
understood from context, we use the notation int(A), cl(A), and ∂A to denote
the interior, closure, and boundary of A, respectively. If we must specify the
topological space X, we use intX(A), clX(A), and ∂XA.

Given a function f : X → Y , we denote the graph of f by gr(f) = {〈x, f(x)〉 :
x ∈ X}. For a set X, we let ℘(X) denote the set of subsets of X and ℘+(X) =
℘(X) \ {∅}. For sets X and Y , we let

Fn(X,Y ) =
∪

A∈℘+(X)

Y A;

that is, Fn(X,Y ) is the collection of all Y -valued functions defined on nonempty
subsets of X.

When a set X is implicitly serving as the parent space in context, given A ⊆ X,
we will let 1A be the indicator function for A; that is, 1A : X → {0, 1} is defined
by the rule

1A(x) =

{
1, x ∈ A;

0, x 6∈ A.

For any set X, we let X<ω denote the set of finite sequences of X, [X]<ω

denote the set of finite subsets of X, and, for any cardinal κ, [X]κ denote the set
of κ-sized subsets of X.

For a space X, we let K(X) denote the set of all nonempty compact subsets of
X. We let K(X) denote the set K(X) endowed with the Vietoris topology; that
is, the topology with basis consisting of sets of the form

[U1, U2, . . . , Un] =

{
K ∈ K(X) : K ⊆

n∪
j=1

Uj ∧Kn ∩
n∏

j=1

Uj 6= ∅

}
.

For more about this topology, see [27].

Definition 1.1. For a set X, we say that a family A ⊆ ℘+(X) is an ideal of sets
if

• for A,B ∈ A, A ∪B ∈ A, and
• for every x ∈ X, {x} ∈ A.

If X is a space, then we say that an ideal of sets A is an ideal of closed sets if A
consists of closed sets.



188 C. CARUVANA

Throughout, we will assume that any ideal of closed sets under consideration
does not contain the entire space X. Two ideals of closed sets of primary interest
are

• the collection of nonempty finite subsets of an infinite space X and
• the collection of nonempty compact subsets of a noncompact space X.

1.1. Selection games. General topological games have a long history, a lot of
which can be gathered from Telgársky’s survey [34]. In this paper, we will be
dealing only with single-selection games of countable length.

Definition 1.2. Given setsA and B, we define the single-selection game G1(A,B)
as follows.

• For each n ∈ ω, One chooses An ∈ A and Two responds with xn ∈ An.
• Two is declared the winner if {xn : n ∈ ω} ∈ B. Otherwise, One wins.

Definition 1.3. We define strategies of various strength below.
• We use two forms of full-information strategies.

– A strategy for player One in G1(A,B) is a function σ : (
∪
A)<ω → A.

A strategy σ for One is called winning if whenever xn ∈ σ〈xk : k < n〉
for all n ∈ ω, {xn : n ∈ ω} 6∈ B. If player One has a winning strategy,
then we write I ↑ G1(A,B).

– A strategy for player Two in G1(A,B) is a function τ : A<ω →
∪
A.

A strategy τ for Two is winning if whenever An ∈ A for all n ∈ ω,
{τ(A0, . . . , An) : n ∈ ω} ∈ B. If player Two has a winning strategy,
then we write II ↑ G1(A,B).

• We use two forms of limited-information strategies.
– A predetermined strategy for One is a strategy that only considers

the current turn number. We call this kind of strategy predetermined
because One is not reacting to Two’s moves. Formally it is a function
σ : ω → A. If One has a winning predetermined strategy, then we
write I ↑

pre
G1(A,B).

– A Markov strategy for Two is a strategy that only considers the most
recent move of player One and the current turn number. Formally
it is a function τ : A × ω →

∪
A. If Two has a winning Markov

strategy, then we write II ↑
mark

G1(A,B).

The reader may be more familiar with selection principles than selection games.
For more details on selection principles and relevant references, see [22, 31].

Definition 1.4. Let A and B be collections. The single-selection principle
S1(A,B) for a space X is the following property. Given any A ∈ Aω, there
exists x⃗ ∈

∏
n∈ω An such that {x⃗n : n ∈ ω} ∈ B.

As mentioned in [8, Prop. 15], S1(A,B) holds if and only if I 6↑
pre

G1(A,B).

Hence, we may establish equivalences between certain selection principles by ad-
dressing the corresponding selection games.
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Definition 1.5. For a space X, an open cover U of X is said to be nontrivial if
∅ 6∈ U and X 6∈ U .
Definition 1.6. Let X be a space and let A be a set of closed subsets of X. We
say that a nontrivial cover U of X is an A-cover if, for every A ∈ A, there exists
U ∈ U such that A ⊆ U .
Definition 1.7. For a collection A, we let ¬A denote the collection of sets that
are not in A. We also define the following classes for a space X and a collection
A of closed subsets of X.

• TX is the family of all proper nonempty open subsets of X.
• For x ∈ X, NX,x = {U ∈ TX : x ∈ U}.
• For A ∈ ℘+(X), NX(A) = {U ∈ TX : A ⊆ U}.
• NX [A] = {NX(A) : A ∈ A},
• CDX is the set of all closed discrete subsets of X.
• DX is the set of all dense subsets of X.
• For x ∈ X, ΩX,x = {A ⊆ X : x ∈ cl(A)}.
• For x ∈ X, ΓX,x is the set of all sequences of X converging to x.
• OX is the set of all nontrivial open covers of X.
• OX(A) is the set of all A-covers.
• ΛX(A) is the set of all A-covers U with the property that, for every
A ∈ A, {U ∈ U : A ⊆ U} is infinite.
• ΓX(A) is the set of all countable A-covers U with the property that, for

every A ∈ A, {U ∈ U : A ⊆ U} is co-finite.
Note that, in our notation, OX([X]<ω) is the set of all ω-covers of X, which

we will denote by ΩX , and that OX(K(X)) is the set of all k-covers of X, which
we will denote by KX . We also use Γω(X) to denote ΓX([X]<ω) and Γk(X) to
denote ΓX(K(X)).

Also, note that S1(OX ,OX) is the Rothberger property and G1(OX ,OX) is the
Rothberger game. If we let PX = {NX,x : x ∈ X}, then G1(PX ,¬O) is isomorphic
to the point-open game studied by Galvin [13] and Telgársky [33]. The games
G1(NX,x,¬ΓX,x) and G1(NX,x,¬ΩX,x) are two variants of Gruenhage’s W -game
(see [15]). We refer to G1(NX,x,¬ΓX,x) as Gruenhage’s converging W -game and
G1(NX,x,¬ΩX,x) as Gruenhage’s clustering W -game. The games G1(TX ,¬ΩX,x)
and G1(TX ,CDX) were introduced by Tkachuk (see [36, 37]) and tied to Gruen-
hage’s W -games in [9,37]. The strong countable dense fan-tightness game at x is
G1(DX ,ΩX,x) and the strong countable fan-tightness game at x is G1(ΩX,x,ΩX,x)
(see [1]).
Lemma 1.8 (see [3, Lemma 4]). For a space X and an ideal of closed sets A of
X, OX(A) = ΛX(A).

In what follows, we say that G is a selection game if there exist classes A, B
such that G = G1(A,B).

Since we work with full- and limited-information strategies, we reflect this in
our definitions of game equivalence and duality.
Definition 1.9. We say that two selection games G andH are equivalent, denoted
by G ≡ H, if the following conditions hold:
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• II ↑
mark
G ⇐⇒ II ↑

mark
H

• II ↑ G ⇐⇒ II ↑ H
• I 6↑ G ⇐⇒ I 6↑ H
• I 6↑

pre
G ⇐⇒ I 6↑

pre
H

We also use a preorder on selection games.
Definition 1.10. Given selection games G and H, we say that G ≤II H if the
following implications hold:

• II ↑
mark
G =⇒ II ↑

mark
H

• II ↑ G =⇒ II ↑ H
• I 6↑ G =⇒ I 6↑ H
• I 6↑

pre
G =⇒ I 6↑

pre
H

Note that ≤II is transitive and that if G ≤II H and H ≤II G, then G ≡ H. We
use the subscript of II since each implication in the definition of ≤II is related to
a transference of winning plays by Two.
Definition 1.11. We say that two selection games G and H are dual if the
following conditions hold:

• I ↑ G ⇐⇒ II ↑ H
• II ↑ G ⇐⇒ I ↑ H
• I ↑

pre
G ⇐⇒ II ↑

mark
H

• II ↑
mark
G ⇐⇒ I ↑

pre
H

We note one important way in which equivalence and duality interact.
Lemma 1.12. Suppose G1,G2,H1, andH2 are selection games such that G1 is dual
to H1 and G2 is dual to H2. Then, if G1 ≤II G2, then H2 ≤II H1. Consequently,
if G1 ≡ G2, then H1 ≡ H2.

We will use consequences of [8, Corollary 26] to see that a few classes of selection
games are dual.
Lemma 1.13. Let A be an ideal of closed sets of a space X and let B be a
collection.

(i) By [2, Corollary 3.4] and [8, Theorem 38], G1(OX(A),B) and G1(NX [A],¬B)
are dual (note that this is a general form of the duality of the Rothberger
game and the point-open game).

(ii) By [8, Corollary 33], G1(DX ,B) and G1(TX ,¬B) are dual.
(iii) By [8, Corollary 35], for x ∈ X, G1(ΩX,x,B) and G1(NX,x,¬B) are dual.
We now state the translation theorems, which we will be using to establish

some game equivalences.
Theorem 1.14 ([3, Theorem 12]). Let A, B, C, and D be collections. Suppose
that there are functions ←−T I,n : B → A and −→T II,n : (

∪
A) × B →

∪
B for each

n ∈ ω, such that
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(i) if x ∈ ←−T I,n(B), then −→T II,n(x,B) ∈ B, and
(ii) if 〈xn : n ∈ ω〉 ∈

∏
n∈ω
←−
T I,n(Bn) and {xn : n ∈ ω} ∈ C, then{−→

T II,n(xn, Bn) : n ∈ ω
}
∈ D.

Then G1(A, C) ≤II G1(B,D).

Similar results to Theorem 1.14 for longer length games and finite-selection
games, even with simplified hypotheses, can be found in [3–5].

We will also need a separation axiom for some results in what follows.

Definition 1.15. Let X be a space and let A be an ideal of closed subsets of X.
We say that X is A-normal if, given any A ∈ A and U ⊆ X open with A ⊆ U ,
there exists an open set V such that A ⊆ V ⊆ cl(V ) ⊆ U .

We also say that X is functionally A-normal if, for A ∈ A and U ⊆ X open
with A ⊆ U , there exists a continuous function f : X → R such that f [A] = {0}
and f [X \ U ] = {1}.

Note that, if X is A-normal, then X is regular. If A ⊆ K(X) and X is regular,
then X is A-normal. If X is Tychonoff and A ⊆ K(X), then X is functionally
A-normal.

1.2. Uniform spaces. To introduce the basics of uniform spaces, needed in this
paper, we mostly follow [20, Chapter 6].

We recall the standard notation involved with uniformities. Let X be a set.
The diagonal of X is ∆X = {〈x, x〉 : x ∈ X}. For E ⊆ X2, E−1 = {〈y, x〉 :
〈x, y〉 ∈ E}. If E = E−1, then E is said to be symmetric. If E,F ⊆ X2, then

E ◦ F = {〈x, z〉 : (there exists y ∈ X) 〈x, y〉 ∈ F ∧ 〈y, z〉 ∈ E}.
For E ⊆ X2, we let E[x] = {y ∈ X : 〈x, y〉 ∈ E} and E[A] =

∪
x∈AE[x].

Definition 1.16. A uniformity on a set X is a set E ⊆ ℘+(X2) that satisfies the
following properties:

• For every E ∈ E , ∆X ⊆ E.
• For every E ∈ E , E−1 ∈ E .
• For every E ∈ E , there exists F ∈ E such that F ◦ F ⊆ E.
• For E,F ∈ E , E ∩ F ∈ E .
• For E ∈ E and F ⊆ X2, if E ⊆ F , F ∈ E .

If, in addition, ∆X =
∩
E , we say that the uniformity E is Hausdorff. By an

entourage of X, we mean E ∈ E . The pair (X, E) is called a uniform space.

Definition 1.17. For a set X, we say that B ⊆ ℘+(X2) is a base for a uniformity
if

• for every B ∈ B, ∆X ⊆ B;
• for every B ∈ B, there is some A ∈ B such that A ⊆ B−1;
• for every B ∈ B, there is some A ∈ B such that A ◦ A ⊆ B; and
• for A,B ∈ B, there is some C ∈ B such that C ⊆ A ∩B.

If the uniformity generated by B is E , then we say that B is a base for E .
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If (X, E) is a uniform space, then the uniformity E generates a topology on
X in the following way: U ⊆ X is declared to be open provided that, for every
x ∈ U , there is some E ∈ E such that E[x] ⊆ U . An important result about this
topology reads as below.

Theorem 1.18 (see [20]). A Hausdorff uniform space (X, E) is metrizable if and
only if E has a countable base.

With the topology induced by the uniformity, we endow X2 with the resulting
product topology.

Lemma 1.19 (see [20]). The family of open (or closed) symmetric entourages of
a uniformity E is a base for E.

For a uniform space (X, E), there is a natural way to define a uniformity on
K(X) that is directly analogous to the Pompeiu–Hausdorff distance defined in
the context of metric spaces.

Definition 1.20. Let (X, E) be a uniform space, and, for E ∈ E , define

hE = {〈K,L〉 ∈ K(X)2 : K ⊆ E[L] ∧ L ⊆ E[K]}.

Just as the Pompeiu–Hausdorff distance on compact subsets generates the Vi-
etoris topology, the analogous uniformity also generates the Vietoris topology.

Theorem 1.21 (see [6, Chapter 2]). For a uniform space (X, E), B = {hE : E ∈
E} is a base for a uniformity on K(X); the topology generated by the uniform
base B is the Vietoris topology.

For the set of functions from a space X to a uniform space (Y, E), we review
the uniformity that generates the topology of uniform convergence on a family of
subsets of X. For this review, we mostly follow [20, Chapter 7].

Definition 1.22. For the set Y X of functions from a set X to a uniform space
(Y, E), we define, for A ∈ ℘+(X) and E ∈ E ,

U(A,E) = {〈f, g〉 ∈ (Y X)2 : (for all x ∈ A) 〈f(x), g(x)〉 ∈ E}.

For the set of functions X → K(Y ), we let W(A,E) = U(A, hE).

If B is a base for a uniformity on Y and A is an ideal of subsets of X, then
{U(A,B) : A ∈ A, B ∈ B} forms a base for a uniformity on Y X . The correspond-
ing topology generated by this base for a uniformity is the topology of uniform
convergence on A. Consequently, {W(A,B) : A ∈ A, B ∈ B} is a base for a
uniformity on K(Y )X .

1.3. Usco mappings. In this section, we introduce the basic facts of usco map-
pings needed for this paper. Of primary use is Theorem 1.29, which offers a
convenient characterization of minimal usco maps.

A set-valued function from X to Y is a function Φ : X → ℘(Y ). These are
sometimes also referred to as multi-functions.
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Definition 1.23. A set-valued function Φ : X → ℘(Y ) is said to be upper
semicontinuous if, for every open V ⊆ Y ,

Φ←(V ) := {x ∈ X : Φ(x) ⊆ V }
is open in X. A usco map from a space X to Y is a set-valued map Φ from X
to Y that is upper semicontinuous and whose range contained in K(Y ). A usco
map Φ : X → K(Y ) is said to be minimal if its graph minimal with respect to
the ⊆ relation. Let MU(X,Y ) denote the collection of all minimal usco maps
X → K(Y ).

It is clear that any map Φ : X → K(Y ) is usco if and only if Φ is continuous
relative to the upper Vietoris topology on K(Y ), which is the topology generated
by the sets {K ∈ K(Y ) : K ⊆ U} for open U ⊆ Y . However, inspired by Theorem
1.21, we maintain that the full Vietoris topology is the desirable topology. At
minimum, for most spaces of interest, the full Vietoris topology is Hausdorff.
Moreover, the full Vietoris topology on the set of compact subsets has other
desirable properties that are intimately related with X, like being metrizable
when, and only when, X is metrizable.

As above, it is also clear that any continuous Φ : X → K(Y ) is usco and that
there are continuous Φ : X → K(Y ) that are not minimal. As Example 1.31 will
demonstrate, there are minimal usco maps that are not continuous.

Definition 1.24. Suppose Φ : X → ℘+(Y ). We say that a function f : X → Y
is a selection of Φ if f(x) ∈ Φ(x) for every x ∈ X. We let sel(Φ) be the set of all
selections of Φ.

If D ⊆ X is dense and f : D → Y is with f(x) ∈ Φ(x) for each x ∈ D, then
we say that f is a densely defined selection of Φ.

Recall that a point x is said to be an accumulation point of a net 〈xλ : λ ∈ Λ〉
if, for every open neighborhood U of x and every λ ∈ Λ, there exists µ ≥ λ such
that xµ ∈ U .

The notion of subcontinuity was introduced by Fuller [12], which can be ex-
tended to so-called densely defined functions in the following way. See also [23].

Definition 1.25. Suppose that D ⊆ X is dense. We say that a function f :
D → Y is subcontinuous if, for every x ∈ X and every net 〈xλ : λ ∈ Λ〉 in D with
xλ → x, 〈f(xλ) : λ ∈ Λ〉 has an accumulation point.

The notion of semi-open sets was introduced by Levine [24].

Definition 1.26. For a space X, a set A ⊆ X is said to be semi-open if A ⊆
cl int(A).

The notion of quasicontinuity was introduced by Kempisty [21] and surveyed
by Neubrunn [28].

Definition 1.27. A function f : X → Y is said to be quasicontinuous if, for each
open V ⊆ Y , f−1(V ) is semi-open in X.

If D ⊆ X is dense and f : D → Y , then we will say that f is quasicontinuous
if it is quasicontinuous on D with the subspace topology.
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Definition 1.28. For f ∈ Fn(X,Y ), define f : X → ℘(Y ) by the rule

f(x) = {y ∈ Y : 〈x, y〉 ∈ cl gr(f)}.

Theorem 1.29 (see [16,17]). Suppose that Y is regular and that Φ : X → ℘+(Y ).
Then the following conditions are equivalent:

(i) Φ is minimal usco.
(ii) Every selection f of Φ is subcontinuous, quasicontinuous, and Φ = f .
(iii) There exists a selection f of Φ that is subcontinuous, quasicontinuous,

and Φ = f .
(iv) There exists a densely defined selection f of Φ that is subcontinuous,

quasicontinuous, and Φ = f .

A consequence of Theorem 1.29 we will use is that, for Φ ∈ MU(X,R), the
function f : X → R defined by f(x) = maxΦ(x) is a selection of Φ, and hence
subcontinuous and quasicontinuous.

We will be using the following to construct certain functions.

Lemma 1.30. Let f, g : X → Y and U ∈ TX and define h : X → Y by the rule

h(x) =

{
f(x), x ∈ cl(U);

g(x), x 6∈ cl(U).

(i) If f and g are subcontinuous, then h is subcontinuous.
(ii) If f is constant and g is quasicontinuous, then h is quasicontinuous.

Consequently, if f is constant and g is both subcontinuous and quasicontinuous,
then h is both subcontinuous and quasicontinuous, which implies that h is minimal
usco.

Proof. (i) Suppose that 〈xλ : λ ∈ Λ〉 is such that xλ → x. If there is a cofinal
subnet of 〈xλ : λ ∈ Λ〉 that is contained in X \ cl(U), then we can appeal to
the subcontinuity of g to see that 〈h(xλ) : λ ∈ Λ〉 has an accumulation point.
Otherwise, we can let λ0 ∈ Λ be such that, for all λ ≥ λ0, xλ ∈ cl(U). Then
〈xλ : λ ≥ λ0〉 is a net contained in cl(U), so we can use the subcontinuity of f to
establish that 〈h(xλ) : λ ∈ Λ〉 has an accumulation point.

(ii) Suppose that V ⊆ Y is open such that h−1(V ) 6= ∅. Let x ∈ h−1(V ), and
suppose that W is open with x ∈ W . We proceed by cases.

If x ∈ cl(U), then W ∩ U 6= ∅. Note also that U ⊆ h−1(V ) in this case since f
is constant. So W ∩ int(h−1(V )) 6= ∅.

Now, suppose x 6∈ cl(U), and observe that x ∈ W \ cl(U). Since h(x) ∈ V and
x 6∈ cl(U), h(x) = g(x) ∈ V . By the quasicontinuity of g, it must be the case that

(W \ cl(U)) ∩ int(g−1(V )) 6= ∅.

Observe that int(g−1(V )) \ cl(U) ⊆ h−1(V ), so W ∩ int(h−1(V )) 6= ∅.
It follows that, in either case, h−1(V ) is semi-open, establishing the quasicon-

tinuity of h.
For the remainder of the proof, combine (i) and (ii) with Theorem 1.29. □
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Note that, if F ⊆ X is closed and nowhere dense, then 1F is not quasicontinuous
since F is not semi-open. Thus, the requirement that we use the closure of an open
set in Lemma 1.30(ii) is, in general, necessary. As a similar example, 1(0,1)∪(1,2)
is not quasicontinuous at 1.

Moreover, consider U ∈ TX with ∂U 6= ∅ and cl(U) 6= X. Then f : X → R
defined by

f(x) =

{
1X\U(x), x ∈ cl(U);

1U(x), x 6∈ cl(U).

is 1∂U . So the requirement that f be constant (or something stronger than
quasicontinuity, at least) in Lemma 1.30(ii) is, in general, necessary.
Example 1.31. Consider MU(R,R). By Lemma 1.30, Φ := 1[0,1] is minimal
usco. However, Φ is not continuous since

{0, 1} = {x ∈ R : Φ(x) ∈ [(−0.5, 0.5), (0.5, 1.5)]}.
Hence, when Y is metrizable, studying the space MU(X,Y ) is, in general,

different than studying the space of continuous functions into a metrizable space.
We will also be using the following corollary often.

Corollary 1.32. Suppose that Φ,Ψ ∈ MU(X,Y ) and U ∈ TX are such that
there exist f ∈ sel(Φ) and g ∈ sel(Ψ) with the property that f ↾U= g ↾U . Then
Φ ↾U= Ψ ↾U .
Proof. We will show that Φ(x) ⊆ Ψ(x) for each x ∈ U . By symmetry, this will
establish that Φ(x) = Ψ(x) for each x ∈ U .

So let x ∈ U and y ∈ Φ(x), which by Theorem 1.29 means that y ∈ f(x).
Now, consider any neighborhood V ×W of 〈x, y〉. Without loss of generality, we
may assume that V ⊆ U . Then we can find 〈z, f(z)〉 ∈ V ×W . Since z ∈ U ,
f(z) = g(z), and, as V ×W was arbitrary, we see that 〈x, y〉 ∈ cl gr(g). Hence,
y ∈ g(x) = Ψ(x). □
Corollary 1.33. If A ⊆ X is nonempty, U, V ∈ TX are such that A ⊆ V ⊆
cl(V ) ⊆ U , Φ ∈MU(X,Y ), and f ∈ sel(Φ), then, for y0 ∈ Y , g : X → Y defined
by

g(x) =

{
y0, x ∈ cl(X \ cl(V ));

f(x), otherwise,

has the property that Ψ := g ∈ MU(X,Y ), 〈Φ,Ψ〉 ∈W(A,E) for any entourage
E of Y , and g[X \ U ] = {y0}.
Proof. Note that Theorem 1.29 and Lemma 1.30 imply that g is subcontinuous
and quasicontinuous. Then Ψ := g ∈MU(X,Y ).

Since V is open, cl(X \ cl(V )) ⊆ X \ V . Then g(x) = f(x) for all x ∈ V .
By Corollary 1.32, we see that Φ ↾A= Ψ ↾A as A ⊆ V . Also, since X \ U ⊆
X \ cl(V ) ⊆ cl(X \ cl(V )), we see that g[X \ U ] = {y0}. □

As a final note in this section, we offer the following generalization of [18,
Lemma 3.1] to general uniform spaces. Recall that Lemma 1.19 allows us to
restrict our attention to closed entourages.
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Corollary 1.34. Let X be a space and let Y be a uniform space. If Φ,Ψ ∈
MU(X,Y ), a closed entourage E of Y , and a dense D ⊆ X are such that
〈Φ(x),Ψ(x)〉 ∈ hE for all x ∈ D, then 〈Φ(x),Ψ(x)〉 ∈ hE for all x ∈ X.
Proof. Define F : X → ℘(Y ) by F (x) = E[Φ(x)].

We first show that the graph of F is closed. Suppose 〈x, y〉 ∈ cl gr(F ), and
let 〈〈xλ, yλ〉 : λ ∈ Λ〉 be a net in gr(F ) such that 〈xλ, yλ〉 → 〈x, y〉. Since
yλ ∈ E[Φ(xλ)], we can let wλ ∈ Φ(xλ) be such that yλ ∈ E[wλ]. Observe that,
since xλ → x and wλ ∈ Φ(xλ) for each λ ∈ Λ, by Theorem 1.29, 〈wλ : λ ∈ Λ〉 has
an accumulation point w ∈ Φ(x). Since yλ → y and w is an accumulation point
of 〈wλ : λ ∈ Λ〉, 〈w, y〉 is an accumulation point of 〈〈wλ, yλ〉 : λ ∈ Λ〉. Moreover,
as 〈wλ, yλ〉 ∈ E for all λ ∈ Λ and E is closed, we see that 〈w, y〉 ∈ E. Hence,
y ∈ E[w] ⊆ E[Φ(x)] = F (x). That is, 〈x, y〉 ∈ gr(F ), which establishes that
gr(F ) is closed.

Now, by Theorem 1.29, we can let g : D → Y be subcontinuous and quasicon-
tinuous such that g(x) ∈ Ψ(x) for each x ∈ D and Ψ = g. Since gr(F ) is closed
and gr(g) ⊆ gr(F ), we see that cl gr(g) ⊆ gr(F ). That is, Ψ(x) ⊆ F (x) = E[Φ(x)]
for all x ∈ X.

A symmetric argument shows that Φ(x) ⊆ E[Ψ(x)] for all x ∈ X, finishing the
proof. □

2. Results

We first note that the clustering version of Gruenhage’s W -game is equiva-
lent to an entourage selection game in the realm of topological groups. Such a
result holds, for example, for CA(X) where we define CA(X) to be the space
of continuous real-valued functions on X endowed with the topology of uniform
convergence on A, an ideal of closed subsets of X. This topology is generated by
the uniformity outlined in Definition 1.22.

Recall that a topological group is a (multiplicative) group G with a topology
for which the operations 〈g, h〉 7→ gh, G2 → G, and g 7→ g−1, G → G, are
continuous. Let i be the identity element of G. Also, recall that{

{〈g, h〉 ∈ G2 : gh−1 ∈ U} : U ∈ NG,i

}
is a basis for a uniformity on G. Let EG be the set of all entourages of G with
the generated uniformity. Also, let

Ω∆ =
{
A ⊆ G2 : {gh−1 : 〈g, h〉 ∈ A} ∈ ΩG,i

}
.

Theorem 2.1. If G is a (multiplicative) topological group and i is the identity,
then, for any g ∈ G,

G1(NG,g,¬ΩG,g) ≡ G1(NG,i,¬ΩG,i) ≡ G1(EG,¬Ω∆).

Proof. The equivalence
G1(NG,g,¬ΩG,g) ≡ G1(NG,i,¬ΩG,i)

can be seen by using the homeomorphism x 7→ gx, G→ G.
We first show that

G1(NG,i,¬ΩG,i) ≤II G1(EG,¬Ω∆).
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Define ←−T I,n : EG → NG,i such that{
〈g, h〉 ∈ G2 : gh−1 ∈

←−
T I,n(E)

}
⊆ E.

We now define −→T II,n : G× EG → G2 in the following way. For g ∈ ←−T I,n(E), let
−→
T II,n(g, E) = 〈g, i〉; otherwise, let −→T II,n(g, E) = 〈i, i〉. By the above definition,
we see that −→T II,n(g, E) ∈ E when g ∈

←−
T I,n(E).

Suppose that 〈gn : n ∈ ω〉 ∈
∏

n∈ω
←−
T I,n(En) for a sequence 〈En : n ∈ ω〉

of EG is such that {gn : n ∈ ω} 6∈ ΩG,i. Then let U ∈ NG,i be such that
U ∩ {gn : n ∈ ω} = ∅. Note that −→T II,n(gn, En) 6∈ Ω∆. Thus, Theorem 1.14
applies.

We now show that
G1(EG,¬Ω∆) ≤II G1(NG,i,¬ΩG,i).

Define ←−T II,n : NG,i → EG by the rule
←−
T II,n(U) = {〈g, h〉 ∈ G2 : gh−1 ∈ U}

and −→T II,n : G2 × NG,i → G by −→T II,n(〈g, h〉, U) = gh−1. Note that, if 〈g, h〉 ∈
←−
T II,n(U), then −→T II,n(〈g, h〉, U) ∈ U . So suppose that

〈〈gn, hn〉 : n ∈ ω〉 ∈
∏
n∈ω

←−
T II,n(Un)

for a sequence 〈Un : n ∈ ω〉 of NG,i such that {〈gn, hn〉 : n ∈ ω} 6∈ Ω∆. Evidently,
−→
T II,n(〈gn, hn〉, Un) 6∈ ΩG,i. Again, Theorem 1.14 applies. □

For the remainder of the paper, we will be interested only in real set-valued
functions; so we will let MU(X) = MU(X,R). We also use, for ε > 0,

∆ε = {〈x, y〉 ∈ R2 : |x− y| < ε}.
For A ⊆ X, we will use U(A, ε) = U(A,∆ε) and W(A, ε) = W(A,∆ε). For
Y ⊆ R, let B(Y, ε) =

∪
y∈Y B(y, ε) and note that

W(A, ε)

=
{
〈Φ,Ψ〉 ∈ K(R)X : (for all x ∈ A)[Φ(x) ⊆ B(Ψ(x), ε) ∧Ψ(x) ⊆ B(Φ(x), ε)]

}
.

Then, if A is an ideal of closed subsets of X, then we will use MUA(X) to
denote the set MU(X) with the topology generated by the base for a uniformity
{W(A, ε) : A ∈ A, ε > 0}. When A = [X]<ω, we use MUp(X), and when
A = K(X), we use MUk(X). For Φ ∈ MU(X), A ⊆ X, and ε > 0, we let
[Φ;A, ε] = W(A, ε)[Φ]. We will use 0 to denote the function that is constantly 0
when dealing with real-valued functions and the function that is constantly {0}
when dealing with usco maps.

Theorem 2.2. Let X be regular and let A and B be ideals of closed subsets of
X. Then,

(i) G1(OX(A),ΛX(B)) ≤II G1(ΩMUA(X),0,ΩMUB(X),0),
(ii) G1(ΩMUA(X),0,ΩMUB(X),0) ≤II G1(DMUA(X),ΩMUB(X),0), and
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(iii) if X is A-normal, G1(DMUA(X),ΩMUB(X),0) ≤II G1(OX(A),ΛX(B)).
Thus, if X is A-normal, then the three games are equivalent.
Proof. We first address (i). Fix some U0 ∈ OX(A) and let WΦ,n = Φ←[(−2−n, 2−n)]
for Φ ∈MU(X) and n ∈ ω. Define ←−T I,n : ΩMUA(X),0 → OX(A) by the rule

←−
T I,n(F ) =

{
{WΦ,n : Φ ∈ F}, (for all Φ ∈ F ) WΦ,n 6= X;

U0, otherwise.

To see that ←−T I,n is defined, let F ∈ ΩMUA(X),0 be such that WΦ,n 6= X for every
Φ ∈ F . Let A ∈ A be arbitrary, and choose Φ ∈ [0;A, 2−n] ∩F . It follows that
A ⊆ WΦ,n. Hence, ←−T I,n(F ) ∈ OX(A).

We now define −→
T II,n : TX × ΩMUA(X),0 →MU(X)

in the following way. Let
Tn = {F ∈ ΩMUA(X),0 : (there exists Φ ∈ F ) WΦ,n = X}

and T⋆
n = ΩMUA(X),0 \ Tn. For each 〈U,F 〉 ∈ TX × Tn, let −→T II,n(U,F ) ∈ F

be such that W−→
T II,n(U,F ),n

= X. For 〈U,F 〉 ∈ TX × T⋆
n with U ∈

←−
T I,n(F ), let

−→
T II,n(U,F ) ∈ F be such that U = W−→

T II,n(U,F ),n
. For 〈U,F 〉 ∈ TX × T⋆

n with
U 6∈

←−
T I,n(F ), let −→T II,n(U,F ) = 0. By the construction, if U ∈ ←−T I,n(F ), then

−→
T II,n(U,F ) ∈ F .

To finish this application of Theorem 1.14, assume that we have
〈Un : n ∈ ω〉 ∈

∏
n∈ω

←−
T I,n(Fn)

for some sequence 〈Fn : n ∈ ω〉 of ΩMUB(X),0 such that {Un : n ∈ ω} ∈ ΛX(B).
For each n ∈ ω, let Φn =

−→
T II,n(Un,Fn). Now, let B ∈ B and ε > 0 be arbitrary.

Choose n ∈ ω such that 2−n < ε and B ⊆ Un. If Fn ∈ Tn, then Φn has the
property that X = Φ←n [(−2−n, 2−n)]; hence, Φn ∈ [0;B, ε]. Otherwise, B ⊆ Un =
Φ←n [(−2−n, 2−n)], which also implies that Φn ∈ [0;B, ε]. Thus, {Φn : n ∈ ω} ∈
ΩMUB(X),0.

(ii) holds since DMUA(X) ⊆ ΩMUA(X),0.
Lastly, we address (iii). We define

←
T I,n : OX(A)→ DMUA(X) by the rule

←
T I,n(U ) = {Φ ∈MU(X) : (there exist U ∈ U and f ∈ sel(Φ)) f [X \ U ] = {1}}.

To see that
←
T I,n is defined, let U ∈ OX(A) and consider a basic open set [Φ;A, ε].

Then let U ∈ U be such that A ⊆ U and, by A-normality, let V be open such
that A ⊆ V ⊆ cl(V ) ⊆ U . Define f : X → R by the rule

f(x) =

{
1, x ∈ cl(X \ cl(V ));

maxΦ(x), otherwise.

By Corollary 1.33, f ∈ [Φ;A, ε] ∩
←
T I,n(U ). Hence,

←
T I,n(U ) ∈ DMUA(X).
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We define
→
T II,n : MU(X) × OX(A) → TX in the following way. Fix some

U0 ∈ TX . For 〈Φ,U 〉 ∈MU(X)×OX(A), if
{U ∈ U : (there exists f ∈ sel(Φ)) f [X \ U ] = {1}} 6= ∅,

let
→
T II,n(Φ,U ) ∈ U be such that there exists f ∈ sel(Φ) with the property that

f [X \
→
T II,n(Φ,U )] = {1}; otherwise, let

→
T II,n(Φ,U ) = U0. By the construction,

if Φ ∈
←
T I,n(U ), then

→
T II,n(Φ,U ) ∈ U .

Suppose we have
〈Φn : n ∈ ω〉 ∈

∏
n∈ω

←
T I,n(Un)

for a sequence 〈Un : n ∈ ω〉 of OX(A) with the property that {Φn : n ∈ ω} ∈
ΩMUB(X),0. For each n ∈ ω, let Un =

→
T II,n(Φn,Un). Since B is an ideal of sets,

we need only to show that 〈Un : n ∈ ω〉 is a B-cover. So let B ∈ B be arbitrary
and let n ∈ ω be such that Φn ∈ [0;B, 1]. Then we can let f ∈ sel(Φn) be
such that f [X \ Un] = {1}. Since Φn ∈ [0;B, 1], we see that, for each x ∈ B,
f(x) ∈ Φn(x) ⊆ (−1, 1). Hence, B ∩ (X \ Un) = ∅, which is to say that B ⊆ Un.
So Theorem 1.14 applies. □

We now establish some relationships between these games and games on the
space of continuous real-valued functions.

Corollary 2.3. Let A and B be ideals of closed subsets of X, and suppose that
X is A-normal. Then

G := G1(OX(A),OX(B)) ≡ G1(ΩMUA(X),0,ΩMUB(X),0)

≡ G1(DMUA(X),ΩMUB(X),0),

H := G1(NX [A],¬OX(B)) ≡ G1(NMUA(X),0,¬ΩMUB(X),0)

≡ G1(TMUA(X),¬ΩMUB(X),0),

and G is dual to H. If X is functionally A-normal, then
G1(OX(A),OX(B)) ≡ G1(ΩMUA(X),0,ΩMUB(X),0)

≡ G1(ΩCA(X),0,ΩCB(X),0)

≡ G1(DMUA(X),ΩMUB(X),0)

≡ G1(DCA(X),ΩCB(X),0)

and
G1(NX [A],¬OX(B)) ≡ G1(NMUA(X),0,¬ΩMUB(X),0)

≡ G1(NCA(X),0,¬ΩCB(X),0)

≡ G1(TMUA(X),¬ΩMUB(X),0)

≡ G1(TCA(X),¬ΩCB(X),0).

Proof. Apply Theorem 2.2, Lemmas 1.8, 1.12, and 1.13, and [3, Corollary 14]. □
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In [4, Theorem 31], inspired by Li [25], the game G1(OX(A),OX(B)) is shown
to be equivalent to the selective separability game on certain hyperspaces of X,
which we only note in passing here for the interested reader.

Recall that a subset A of a topological space is sequentially compact if every
sequence in A has a subsequence that converges to a point of A.

Lemma 2.4. Suppose that Φ ∈MU(X) and that A ⊆ X is sequentially compact.
Then Φ[A] is bounded.

Proof. Suppose that Φ : X → K(R) is unbounded on A ⊆ X, which is sequentially
compact. For each n ∈ ω, let xn ∈ A be such that there is some y ∈ Φ(xn) with
|y| ≥ n. Then let yn ∈ Φ(xn) be such that |yn| ≥ n, and define f : X → R to be
a selection of Φ such that f(xn) = yn for n ∈ ω. Since A is sequentially compact,
we can find x ∈ A and a subsequence 〈xnk

: k ∈ ω〉 such that xnk
→ x. Note

that 〈f(xnk
) : k ∈ ω〉 does not have an accumulation point. Therefore f is not

subcontinuous, and by Theorem 1.29, Φ is not a minimal usco map. □

Theorem 2.5. Let A and B be ideals of closed subsets of X. If X is A-normal
and B consists of sequentially compact sets, then

G1(NX [A],¬ΛX(B)) ≤II G1(TMUA(X),CDMUB(X)).

Consequently,

G1(NX [A],¬OX(B)) ≡ G1(NMUA(X),0,¬ΩMUB(X),0)

≡ G1(TMUA(X),¬ΩMUB(X),0)

≡ G1(TMUA(X),CDMUB(X)).

Proof. Let π1 : MU(X) × A × R → MU(X), π2 : MU(X) × A × R → A, and
π3 : MU(X) ×A × R → R be the standard coordinate projection maps. Define
a choice function γ : TMUA(X) →MU(X)×A× R such that

[π1(γ(W ));π2(γ(W )), π3(γ(W ))] ⊆ W.

Let ΨW = π1(γ(W )) and AW = π2(γ(W )). Now we define ←−T I,n : TMUA(X) →
NX [A] by ←−T I,n(W ) = NX(AW ).

We now define −→T II,n : TX × TMUA(X) → MU(X) in the following way. For
A ∈ A and U ∈ NX(A), let VA,U be open such that

A ⊆ VA,U ⊆ cl(VA,U) ⊆ U.

For W ∈ TMUA(X) and U ∈
←−
T I,n(W ), define fW,U,n : X → R by the rule

fW,U,n(x) =

{
n, x ∈ cl(X \ cl(VAW ,U));

maxΨW (x), otherwise.

Then we set
−→
T II,n(U,W ) =

{
fW,U,n, U ∈

←−
T I,n(W );

0, otherwise.
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By Corollary 1.33, −→T II,n(U,W ) ∈MU(X), and if U ∈ ←−T I,n(W ), then
−→
T II,n(U,W ) ∈ [ΨW ;AW , π3(γ(W ))] ⊆ W.

Suppose we have a sequence

〈Un : n ∈ ω〉 ∈
∏
n∈ω

←−
T I,n(Wn)

for a sequence 〈Wn : n ∈ ω〉 of TMUA(X) such that {Un : n ∈ ω} 6∈ ΛX(B). Let
Φn =

−→
T II,n(Un,Wn) for each n ∈ ω. We can find N ∈ ω and B ∈ B such that, for

every n ≥ N , B 6⊆ Un. Now, suppose that Φ ∈MU(X)\{Φn : n ∈ ω} is arbitrary.
By Lemma 2.4, Φ[B] is bounded, so let M > sup |Φ[B]| and n ≥ max{N,M +1}.
Now, for x ∈ B \ Un, note that n ∈ Φn(x) and that, for y ∈ Φ(x),

y ≤ sup |Φ[B]| < M ≤ n− 1 =⇒ y − n < −1 =⇒ |y − n| > 1.

In particular, Φn(x) 6⊆ B(Φ(x), 1), which establishes that Φn 6∈ [Φ;B, 1]. Hence,
{Φn : n ∈ ω} is closed and discrete, and Theorem 1.14 applies.

For what remains, observe that
G1(TMUA(X),CDMUB(X)) ≤II G1(TMUA(X),¬ΩMUB(X),0)

since, if Two can produce a closed discrete set, then Two can avoid clustering
around 0. Hence, by Corollary 2.3 we obtain that

G1(NX [A],¬OX(B)) = G1(NX [A],¬ΛX(B))
≤II G1(TMUA(X),CDMUB(X))

≤II G1(TMUA(X),¬ΩMUB(X),0)

≡ G1(NX [A],¬OX(B)).

□

Corollary 2.6. Let A and B be ideals of closed subsets of X. If X is functionally
A-normal and B consists of sequentially compact sets, then

G1(NX [A],¬OX(B)) ≡ G1(NMUA(X),0,¬ΩMUB(X),0)

≡ G1(NCA(X),0,¬ΩCB(X),0)

≡ G1(TMUA(X),¬ΩMUB(X),0)

≡ G1(TCA(X),¬ΩCB(X),0)

≡ G1(TMUA(X),CDMUB(X))

≡ G1(TCA(X),CDCB(X)).

Proof. Apply Theorem 2.5 and [3, Corollary 15]. □

We now offer some relationships related to Gruenhage’s W -games.

Proposition 2.7. Let A and B be ideals of closed subsets of X. Then
(i) G1(NMUA(X),0,¬ΩMUB(X),0) ≤II G1(NMUA(X),0,¬ΓMUB(X),0) and
(ii) G1(NMUA(X),0,¬ΓMUB(X),0) ≤II G1(NX [A],¬ΓX(B)).



202 C. CARUVANA

Proof. (i) is evident since, if Two can avoid clustering at 0, they can surely avoid
converging to 0.

(ii) Fix U0 ∈ TX , and define ←−T I,n : NX [A] → NMUA(X),0 by ←−T I,n(NX(A)) =

[0;A, 2−n]. Then define −→T II,n : MU(X) ×NX [A] → TX by −→T II,n(Φ,NX(A)) =

Φ← [(−2−n, 2−n)]. Note that, if Φ ∈ [0;A, 2−n] =
←−
T I,n(NX(A)), then A ⊆

Φ← [(−2−n, 2−n)], which establishes that −→T II,n(Φ,NX(A)) ∈ NX(A).
Suppose we have

〈Φn : n ∈ ω〉 ∈
∏
n∈ω

←−
T I,n(NX(An))

for a sequence 〈An : n ∈ ω〉 of A such that 〈Φn : n ∈ ω〉 6∈ ΓMUB(X),0. Then
we can find B ∈ B, ε > 0, and N ∈ ω such that 2−N < ε and, for all n ≥ N ,
Φn 6∈ [0;B, ε].

To finish this application of Theorem 1.14, we need to show that
B 6⊆

−→
T II,n(Φn,NX(An))

for all n ≥ N . So let n ≥ N and note that, since Φn 6∈ [0;B, ε], there are some x ∈
B and y ∈ Φn(x) such that |y| ≥ ε > 2−N ≥ 2−n. That is, Φn(x) 6⊆ (−2−n, 2−n)
and so x 6∈

−→
T II,n(Φn,NX(An)). □

Though particular applications of Corollaries 2.3 and 2.6 abound, we record a
few that capture the general spirit using ideals of usual interest after recalling
some other facts and some names for particular selection principles. We suppress
the relationships with CA(X) in the following applications in the interest of space.
Definition 2.8. We identify some particular selection principles by name.

• S1(ΩX,x,ΩX,x) is known as the strong countable fan-tightness property for
X at x.
• S1(DX ,ΩX,x) is known as the strong countable dense fan-tightness property

for X at x.
• S1(TX ,CDX) is known as the discretely selective property for X.
• We refer to S1(ΩX ,ΩX) as the ω-Rothberger property and S1(KX ,KX) as

the k-Rothberger property.
Definition 2.9. For a partially ordered set (P,≤) and collections A,B ⊆ P such
that, for every B ∈ B, there exists some A ∈ A with B ⊆ A, we define the
cofinality of A relative to B by

cof(A;B,≤) = min{κ ∈ CARD : (there exists F ∈ [A]κ)
(for all B ∈ B)(there exists A ∈ F ) B ⊆ A}

where CARD is the class of cardinals.
Lemma 2.10. Let A,B ⊆ ℘+(X) for a space X.

As long as X is T1,
I ↑
pre

G1(NX [A],¬OX(B)) ⇐⇒ cof(A;B,⊆) ≤ ω

(see [14, 35], and [3, Lemma 23]).



SELECTION GAMES WITH MINIMAL USCO MAPS 203

If A consists of Gδ sets, then
I ↑ G1(NX [A],¬OX(B)) ⇐⇒ I ↑

pre
G1(NX [A],¬OX(B))

⇐⇒ cof(A;B,⊆) ≤ ω

(see [13, 33] and [3, Lemma 24]).
Observe that Lemma 2.10 informs us that, for a T1 space X,
• I ↑

pre
G1(PX ,¬OX) if and only if X is countable,

• I ↑
pre

G1(NX [K(X)],¬OX) if and only if X is σ-compact, and

• I ↑
pre

G1(NX [K(X)],¬KX) if and only if X is hemicompact.

Corollary 2.11. For an ideal A of closed subsets of a T1 space X,
cof(A;A,⊆) ≤ ω

if and only if MUA(X) is metrizable.
Proof. If {An : n ∈ ω} ⊆ A is such that, for every A ∈ A, there is n ∈ ω
with A ⊆ An, then the family {W(An, 2

−m) : n,m ∈ ω} is a countable base
for the uniformity on MUA(X); so Theorem 1.18 demonstrates that MUA(X) is
metrizable.

Now, suppose that MUA(X) is metrizable, which implies that MUA(X) is
first-countable. Using a descending countable basis at 0, we see that

I ↑
pre

G1(NMUA(X),0,¬ΓMUA(X),0),

and, in particular,
I ↑
pre

G1(NMUA(X),0,¬ΩMUA(X),0).

By Corollary 2.6, we see that
I ↑
pre

G1(NX [A],¬OX(A)).

So, by Lemma 2.10, cof(A;A,⊆) ≤ ω. □
As a particular consequence of this, we see the following result.
Corollary 2.12. For any regular space X, the following conditions are equivalent:

(i) X is countable.
(ii) MUp(X) is metrizable.
(iii) MUp(X) is not discretely selective.
(iv) II ↑

mark
G1(ΩX ,ΩX).

(v) II ↑
mark

G1(ΩMUp(X),0,ΩMUp(X),0).
(vi) II ↑

mark
G1(DMUp(X),ΩMUp(X),0).

Also, the following properties are equivalent.
(i) X is hemicompact.
(ii) K(X) is hemicompact (see [2, Theorem 3.22]).
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(iii) MUk(X) is metrizable (see [19, Corollary 4.5]).
(iv) MUk(X) is not discretely selective.
(v) II ↑

mark
G1(KX ,KX).

(vi) II ↑
mark

G1(ΩMUk(X),0,ΩMUk(X),0).
(vii) II ↑

mark
G1(DMUk(X),ΩMUk(X),0).

Before the next corollary, we recall Tkachuk’s strategy strengthening for the
generalized point-open games.

Theorem 2.13 (see [3, Corollary 11] and [35]). Let A and B be ideals of closed
subsets of X. Then

I ↑ G1(NX [A],¬OX(B)) ⇐⇒ I ↑ G1(NX [A],¬ΓX(B))
and

I ↑
pre

G1(NX [A],¬OX(B)) ⇐⇒ I ↑
pre

G1(NX [A],¬ΓX(B))

Corollary 2.14. For any regular space X, the following conditions are equivalent:
(i) II ↑ G1(ΩX ,ΩX).
(ii) II ↑ G1(ΩMUp(X),0,ΩMUp(X),0).
(iii) II ↑ G1(DMUp(X),ΩMUp(X),0).
(iv) I ↑ G1(TMUp(X),CDMUp(X)).
(v) I ↑ G1(NX [[X]<ω],¬ΩX).
(vi) I ↑ G1(NX [[X]<ω],¬Γω(X)).

Also, the following are conditions equivalent.
(i) II ↑ G1(KX ,KX).
(ii) II ↑ G1(ΩMUk(X),0,ΩMUk(X),0).
(iii) II ↑ G1(DMUk(X),ΩMUk(X),0).
(iv) I ↑ G1(TMUk(X),CDMUk(X)).
(v) I ↑ G1(NX [K(X)],¬KX).
(vi) I ↑ G1(NX [K(X)],¬Γk(X).

In general, Corollaries 2.12 and 2.14 are strictly separate, as the following
example demonstrates.

Example 2.15. Let X be the one-point Lindelöfication of ω1 with the discrete
topology. In [2, Example 3.24], it is shown that X has the property that II ↑
G1(KX ,KX), but II 6↑

mark
G1(KX ,KX).

However, according to Theorem 2.16, if Two can win against predetermined
strategies in some Rothberger-like games, Two can actually win against full-
information strategies in those games.

Theorem 2.16. Let X be any space.
(i) By Pawlikowski [29],

I ↑
pre

G1(OX ,OX) ⇐⇒ I ↑ G1(OX ,OX).
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(ii) By Scheepers [32] (see also [5, Corollary 4.12]),
I ↑
pre

G1(ΩX ,ΩX) ⇐⇒ I ↑ G1(ΩX ,ΩX).

(iii) By [5, Theorem 4.21],
I ↑
pre

G1(KX ,KX) ⇐⇒ I ↑ G1(KX ,KX).

Corollary 2.17. For any regular space X, the following conditions are equivalen:
(i) X is ω-Rothberger.
(ii) X<ω is Rothberger, where X<ω is the disjoint union of Xn for all n ≥ 1

(see [30] and [5, Corollary 3.11]).
(iii) Pfin(X) is Rothberger, where Pfin(X) is the set [X]<ω with the subspace

topology inherited from K(X) (see [5, Corollary 4.11]).
(iv) I 6↑ G1(ΩX ,ΩX).
(v) MUp(X) has strong countable fan-tightness at 0.
(vi) MUp(X) has strong countable dense fan-tightness at 0.
(vii) II 6↑

mark
G1(NX [[X]<ω],¬ΩX).

(viii) II 6↑ G1(NX [[X]<ω],¬ΩX).
(ix) II 6↑

mark
G1(TMUp(X),CDMUp(X)).

(x) II 6↑ G1(TMUp(X),CDMUp(X)).
(xi) II 6↑

mark
G1(NMUp(X),0,¬ΩMUp(X),0).

(xii) II 6↑ G1(NMUp(X),0,¬ΩMUp(X),0).
Also, the following conditions are equivalent:

(i) X is k-Rothberger.
(ii) I 6↑ G1(KX ,KX).
(iii) MUk(X) has strong countable fan-tightness at 0.
(iv) MUk(X) has strong countable dense fan-tightness at 0.
(v) II 6↑

mark
G1(NX [K(X)],¬KX).

(vi) II 6↑ G1(NX [K(X)],¬KX).
(vii) II 6↑

mark
G1(TMUk(X),CDMUk(X)).

(viii) II 6↑ G1(TMUk(X),CDMUk(X)).
(ix) II 6↑

mark
G1(NMUk(X),0,¬ΩMUk(X),0).

(x) II 6↑ G1(NMUk(X),0,¬ΩMUk(X),0).
Using the techniques of Gerlits and Nagy [14], Galvin [13], and Telgársky [33],

we offer an analog of Lemma 2.10 related to the so-called weak k-covering number
in [19].
Definition 2.18. For a collection A of closed subsets of X, define the weak
covering number of A to be

wkc(A) = min
{
κ ∈ CARD : (there exists F ∈ [A]κ) X = cl

(∪
F
)}

.

Definition 2.19. For a space X, let DOX be the set of all U ⊆ TX such that
X = cl (

∪
U ).
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Lemma 2.20. Let A ⊆ ℘+(X), where X is a regular space. Then
I ↑
pre

G1(NX [A],¬DOX) ⇐⇒ wkc(A) ≤ ω.

If X is metrizable and A ⊆ K(X), then
I ↑ G1(NX [A],¬DOX) ⇐⇒ I ↑

pre
G1(NX [A],¬DOX)

⇐⇒ wkc(A) ≤ ω.

Proof. The implications
wkc(A) ≤ ω =⇒ I ↑

pre
G1(NX [A],¬DOX)

and
I ↑
pre

G1(NX [A],¬DOX) =⇒ I ↑ G1(NX [A],¬DOX)

are evident and hold with no assumptions on X.
Suppose that X is regular and that wkc(A) > ω. Any predetermined strategy

for One in G1(NX [A],¬DOX) corresponds to a sequence 〈An : n ∈ ω〉 ∈ Aω.
We show that no such strategy can be winning for One. Since

∪
{An : n ∈ ω}

is not dense in X, we can find U ∈ TX such that U ∩
∪
{An : n ∈ ω} = ∅.

As X assumed to be regular, without loss of generality, we can assume that
cl(U) ∩

∪
{An : n ∈ ω} = ∅. It follows that An ⊆ X \ cl(U) =: V for all

n ∈ ω. Hence, 〈NX(An) : n ∈ ω〉 is not a winning strategy for One. That is,
I 6↑
pre

G1(NX [A],¬DOX).

Now suppose that X is metrizable, A ⊆ K(X), and I ↑ G1(NX [A],¬DOX).
Let σ be a winning strategy for One that is coded by elements of A. Let T0 = 〈〉,
and for n ∈ ω, let

Tn+1 =
{
w⌢

⟨
σ(w),B

(
σ(w), 2−ℓ

)⟩
: w ∈ Tn ∧ ℓ ∈ ω

}
.

Note that F =
∪

n∈ω{σ(w) : w ∈ Tn} is a countable subset of A.
We show that X = cl (

∪
F ) by way of contradiction. Suppose X\cl (

∪
F ) 6= ∅,

and let V ∈ TX be open such that cl(V ) ∩ cl (
∪

F ) = ∅. For A0 := σ(∅), let
ℓ0 ∈ ω be such that cl(V )∩B

(
A0, 2

−ℓ0
)
= ∅ and set w0 = 〈A0,B

(
A0, 2

−ℓ0
)
〉 ∈ T1.

For n ∈ ω, suppose that wn ∈ Tn+1 is defined. Now, for An+1 := σ(wn),
let ℓn+1 ∈ ω be such that cl(V ) ∩ B

(
An+1, 2

−ℓn+1
)
= ∅. Then define wn+1 =

w⌢
n

⟨
An+1,B

(
An+1, 2

−ℓn+1
)⟩
∈ Tn+2.

Now, we have a run of the game according to σ with the property that

cl(V ) ∩
∪
n∈ω

B
(
An, 2

−ℓn
)
= ∅.

It follows that

V ∩ cl

(∪
n∈ω

B
(
An, 2

−ℓn
))

= ∅,

which contradicts the assumption that σ is a winning strategy. □
Consequently, for a regular space X,
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• I ↑
pre

G1(NX [[X]<ω],¬DOX) if and only if X is separable and

• I ↑
pre

G1(NX [K(X)],¬DOX) if and only if X admits a countable collection

of compact subsets whose union is dense.
Also, by Lemma 1.13, G1(NX [A],¬DOX) is dual to G1(OX(A),DOX). Hence, we
obtain the following result.

Corollary 2.21. If X is a regular space, then
X is separable ⇐⇒ I ↑

pre
G1(NX [[X]<ω],¬DOX)

⇐⇒ II ↑
mark

G1(ΩX ,DOX)

and
wkc(K(X)) ≤ ω ⇐⇒ I ↑

pre
G1(NX [K(X)],¬DOX)

⇐⇒ II ↑
mark

G1(KX ,DOX).

If X is, in addition, metrizable, then
X is separable ⇐⇒ I ↑

pre
G1(NX [[X]<ω],¬DOX)

⇐⇒ I ↑ G1(NX [[X]<ω],¬DOX)

⇐⇒ II ↑
mark

G1(ΩX ,DOX)

⇐⇒ II ↑ G1(ΩX ,DOX)

and
wkc(K(X)) ≤ ω ⇐⇒ I ↑

pre
G1(NX [K(X)],¬DOX)

⇐⇒ I ↑ G1(NX [K(X)],¬DOX)

⇐⇒ II ↑
mark

G1(KX ,DOX)

⇐⇒ II ↑ G1(KX ,DOX).

3. Questions

It is tempting to conjecture that an analogous result to Theorem 2.1 holds for
the space of minimal usco maps, except that the natural candidate of pointwise set
difference between two minimal usco maps may not generally produce a minimal
usco map. For A,B ⊆ R, let A − B = {x − y : x ∈ A, y ∈ B}, and consider
Φ := 1[0,1]. Note that the pointwise difference Φ − Φ : X → R defined by
Φ(x)− Φ(x) has the property that

Φ(x)− Φ(x) =

{
{0}, x 6∈ {0, 1};
{−1, 0, 1}, x ∈ {0, 1}.

Since gr(0) ⊆ gr(Φ− Φ), we see that Φ− Φ is not minimal.
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We also show that the pointwise Pompeiu–Hausdorff distance between two
minimal usco maps need not be quasicontinuous. For compact A,B ⊆ R, let

Hd(A,B) = inf{ε > 0 : A ⊆ B(B, ε) ∧B ⊆ B(A, ε)}.
We can define f : X → R by f(x) = Hd

(
1[0,1](x),1R\[0,1](x)

)
, and observe that

f(x) =

{
1, x 6∈ {0, 1};
0, x ∈ {0, 1}.

So f is not quasicontinuous. However, this does not mean that the pointwise
Pompeiu–Hausdorff distance cannot be used to establish an analogous result to
Theorem 2.1 for MUA(X).

We end with a few questions.
Problem 3.1. Is there a result similar to Theorem 2.1 for general uniform spaces?
Along these lines, are there selection games that characterize the diagonal degree
and the uniformity degree of a uniform space?
Problem 3.2. Can results similar to Theorems 2.2 and 2.5 be established relative
to ΩMUA(X),Φ for any Φ ∈MU(X)?
Problem 3.3. How many of the equivalences and dualities of this paper can be
established for games of longer length and for finite-selection games?
Problem 3.4. How much of this theory can be recovered when we study MU(X,Y )
for Y 6= R, for example, when Y is [0, 1], any metrizable space, any topological
group, or any uniform space?
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