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Abstract. In this paper, we consider the following viscoelastic wave equation:

utt −
(
∆u−

∫ t

0
g(t− s)∆u(s)ds

)
+ b(t, x)ut = −|u|p−1u, t > 0, x ∈ Rn

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rn,

with space-time dependent potential and where the initial data u0(x), u1(x)
have compact supports. Under suitable assumptions on the potential b and for
a relaxation function g satisfying the condition g′(t) ≤ −µ(t)gr(t), t ≥ 0,
1 < r < 3

2 , we obtain a general energy decay result that extends other results
in the literature.

1. Introduction

In the case of energy decay in bounded domains, Messaoudi [14] considered the
viscoelastic equation

utt −∆u+

∫ t

0

g(t− s)∆u(s)ds = 0 in Ω× (0,∞)

and established a general decay result, which is not necessarily of exponential or
polynomial type. Cavalcanti et al. [3] considered a damped wave equation of the
form

utt −∆u+

∫ t

0

g(t− s)∆u(s)ds+ a(x)ut + |u|γu = 0, in Ω× (0,∞), (1.1)
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for a : Ω → R+ with a(x) ≥ a0 > 0. They established an exponential decay result
when the relaxation function g(t) decays exponentially. Song et al. [23] also con-
sidered (1.1) under certain suitable assumptions on a, g, and γ and proved energy
decay results similar to that of [3, 14] using a new perturbed energy technique.

Under weaker conditions on the relaxation function, Messaoudi [13] considered
the viscoelastic problem (1.1) with a = 0 and showed that the damping resulting
from the integral term is sufficient to obtain polynomial as well as exponential
decay result. This result was recently improved by Messaoudi and Al-Khulaifi [15]
to the case where the relaxation function satisfies g′(t) ≤ −µ(t)gr(t), t ≥ 0, 1 ≤
r < 3

2
. A review on recent results on energy decay, global existence, and blow up

of solutions to nonlinear wave equations in bounded domains is discussed in [16].
For other related results, the reader is referred to [1, 4, 11].

In the case of unbounded domains where the source term is absent, there is
an extensive literature concerning total energy decay to the scalar valued wave
equation

utt −∆u+

∫ t

0

g(t− s)∆u(s)ds+ b(t, x)ut = 0 (t, x) ∈ [0,∞)× Rn. (1.2)

Ikehata et al. [10] considered the linear wave equation (1.2) with g = 0 and where
(u0, u1) is compactly supported initial data in the energy space. They obtained
polynomial energy decay under suitable assumptions on the potential b(t, x). The
result shows that for a potential of the form V (x) ≈ (1+ |x|)−α, α = 1 is critical.
The reader is referred to [5, 6, 18] for related results.

When b = 0, Said-Houari and Messaoudi [22] considered the viscoelastic prob-
lem (1.2) and obtained general decay estimates, using the energy technique in the
Fourier space.

In the absence of the relaxation term but where the internal source term is
present, Todorova and Yordanov [24] considered the problem

utt −∆u+ b(t, x)ut + |u|p−1u = 0, (1.3)

where b(t, x) = b(x) ≡ b0(1+ |x|)−α with α ∈ [0, 1) (the subcritical potential case)
and obtained total energy decay rates, which are almost optimal. By modifying
the technique due to Todorova and Yordanov [24], Ikehata and Inoue [8] consid-
ered the wave problem (1.3) and obtained total energy decay results in the case
when α = 1.

Mochizuki [17] considered the wave problem (1.3) and showed non-decay results
for the energy function Eu(t) in the case b(t, x) ≤ b0(1 + |x|)−1−α where α > 0
(the supercritical potential case). For other related results, see [7, 9, 12, 25], and
for time dependent potential b(t, x) ≡ b0(1 + t)−1, see [21, 26, 27].

More recently, Ogbiyele and Arawomo [20] considered the viscoelastic problemutt −
(
∆u−

∫ t

0

g(t− s)∆u(s)ds
)
+ b(t, x)ut + |u|p−1u = 0, t > 0, x ∈ Rn

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rn,
(1.4)
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under suitable conditions on the damping potential b(t, x) and where the relax-
ation function satisfies the condition g′(t) ≤ −µ(t)g(t), t ≥ 0. They obtained
a general energy decay result from which the polynomial and exponential decay
results are only special cases.

A structural link between energy decay and the decay of the memory kernel is
observed in the literature. More precisely, for memory decay satisfying

g′(t) + ξg(t) ≤ 0, for a.e t ≥ 0 ξ > 0,

exponential decay of the solution is expected at ∞. When the memory kernel
satisfies

g′(t) + µ(t)g(t) ≤ 0, for a.e t ≥ 0

and µ is a strictly positive decreasing function, as in [20], where µ is a positive
decreasing function, the energy decay rates in which exponential and polynomial
decay are only special cases are expected. Moreover, when the kernel function
satisfies

g′(t) + ξg1+1/k(t) ≤ 0, for a.e t ≥ 0 ξ > 0, k ∈ (1,∞),

a polynomial energy decay of the form (1 + t)−k is guaranteed.
In this paper, we consider the viscoelastic wave problem (1.4) with space-time

dependent potential b(t, x) and a power-type nonlinearity |u|p−1u, where

1 < p < +∞ (n = 2) and 2 < p+ 1 <
2n

n− 2
(n ≥ 3).

Under suitable assumptions on the damping potential b and when the relaxation
function g satisfies, for some 1 ≤ r < 3

2
the condition g′(t) ≤ −µ(t)gr(t), for all t ≥

0, we establish energy decay estimates where the initial data u0 and u1 are as-
sumed to have compact support in a ball B(L) of radius L about the origin,
with L satisfying the condition supp{u0(x), u1(x)} ⊂ {|x| ≤ L} and the solution
satisfying the finite speed of propagation property

supp u(t, x) ∈ B(L+ t), t ∈ (0,∞).

Our result improves on the results in the literature.

2. Preliminaries

In this section, we present some basic materials needed in the proof of our
result. We use the standard Lebesgue space Lq(Rn), 1 ≤ q ≤ ∞ and the Sobolev
space H1(Rn) as well as their usual norms and scalar products.

For the potential b(t, x) and the relaxation function g(t), we have the following
assumptions:
(A1)

∫
B(L+t)

b(t, x)
n
2 dx ∈ L∞

loc(JT ) where JT = (0,∞).
(A2) There exists a positive constant cαb and a positive function b

L
(t) such

that
b(t, x) ≥ b

L
(t) for x ∈ B(L + t) and α

L
(t)b

L
(t) ≥ cαb, where α

L
(t) =[∫

B(L+t)
b(t, x)

n
2 dx

]2/n
.
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(A3) g is a nonincreasing differentiable function satisfying

g(s) ≥ 0, 1−
∫ ∞

0

g(s)ds = ℓ > 0, for all s ≥ 0.

(A4) In addition, there exist positive constants λ and λµ and a positive nonin-
creasing differentiable function µ that satisfies for some 1 < r < 3

2
,

g′(s) ≤ −µ(s)gr(s), µ(s) ≥ 0 and µ′(s) ≤ 0 for all s ≥ 0

such that ∫ ∞

0

g2

µ(s)gr(s)
ds < λ.

Remark 2.1. From assumption (A4), we observe that

g(t) ≤ C
(
1 +

∫ t

0

µ(s)ds
) −1

r−1 ,

for a positive constant C and that

µ(t)g
1
2 (t) = µ(t)g

1
2
−r(t)gr(t) ≤ −g′(t)g

1
2
−r(t).

Integrating this gives∫ ∞

0

µ(s)g
1
2 (s)ds ≤ −g

3
2
−r(t)

3
2
− r

∣∣∣∞
0

< ∞ for r <
3

2.

The condition
∫∞
0

µ(s)g
1
2 (s)ds < ∞ is same with that of [15].

Lemma 2.2 ([2]). Suppose that 1 ≤ q < n. If u ∈ W 1,q(Rn), then u ∈ Lq∗(Rn)
with

1

q∗
=

1

q
− 1

n
.

Moreover, there is a constant k = k(n, q) such that
∥u∥q∗ ≤ k∥∇u∥q for all u ∈ W 1,q(Rn).

For completeness, we state the existence result of [20].

Theorem 2.3. Suppose that the assumptions (A1)–(A4) hold with initial data
u0 ∈ H1(Rn) and u1 ∈ L2(Rn) having compact supports. Let 2 < p+ 1 ≤ 2n

n−2
, if

n ≥ 3, then there exists a unique solution
u ∈ C([0, T );H1(Rn)) and ut ∈ C([0, T );L2(Rn)),

for some T > 0.

The proof follows that of [19, 20].

Lemma 2.4 ([20]). Let u(t, x) be the solution of (1.4) for n ≥ 3. Then there
exists a positive constant K such that∫

Rn

|u(t, x)|2dx ≤ K2(L+ t)2
∫
Rn

|∇u(t, x)|2dx. (2.1)
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We now define the modified energy functional E(t) associated to problem (1.4)
by

E(t) : =
1

2
∥ut∥2 +

1

2

[
1−

∫ t

0

g(s)ds
]
∥∇u∥22 +

1

2
(g ◦ ∇u) +

1

p+ 1
∥u∥p+1

p+1, (2.2)

where for simplicity, we use the following notation:

(g ◦ ∇u) :=

∫ t

0

g(t− s)∥∇u(t)−∇u(s)∥22ds.

Hence, for the functional E(t), we state the following lemma.

Lemma 2.5. Suppose that the assumptions (A1)–(A4) hold. Let u be a solution
of problem (1.4). Then for any t ≥ 0, the energy functional E(t) satisfies

E ′(t) ≤ −
∫
Rn

b(t, x)|ut|2dx− 1

2
g(t)∥∇u∥22 +

1

2

(
g′ ◦ ∇u

)
; (2.3)

hence, we have
E(t) ≤ E(0). (2.4)

Proof. By multiplying (1.4) by ut and integrating over Rn, we obtain the estimate
(2.3) for any regular solution. Thus, by using density arguments, the estimate
remains valid for weak solutions. The boundedness result of (2.4) follows directly
from (2.3), since under the assumptions given, E ′(t) ≤ 0. Integrating over [0, t]
gives E(t) ≤ E(0). □
Lemma 2.6 ([4]). Assume that g ∈ C([0,∞]), w ∈ L1

loc(0,∞), and 0 ≤ σ ≤ 1.
Then∫ t

0

|g(r)w(r)|dr ≤ C
[∫ +∞

0

g1−σ(s)|w(s)|ds
] r−1

r−1+σ
(∫ t

0

gr(s)|w(s)|ds
) σ

r−1+σ
.

Remark 2.7. A consequence of Lemma 2.6 is that∫ t

0

|g(r)w(r)|dr

≤ C

µ(t)

[∫ +∞

0

µ(s)g1−σ(s)|w(s)|ds
] r−1

r−1+σ
[∫ t

0

µ(s)gr(s)|w(s)|ds
] σ

r−1+σ
.

3. General decay

In this section, we consider the decay of the solution energy of (1.4). To achieve
this, we introduce the following functionals:

M(t) :=

∫
Rn

uut dx

and
L(t) := β(t)E(t) + ν1ρ(t)M(t), (3.1)

where ν1 is a positive constant to be determined later and β and ρ are positive
functions depending on the support radius L. The weighted functions β and ρ
are used to compensate for the lack of compactness in the case of unbounded
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region and as a control function in the case of variable coefficients. In addition,
we state the following conditions on β and ρ:

(A5) 0 < β(t), β(t) ≥ ρ(t)α
L
(t) ≥ ρ(t)α

L
(0),

(A6) There exist positive functions η
L

and γ
L

satisfying
(i) η

L
(t)(L+ t)2 ≤ α

L
(t) and [η

L
(t)(L+ t)2]−1 ≤ cη

(ii) γ
L
(t)(L+ t)2 ≤ α

L
(t)b

L
(t) and 1

γ
L
(t)

[
β(t)
ρ(t)

∣∣∣( ρ(t)
β(t)

)′∣∣∣]2 ≤ c2
ρβ

.

Lemma 3.1. Suppose that the assumptions (A5) − (A6) hold. Then there exist
positive constants k∗

1 and k∗
2 such that the relation

k∗
1β(t)E(t) ≤ L(t) ≤ k∗

2β(t)E(t) (3.2)

is satisfied.

Proof. Using Hölder’s, Sobolev’s, and Young’s inequalities and the assumptions
(A5) and (A6), we obtain the following estimate:

|L(t)− β(t)E(t)|

≤ν1ρ(t)

∫
Rn

|uut|dx

≤ν1ρ(t)

∫
Rn

[
η
L
(t)

(
ωn(L+ t)n

) 2
n |ut|2

] 1
2
[
η−1
L
(t)

(
ωn(L+ t)n

)−2
n |u|2

] 1
2
dx

≤ν1ρ(t)
[
η
L
(t)ω

2
n
n (L+ t)2

∫
Rn

|ut|2dx
] 1

2
[ 1

η
L
(t)ω

2
n
n (L+ t)2

∫
Rn

|u|2dx
] 1

2

≤ν2
2
ρ(t)η

L
(t)(L+ t)2∥ut∥2 +

ν1k
2

2η
L
(t)

ρ(t)∥∇u∥2

≤ρ(t)η
L
(t)(L+ t)2

[ν2
2
∥ut∥2 +

ν1k
2

2(L+ t)2η2
L
(t)

∥∇u∥2
]

≤ρ(t)η
L
(t)(L+ t)2

[ν2
2
∥ut∥2 +

ν1k
2cη
2

∥∇u∥2
]

≤k∗
0β(t)

2

[
∥ut∥2 + ℓ∥∇u∥2

]
≤ k∗

0β(t)E(t),

where k∗
0 = max{ν2, ν1

ℓ
k2cη} and ν2 = ν2(ωn, ν1). Therefore, we obtain (3.2). □

The following lemma will be useful in the proof of the main result.

Lemma 3.2. Let u be a solution of problem (1.4). Suppose that the assumptions
(A2) and (A3) hold. Then the functional

M(t) :=

∫
Rn

uut dx
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satisfies the following estimate:

[ρ(t)M(t)]′ ≤ρ(t)∥ut∥2 − ρ(t)
(
ℓ− [1 + k2]

2δ

)
∥∇u∥2

+
δ

2
ρ(t)α

L
(t)

∫
Rn

b(t, x)|ut|2dx+
λδ

2
ρ(t)(µgr ◦ ∇u)

− ρ(t)∥u∥p+1
p+1 + ρ′(t)M(t).

(3.3)

Proof. Differentiating M(t) and using (1.4), we obtain

M ′(t) =∥ut∥2 − ∥∇u∥2 +
∫ t

0

g(t− s)

∫
Rn

∇u(s)∇u(t)dxds

−
∫
Rn

b(t, x)utudx− ∥u∥p+1
p+1.

(3.4)

Multiplying this later inequality by ρ(t) gives

[ρ(t)M(t)]′ =ρ(t)∥ut∥2 − ρ(t)∥∇u∥2 + ρ(t)

∫ t

0

g(t− s)

∫
Rn

∇u(s)∇u(t)dxds

− ρ(t)

∫
Rn

b(t, x)utudx− ρ(t)∥u∥p+1
p+1 + ρ′(t)M(t).

(3.5)
For the third term on the right-hand side of (3.5), using Young’s inequality, we
get ∫ t

0

g(t− s)

∫
Rn

∇u(s)∇u(t)dxds

≤
∫ t

0

g(t− s)

∫
Rn

|∇u(s)−∇u(t)||∇u(t)|dxds+
∫ t

0

g(s)ds∥∇u∥2

≤ (
1

2δ
+

∫ t

0

g(s)ds)∥∇u∥2 + δ

2

∫ t

0

1

µ(s)
g2−r(s)ds

(
µgr ◦ ∇u).

(3.6)

For the fourth term on the right hand side of (3.5), using (2.1) and Hölder’s,
Young’s, and Sobolev’s inequalities, we have∫

Rn

b(t, x)utudx

≤
[∫

Rn

b(t, x)|ut|2dx
] 1

2

[[∫
Rn

|u|
2n
n−2dx

]n−2
n
[∫

B(L+t)

b(t, x)
n
2 dx

] 2
n

] 1
2

≤ δ

2
α

L
(t)

∫
Rn

b(t, x)|ut|2dx+
k2

2δ
∥∇u∥2.

(3.7)

Substituting the estimates (3.6)–(3.7) into (3.5) gives

[ρ(t)M(t)]′ ≤ρ(t)∥ut∥2 − ρ(t)
(
ℓ− [1 + k2]

2δ

)
∥∇u∥2 + δ

2
ρ(t)α

L
(t)

∫
Rn

b(t, x)|ut|2dx

+
λδ

2
ρ(t)(µgr ◦ ∇u)− ρ(t)∥u∥p+1

p+1 + ρ′(t)M(t),
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where
∫ t

0
g(s)ds ≤

∫∞
0

g(s)ds = 1− ℓ and
∫ t

0
g2−r(s)
µ(s)

ds ≤
∫∞
0

g2−r(s)
µ(s)

ds < λ. □

We now present the main result on decay of the energy.

Theorem 3.3. Suppose that the assumptions (A1)–(A6) hold, and let u0 ∈
H1(Rn) and u1 ∈ L2(Rn) with compact supports. Then for some cµ > 0 and
1 < r < 3

2
, the solution energy (2.2) satisfies for all t ≥ 0,

E(t) ≤C
[
1 +

∫ t

0

ρ(s)

β(s)
ds
] −1

2(r−1)
, if α

L
(t)µ2r−1(t) ≥ cµ, (3.8)

E(t) ≤C
[
1 +

∫ t

0

µ2r−1(s)ρ(s)

β(s)
ds
] −1

2(r−1)
, if α

L
(t)µ2r−1(t) < cµ. (3.9)

If, in addition, ∫ ∞

0

µ(s)E(t− s)ds < ∞,

then, the energy of solution to (1.4) satisfies

E(t) ≤C
[
1 +

∫ t

0

ρ(s)

β(s)
ds
] −1

r−1
, if α

L
(t)µr(t) ≥ cµ, (3.10)

E(t) ≤C
[
1 +

∫ t

0

µr(s)ρ(s)

β(s)
ds
] −1

r−1
, if α

L
(t)µr(t) < cµ. (3.11)

Proof. Using (2.3), we obtain

[β(t)E(t)]′ ≤ −β(t)

∫ t

0

b(t, x)|ut|2dx+
β(t)

2

(
g′ ◦ ∇u

)
+ β′(t)E(t). (3.12)

By combining (3.3) and (3.12), we get

L′(t) ≤−
[
β(t)− ν1δ

2
ρ(t)α

L
(t)

] ∫
Rn

b(t, x)|ut|2dx+ ν1ρ(t)∥ut∥2

− ν1ρ(t)
[
ℓ− [1 + k2]

2δ

]
∥∇u∥2 − ν1ρ(t)∥u∥p+1

p+1 +
β(t)

2

(
g′ ◦ ∇u

)
+

ν1λδ

2
ρ(t)(µgr ◦ ∇u) + β′(t)E(t) + ν1ρ

′(t)M(t).

(3.13)

The last two terms in the right-hand side of (3.13) can be estimated in terms of
L(t) and M(t), using (3.1), as follows:

β′(t)E(t) + ν1ρ
′(t)M(t) =

β′(t)

β(t)
L(t)− ν1

ρ(t)β′(t)

β(t)
M(t) + ν1ρ

′(t)M(t)

=
β′(t)

β(t)
L(t) + ν1β(t)

[ ρ(t)
β(t)

]′
M(t).

(3.14)
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Next, for the term ν1β(t)
[ ρ(t)
β(t)

]′
M(t), using Hölder’s, Young’s, and Sobolev’s in-

equalities and assumption (A6)(ii), we have

ν1β(t)
∣∣∣( ρ(t)

β(t)

)′∣∣∣ ∫
Rn

|utu|dx

≤ ν2δ

2
ρ(t)γ

L
(t)(L+ t)2∥ut∥2 +

ν1k
2

2δγ
L
(t)

[β(t)
ρ(t)

∣∣∣( ρ(t)
β(t)

)′∣∣∣]2ρ(t)∥∇u∥2

≤ ν2δ

2
ρ(t)α

L
(t)b

L
(t)∥ut∥2 +

ν1k
2c2

ρβ

2δ
ρ(t)∥∇u∥2.

(3.15)

Now, combining (3.13)–(3.15) and employing (A4) and (A5), we obtain

L′(t) ≤− ρ(t)
[[
1− δ(ν1 + ν2)

2

]
α

L
(t)b

L
(t)− ν1

]
∥ut∥2

− ν1ρ(t)
[
ℓ−

[1 + (1 + c2
ρβ
)k2]

2δ

]
∥∇u∥2 − ν1ρ(t)∥u∥p+1

p+1

+
ν1λδ

2
ρ(t)(µgr ◦ ∇u) +

ρ(t)α
L
(t)

2

(
g′ ◦ ∇u

)
+

β′(t)

β(t)
L(t).

(3.16)

At this point, we choose δ large enough such that

[1 + (1 + c2
ρβ
)k2]

2δ
< ℓ.

Therefore, using assumption (A2), the estimate (3.16) reduces to

L′(t) ≤− ρ(t)
[[
1− δ(ν1 + ν2)

2

]
cαb − ν1

]
∥ut∥2

− ν1ρ(t)
[
ℓ−

[1 + (1 + c2
ρβ
)k2]

2δ

]
∥∇u∥2 − ν1ρ(t)∥u∥p+1

p+1

+
ν1λδ

2
ρ(t)(µgr ◦ ∇u) +

ρ(t)α
L
(t)

2

(
g′ ◦ ∇u

)
+

β′(t)

β(t)
L(t).

(3.17)

We then choose ν1 and ν2 so small that
[
1 − δ(ν1+ν2)

2

]
cαb − ν1 > 0. Hence, there

exists a positive constant k∗ satisfying

[
1− δ(ν1 + ν2)

2

]
cαb − ν1 ≥

k∗

2
, ν1

[
ℓ−

[1 + (1 + c2
ρβ
)k2]

2δ

]
≥ k∗

2
,

and ν1 ≥
k∗

p+ 1
.

Hence, (3.17) yields

L′(t) ≤− k∗ρ(t)
[1
2

[
∥ut∥2 + ∥∇u∥22

]
+

1

p+ 1
∥u∥p+1

p+1

]
+

ν1λδ

2
ρ(t)(µgr ◦ ∇u)

+
ρ(t)α

L
(t)

2

(
g′ ◦ ∇u

)
+

β′(t)

β(t)
L(t).
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By the use of the integrating factor 1
β(t)

and assumption (A4), we get

[ 1

β(t)
L(t)

]′
≤− k∗ ρ(t)

β(t)

[1
2

[
∥ut∥2 + ∥∇u∥22

]
+

1

p+ 1
∥u∥p+1

p+1

]
+

ρ(t)

β(t)

[ν1λδ
2

]
(µgr ◦ ∇u)− 1

2

ρ(t)

β(t)
α

L
(t)

(
µgr ◦ ∇u

)
.

(3.18)

From Remark 2.7 and (2.2), we see that, for ϱ > 1,

Eϱ(t) ≤k1E
ϱ−1(0)

[1
2
∥ut∥2 +

1

2
∥∇u∥22 +

1

p+ 1
∥u∥p+1

p+1

]
+ k2

[
(g ◦ ∇u)

]ϱ
≤k1E

ϱ−1(0)
[1
2
∥ut∥2 +

1

2
∥∇u∥22 +

1

p+ 1
∥u∥p+1

p+1

]
+

k3
µϱ(t)

[∫ t

0

µ(s)g1−σ(s)∥∇u(t)−∇u(t− s)∥22ds
] ϱ(r−1)

[r−1+σ]

×
[(
µgr ◦ ∇u

)
(t)

]σϱ/[r−1+σ]

,

(3.19)

where k1, k2, k3 are positive constants. For the last term on the right side of
(3.19), we have∫ t

0

µ(s)g1−σ(s)∥∇u(t)−∇u(t− s)∥22ds

≤ C1

∫ t

0

µ(s)g1−σ(s)
[
∥∇u(t)∥22 + ∥∇u(t− s)∥22

]
ds

≤ C2

∫ t

0

µ(s)g1−σ(s)
[
E(t) + E(t− s)

]
ds

≤ 2C2

∫ t

0

µ(s)g1−σ(s)E(t− s)ds ≤ C3E(0)

∫ t

0

µ(s)g1−σ(s)ds, (3.20)

consequently, (3.19) takes the form

Eϱ(t) ≤k1E
ϱ−1(0)

[1
2
∥ut∥2 +

1

2
∥∇u∥22 +

1

p+ 1
∥u∥p+1

p+1

]
+

k4
µϱ(t)

E
ϱ(r−1)
[r−1+σ]

(0)
[∫ ∞

0

µ(s)g1−σ(s)ds
] ϱ(r−1)

[r−1+σ]
[(
µgr ◦ ∇u

)
(t)

] σϱ
[r−1+σ]

.

(3.21)

Choosing σ = 1
2

and ϱ = 2r − 1 in (3.21), then we have, for some k5, k6 > 0,

[1
2
∥ut∥2+

1

2
∥∇u∥22+

1

p+ 1
∥u∥p+1

p+1

]
≥ k5E

2r−1(t)− k6
µ2r−1(t)

(
µgr ◦∇u

)
(t). (3.22)
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Substituting (3.22) in (3.18), we obtain[ 1

β(t)
L(t)

]′
≤− k7

ρ(t)

β(t)
E2r−1(t)

+
ρ(t)

µ2r−1(t)β(t)

[ν1λδ
2

µ2r−1(0) + k8 −
1

2
α

L
(t)µ2r−1(t)

](
µgr ◦ ∇u

)
.

(3.23)

Case 1: If α
L
(t)µ2r−1(t) ≥ cµ and ν1λδ

2
µ2r−1(0)+k8 ≤ cµ

2
, then the estimate (3.23)

reduces to [ 1

β(t)
L(t)

]′
≤ −k7

ρ(t)

β(t)
E2r−1(t). (3.24)

So (3.2) and (3.24) give[ 1

β(t)
L(t)

]′
≤ −k9

ρ(t)

β(t)

[ 1

β(t)
L(t)

]2r−1

. (3.25)

Define G(t) by
G(t) :=

1

β(t)
L(t).

Then (3.25) reduces to

G′(t) ≤ −k9ρ(t)

β(t)
G2r−1(t). (3.26)

Integrating (3.26) over [0, t] and using the fact that G(t) is equivalent to E(t),
we obtain

E(t) ≤ C
[
1 +

∫ t

0

ρ(s)

β(s)
ds
] −1

2(r−1) for all t ≥ 0.

Case 2: If α
L
(t)µ2r−1(t) < cµ, then multiplying the estimate (3.23) by µ2r−1(t)

and using (2.3) together with assumption (A4) lead to[µ2r−1(t)

β(t)
L(t)

]′
≤ −k7

µ2r−1(t)ρ(t)

β(t)
E2r−1(t) + k10

ρ(t)

β(t)

(
µgr ◦ ∇u

)
≤ −k7

µ2r−1(t)ρ(t)

β(t)
E2r−1(t)− k11ρ(t)

β(t)
E ′(t).

(3.27)

Since E ′ ≤ 0 and we have from assumption (A5) that ρ(t)
β(t)

≤ cα0 where cα0 =

c(αL(0)), then rearranging (3.27), we get[µ2r−1(t)

β(t)
L(t) + k12E(t)

]′
≤ −k7ρ(t)µ

2r−1(t)

β(t)
E2r−1(t). (3.28)

Let
F (t) :=

µ2r−1(t)

β(t)
L(t) + k12E(t).

Recalling (3.2), it is easy to show that F (t) ∼ E(t). Hence, the estimate (3.28)
reduces to

F ′(t) ≤ −k13ρ(t)µ
2r−1(t)

β(t)
F 2r−1(t). (3.29)
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Integrating (3.29) over (0, t), and using the fact that F (t) ∼ E(t), we obtain the
following estimate:

E(t) ≤ C
[
1 +

∫ t

0

µ2r−1(s)ρ(s)

β(s)
ds
] −1

2(r−1) for all t ≥ 0.

Case 3: if
∫∞
0

µ(s)E(t− s)ds < ∞, then using (3.20) in (3.19), with σ = 1, we
obtain

Eϱ(t) ≤k1E
ϱ−1(0)

[1
2
∥ut∥2 +

1

2
∥∇u∥22 +

1

p+ 1
∥u∥p+1

p+1

]
+

k14
µϱ(t)

{∫ t

0

µ(s)E(t− s)ds

} ϱ(r−1)
r [(

µgr ◦ ∇u
)
(t)

]ϱ/r
.

Setting ϱ = r, we obtain[1
2
∥ut∥2 +

1

2
∥∇u∥22 +

1

p+ 1
∥u∥p+1

p+1

]
≥ k15E

r(t)− k16
µr(t)

(
µgr ◦ ∇u

)
(t). (3.30)

Substituting (3.30) in (3.18), we get[ 1

β(t)
L(t)

]′
≤− k17

ρ(t)

β(t)
Er(t)

+
ρ(t)

µr(t)β(t)

[ ν1λδ

2µ−r(0)
+ k18 −

1

2
α

L
(t)µr(t)

](
µgr ◦ ∇u

)
.

(3.31)

If α
L
(t)µr(t) ≥ cµ and ν1λδµr(0)

2
+ k18 ≤ cµ

2
, then the estimate (3.31) reduces to[ 1

β(t)
L(t)

]′
≤ −k17

ρ(t)

β(t)
Er(t).

Following the same argument as in Case 1, we have the estimate

E(t) ≤ C
[
1 +

∫ t

0

ρ(s)

β(s)
ds
] −1

r−1
, t ≥ 0.

Likewise, in the case where α
L
(t)µr(t) < cµ, multiplying the estimate (3.31) by

µr(t) and following the same argument as in Case 2, we obtain

E(t) ≤ C
[
1 +

∫ t

0

µr(s)ρ(s)

β(s)
ds
] −1

(r−1)
, t ≥ 0.

□

Remark 3.4. Our result extends the result of [20] to the case of non-necessarily
exponentially decaying relaxation functions.

Examples

Assume that b(t, x) ≈ C(1 + t)−m for m = 1. Then
ρ(t)

β(t)
≈ C(L+ t)−1 and αL(t) ≈ C(L+ t).
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(i) Let g(t) = ν(1 + t)−ω, where 0 < ν < 1 and ω > 2 are constants chosen
so that

∫∞
0

g(t) < 1. Then

g′(t) = −ων−1/ω
(
ν(1 + t)−ω

)1+ 1
ω = −ων−1/ωg1+

1
ω ,

with r = 1+ 1
ω
, µ(t) = ων−1/ω and there exists a positive constant C such

that µ1+ 2
ω (t)αL(t) ≥ C. Hence, from (3.8), the energy of the solution

satisfies

E(t) ≤C[1 +

∫ t

0

(1 + s)−1ds]
−ω
2

=C[1 + ln(1 + t)]
−ω
2 .

Since
∫∞
0

ϱν−1/ωE(t− s)ds < ∞, we have
E(t) ≤ C[1 + ln(1 + t)]−ω

(ii) Let g(t) = ν(e + t)−σ
(
ln(e + t)

)−ϱ, where ϱ > σ > 2 and ν > 0 are
constants chosen so that

∫∞
0

g(t) < 1. Then

g′(t) =− ν(e+ t)−(σ+1)
(
ϱ(ln(e+ t))−(ϱ+1) + σ(ln(e+ t))−ϱ

)
≤− νC(e+ t)−(σ+1)(ln(e+ t))−(ϱ+1)

=− ν
−1
ϱ C(e+ t)−1+σ

ϱ

(
ν(e+ t)−σ

(
ln(e+ t)

)−ϱ
)1+ 1

ϱ

=− ν
−1
ϱ C(e+ t)−1+σ

ϱ g1+
1
ϱ (t),

where C = min{σ, ϱ}, r = 1 + 1
ϱ
, and µ(t) = ν

−1
ϱ C(e + t)−1+σ

ϱ since

αL(t)µ
2r−1(t) ≈ C(L + t)

ϱ(σ−2)+2σ

ϱ2 ≥ CL
ϱ(σ−2)+2σ

ϱ2 and ϱ(σ − 2) + 2σ > 0.
Then, from (3.8), we have

E(t) ≤C[1 +

∫ t

0

(1 + s)−1ds]
−ϱ
2

=C[1 + ln(1 + t)]
−ϱ
2 .

Remark 3.5. Observe that for b(t, x) ≈ C(1 + t)−m, where 0 < m < 1, ρ(t)
β(t)

≈
(1 + s)−2+m, the energy behavior for |x| ≤ L+ t satisfies

E(t) ≤C[1 +

∫ t

0

(1 + s)−2+mds]
−1

2(r−1)

≤C
[
1− (1 + t)−1+m

] −1
2(r−1)

,

whenever µ2r−1(t)α
L
(t) ≥ C. Furthermore, within the ball (|x| ≤ L), β(t) ≈

constant and ρ(t) ≈ C(1 + t)−m, and in the first case; that is,
• when g(t) = ν(1 + t)−ω, µ(t) = ων−1/ω and µr(t)

ρ(t)
≈ C(1 + t)m > cµ. Then

from (3.8), we have
∫∞
0

µ(s)E(t−s)ds < ∞, and the energy decay satisfies
E(t) ≤C[1 + (1 + t)1−m]−ω.
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In the second case,
• g(t) = ν(e + t)−σ

(
ln(e + t)

)−ϱ, where ϱ > σ > 2 and ν > 0, µ(t) =

ν
−1
ϱ C(e + t)−1+σ

ϱ , and there exists a constant C such that µr(t)
ρ(t)

< C if
(σ − 1)ϱ+ σ < (1−m)ϱ2. Then, (3.11) gives the estimate

E(t) ≤ C[1 + (e+ t)
−m+

ϱ(σ−1)+σ

ϱ2 ]−ϱ

since
∫∞
0

µ(s)E(t− s)ds < ∞.
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