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Abstract. Using maximum instead of sum, a nonlinear Bleimann–Butzer–
Hahn operator of maximum product kind was introduced. The present paper
deals with the approximation processes for this operator. In a previous study,
it was indicated that the order of approximation of this operator to a function
f under the modulus is (x+1)

3
2
√
x√

n
and that it could not be improved except

for some subclasses of functions. Contrary to this claim, under some special
conditions, we show that a better order of approximation can be obtained with
the help of classical and weighted modulus of continuities.

1. Introduction

For f ∈ C[0,∞), the classical Bleimann–Butzer–Hahn (BBH) operators defined
as

Ln(f ;x) =
1

(1 + x)n

n∑
k=0

f

(
k

n− k + 1

)(
n

k

)
xk,

were introduced in [13].
The construction logic of nonlinear maximum product type operators using the

maximum instead of the sum is based on the studies [11, 12, 24] (for details, see
also [9]).
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There are some other remarkable articles like [5–8,10] that we will remind you
in chronological order that various maximum product type nonlinear operators
was introduced and that their approximation and rate of convergence properties
were investigated. Also, some statistical approximation properties of maximum
product type operators were given by Duman [18].

Especially, in [7], the approximation properties, rate of convergence, and shape
preserving properties of BBH operator of maximum product kind are examined.

At this point, let us recall the following well-known concept of classical modulus
of continuity:

ω (f, δ) = max {|f (x)− f (y)| : x, y ∈ I, |x− y| ≤ δ} . (1.1)

The order of approximation for the maximum product type BBH operator can
be found in [7] by means of the modulus of continuity as ω

(
f ; (1 + x)

3
2

√
x/n

)
.

Also, Bede et al. indicated that the order of approximation under the modulus
was (1 + x)

3
2

√
x/n, and it could not be improved except for some subclasses of

functions (see, for details, [7]).
Contrary to this claim, under some special conditions, we will show that a

better order of approximation can be obtained with the help of classical and
weighted modulus of continuities.

2. The concept of nonlinear maximum product operators

Before giving the main results, we will recall basic definitions and theorems
about nonlinear operators given in [9–11].

Over the set of R+, we consider the operations ∨(maximum) and ′′·′′ product.
Then (R+,∨, ·) has a semiring structure, and it is called a maximum product
algebra.

Let I ⊂ R be bounded or unbounded interval, and

CB+ = {f : I → R+ : f continuous and bounded on I } .

Let us take the general form of Ln : CB+(I) → CB+(I), as

Ln (f) (x) =
n∨

i=0

Kn (x, xi) f(xi) ,

or

Ln (f) (x) =
∞∨
i=0

Kn (x, xi) f(xi),

where n ∈ N, f ∈ CB+(I), Kn (·, xi) ∈ CB+ (I) and xi ∈ I, for all i. These op-
erators are nonlinear, positive operators, and moreover they satisfy the following
pseudo-linearity condition of the form

Ln (αf ∨ βg) (x) = αLn (f) (x)∨β Ln (g) (x) , for all α, β ∈ R+, f, g : I → R+.

In this section, we present some general results on these kinds of operators
which will be used later.
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Lemma 2.1 ([10]). Let I ⊂ R be a bounded or an unbounded interval, let

CB+ = {f : I → R+ : f continuous and bounded on I } ,

and let Ln : CB+(I) → CB+(I), n ∈ N be a sequence of operators satisfying the
following properties:

(i) If f, g ∈ CB+ (I) satisfy f ≤ g, then Ln (f) ≤ Ln (g) for all n ∈ N.
(ii) Ln (f + g) ≤ Ln (f) + Ln (g) for f, g ∈ CB+ (I) .

Then for all f, g ∈ CB+ (I) , n ∈ N, and x ∈ I, we have

|Ln (f) (x)− Ln (g) (x)| ≤ Ln (|f − g|) (x) .

Remark 2.2. (1) It is easy to see that the nonlinear BBH maximum product
operator satisfies the conditions (i) and (ii) of Lemma 2.1. In fact, instead
of (i), it also satisfies the following stronger condition:

Ln (f ∨ g) (x) = Ln (f) (x) ∨ Ln (g) (x) , f, g ∈ CB+(I).

Indeed, taking into consideration of the equality above, for f ≤ g, f, g ∈
CB+(I), it easily follows Ln (f) (x) ≤ Ln (g) (x).

(2) In addition to this, it is positive homogeneous; that is, Ln (λf) = λLn (f)
for all λ ≥ 0.

After this point, let us denote the monomials er(x) := xr, r ∈ N0. The first
three monomials are also called the Korovkin test functions.

Corollary 2.3 ([10]). Let Ln : CB+(I) → CB+(I), n ∈ N be a sequence of
operators satisfying the conditions (i), (ii) in Lemma 2.1 and in addition being
positive homogeneous. Then for all f ∈ CB+(I), n ∈ N, and x ∈ I, we have

|Ln (f) (x)− f(x)| ≤
[
1

δ
Ln (φx) (x) + Ln (e0) (x)

]
ω (f, δ)

+f (x) |Ln (e0) (x)− 1| ,

where ω (f, δ) is the classical modulus of continuity defined by (1.1), δ > 0, and
φx (t) = |t− x| for all t ∈ I, x ∈ I,. Moreover, if I is unbounded, then we suppose
that there exists Ln (φx) (x) ∈ R+ ∪ {∞} , for any x ∈ I, n ∈ N.

A consequence of Corollary 2.3, we have the following result.

Corollary 2.4 ([10]). Suppose that in addition to the conditions in Corollary 2.3,
the sequence (Ln)n satisfies Ln (e0) = e0, for all n ∈ N. Then for all f ∈ CB+ (I),
n ∈ N, and x ∈ I, we have

|Ln (f) (x)− f(x)| ≤
[
1 +

1

δ
Ln (φx) (x)

]
ω (f, δ) ,

where ω (f, δ) is the classical modulus of continuity defined by (1.1) and δ > 0.
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3. Nonlinear BBH operator of maximum product kind

As we reminded in the first part, in the maximum product kind operators, the
sum operator

∑
is replaced by the

∨
maximum operator.

So, the following maximum product type nonlinear BBH operator is introduced
by Bede, Coroianu, and Gal [7]:

H(M)
n (f)(x) =

n∨
k=0

(
n
k

)
xk f

(
k

n+1−k

)
n∨

k=0

(
n
k

)
xk

, (3.1)

where f ∈ C [0,∞), x ∈ [0,∞) , and n ∈ N.
In [7], the approximation and shape preserving properties of the operator

H
(M)
n (f)(x) were also examined.

Lemma 3.1 ([7]). For any arbitrary bounded function f : [0,∞) → [0,∞), the
max-product operator H

(M)
n (f)(x) is positive, bounded, continuous on [0,∞) and

satisfies H
(M)
n (f)(0) = f (0) .

Remark 3.2. It is clear that H
(M)
n (f)(x) satisfies all conditions in Lemma 2.1,

Corollaries 2.3 and 2.4 for I = [0,∞) .

4. Auxiliary results

By Lemma 3.1, we know that H
(M)
n (f)(0) − f (0) = 0 for all n, so in this

part, we will consider x > 0 in the notations, proofs, and statements of the all
approximation result.

For all k ∈ {0, 1, 2, . . . , n}, j ∈ {0, 1, 2, . . . , n− 1}, and x ∈
[

j
n−j+1

, j+1
n−j

]
or

j = n and x ∈ [0,∞) , Mk,n,j (x) and mk,n,j (x) were defined in [7] by

Mk,n,j (x) :=
sn,k (x)

∣∣ k
n+1−k

− x
∣∣

sn,j (x)
,

mk,n,j (x) :=
sn,k (x)

sn,j (x)
.

It is clear that if k ≥ j + 1, then we get

Mk,n,j (x) =
sn,k (x)

(
k

n+1−k
− x
)

sn,j (x)
,

and if k ≤ j, then we have

Mk,n,j (x) =
sn,k (x)

(
x− k

n+1−k

)
sn,j (x)

,

where sn,k (x) =
(
n
k

)
xk.

The main result of this part is Lemma 4.2, which is proved by the induction
method. Note that this proof is different from the proofs in [7].
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Lemma 4.1 ([7]). For all k ∈ {0, 1, 2, . . . , n}, j ∈ {0, 1, 2, . . . , n− 1}, and x ∈[
j

n−j+1
, j+1
n−j

]
or j = n and x ∈ [0,∞) , we have

mk,n,j(x) ≤ 1.

Lemma 4.2. (i) Let j ∈ {0, 1, 2, . . . , n− 1}, let x ∈
[

j
n−j+1

, j+1
n−j

]
, and let

α ∈ {2, 3, . . .} . If
k ∈ {j + 1, j + 2, . . . , n− 1}

is such that k − (k + 1)1/α ≥ j, then
Mk,n,j(x) ≥ Mk+1,n,j(x).

(ii) Let j ∈ {1, 2, . . . , n− 1}, let x ∈
[

j
n−j+1

, j+1
n−j

]
, and let α ∈ {2, 3, . . .} . If

k ∈ {1, 2, . . . , j} is such that k + (k)1/α ≤ j, then
Mk,n,j(x) ≥ Mk−1,n,j(x).

Proof. (i) After simple calculations, we obtain

Mk,n,j(x)

Mk+1,n,j(x)
=

sn,k (x)
(

k
n+1−k

− x
)

sn,j (x)

sn,j (x)

sn,k+1 (x)
(

k+1
n+1−k−1

− x
)

=

(
n
k

)
xk(

n
k+1

)
xk+1

k
n+1−k

− x
k+1
n−k

− x

=
n!

k! (n− k)!

(k + 1)! (n− k − 1)!

n!

1

x

k
n+1−k

− x
k+1
n−k

− x

=
k + 1

n− k

1

x

k
n+1−k

− x
k+1
n−k

− x
.

If we denote

gn,k(x) :=
1

x

k
n+1−k

− x
k+1
n−k

− x
,

then the function gn,k(x) is nonincreasing. Really, since

x ≤ j + 1

n− j
≤ k

n− j
,

we have

g′n,k(x) = − 1

x2

k
n+1−k

− x
k+1
n−k

− x
+

1

x

−
(
k+1
n−k

− x
)
+
(

k
n+1−k

− x
)(

k+1
n−k

− x
)2

= − 1

x2

k
n+1−k

− x
k+1
n−k

− x
+

1

x

−nk−n−k−1+k2+k+nk−k2

(n−k)(n+1−k)(
k+1
n−k

− x
)2

= − 1

x2

k
n+1−k

− x
k+1
n−k

− x
− 1

x

n+1
(n−k)(n+1−k)(
k+1
n−k

− x
)2 < 0.
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Since x ≤ j+1
n−j

, we obtain

gn,k(x) ≥ gn,k

(
j + 1

n− j

)
=

n− j

j + 1

k
n+1−k

− j+1
n−j

k+1
n−k

− j+1
n−j

for all x ∈
[

j
n+1−j

, j+1
n−j

]
. So we have

Mk,n,j(x)

Mk+1,n,j(x)
≥ k + 1

n− k

n− j

j + 1

k
n+1−k

− j+1
n−j

k+1
n−k

− j+1
n−j

=
k + 1

j + 1

n−j
n+1−k

k − (j + 1)

k + 1− n−k
n−j

(j + 1)
.

Let

hk,j (n) =
n−j

n+1−k
k − (j + 1)

k + 1− n−k
n−j

(j + 1)

=
nk−kj−nj−n−j−1+kj+k

n+1−k
nk+n−kj−j−nj−n+kj+k

n−j

=
n (k − j − 1) + k − j − 1

n+ 1− k

n− j

k (n+ 1)− j (n+ 1)

=
(k − j − 1) (n+ 1)

n+ 1− k

n− j

(n+ 1) (k − j)

=
k − j − 1

k − j

n− j

n+ 1− k
.

Then

h′
k,j (n) =

k − j − 1

k − j

(n+ 1− k)− (n− j)

(n+ 1− k)2

=
−1

k − j

(k − j − 1)2

(n+ 1− k)2
< 0,

so hk,j is nonincreasing, and we have

Mk,n,j(x)

Mk+1,n,j(x)
≥ lim

n→∞

k + 1

j + 1

n−j
n+1−k

k − (j + 1)

k + 1− n−k+1
n−j

(j + 1)

=
(k + 1) (k − j − 1)

(j + 1) (k − j)
.

Now, by the induction method, let us show that
k + 1

j + 1

k − j − 1

k − j
≥ 1 (4.1)

for k − (k + 1)1/α ≥ j.
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For α = 2, since the condition k−(k+1)1/2 ≥ j holds, we have (k − j)2 ≥ k+1.
So we get (k + 1) (k − j − 1) ≥ (j + 1) (k − j) and k2 − kj − 1 ≥ kj − j2 + k.
Therefore we obtain the inequality (4.1) for α = 2.

Now, we assume that the inequality (4.1) is provided for α − 1. It follows
k + 1

j + 1

k − j − 1

k − j
≥ 1 when k − (k + 1)1/(α−1) ≥ j. This means that

(k − j)α−1 ≥ k + 1 ⇒ (k − j)α ≥ (k + 1) (k − j) .

Since k ≥ j + 1, (k − j)α ≥ (k + 1) (k − j) ≥ k + 1 is true for α, hence, for
arbitrary α = 2, 3, . . . , the inequality (4.1) is provided when k − (k + 1)1/α ≥ j.

Since k ≥ j + 1, we have n−j
n−k

≥ 1. So we obtain
Mk,n,j(x)

Mk+1,n,j(x)
≥ k + 1

n− k

n− j

j + 1

k − j − 1

k − j
≥ 1.

(ii) After simple calculations, we get
Mk,n,j(x)

Mk−1,n,j(x)
=

sn,k (x)
(
x− k

n+1−k

)
sn,j (x)

sn,j (x)

sn,k−1 (x)
(
x− k−1

n+1−k

)
=

(
n
k

)
xk(

n
k−1

)
xk−1

k
n+1−k

− x
k−1

n+1−k+1
− x

=
n!

k! (n− k)!

(k − 1)! (n− k + 1)!

n!
x
x− k

n+1−k

x− k−1
n+2−k

=
n− k + 1

k
x
x− k

n+1−k

x− k−1
n+2−k

.

If we denote

g∗n,k(x) := x
x− k

n+1−k

x− k−1
n+2−k

,

then we see that the function g∗n,k(x) is nondecreasing. Really, since
k

n+ 1− k
− k − 1

n+ 2− k
>

k

n+ 2− k
− k − 1

n+ 2− k

=
1

n+ 2− k
> 0

and
x ≥ k

n+ 1− k
,

we have (
g∗n,k
)′
(x) =

x− k
n+1−k

x− k−1
n+2−k

+ x
x− k−1

n+2−k
− x+ k

n+1−k(
x− k−1

n+2−k

)2 > 0.

Using this property, since x ≥ j
n−j+1

, we obtain

g∗n,k(x) ≥ g∗n,k

(
j

n− j + 1

)
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=
j

n− j + 1

j
n−j+1

− k
n+1−k

j
n−j+1

− k−1
n+2−k

for all x ∈
[

j
n+1−j

, j+1
n−j

]
. We have

Mk,n,j(x)

Mk−1,n,j(x)
≥ n− k + 1

k

j

n− j + 1

j
n−j+1

− k
n+1−k

j
n−j+1

− k−1
n+2−k

=
j

k

n−k+1
n−j+1

j − k

j − n−j+1
n−k+2

(k − 1)
.

Let

h∗
k,j (n) =

n−k+1
n−j+1

j − k

j − n−j+1
n−k+2

(k − 1)

=

nj−kj+j−nk+kj−k
n−j+1

nj−kj+2j−nk+n+kj−j−k+1
n−k+2

=
j (n+ 1)− k (n+ 1)

n− j + 1

n− k + 2

n (j − k) + j − k + n+ 1

=
(n+ 1) (j − k)

n− j + 1

n− k + 2

(n+ 1) (j − k + 1)

=
j − k

j − k + 1

n− k + 2

n− j + 1
.

Then (
h∗
k,j

)′
(n) =

j − k

j − k + 1

n− j + 1− n+ k − 2

(n− j + 1)2

=
j − k

j − k + 1

k − j − 1

(n− j + 1)2

= − j − k

(n− j + 1)2
< 0,

and we obtain

Mk,n,j(x)

Mk−1,n,j(x)
≥ lim

n→∞

j

k

n−k+1
n−j+1

j − k

j − n−j+1
n−k+2

(k − 1)

=
j

k

j − k

j − k + 1
.

Now, as the same as proof of (i), using the induction method, let us show that
j

k

j − k

j − k + 1
≥ 1 (4.2)

holds for k + (k)1/α ≤ j.
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For α = 2, because of the condition k + (k)1/2 ≤ j, we get k ≤ (j − k)2 and
j (j − k) ≥ k (j − k + 1) . Thus we have j2−kj ≥ kj−k2+k, and so we see that
(4.2) is satisfied.

Now, we assume that (4.2) is correct for α − 1. Since j

k

j − k

j − k + 1
≥ 1 for

k + (k)1/(α−1) ≤ j, we obtain k ≤ (j − k)α−1 ⇒ k (j − k) ≤ (j − k)α .
Since k ≤ j−1, k ≤ k(j−k) ≤ (j − k)α is true for α > 1, the desired inequality

is provided for k + (k)1/α ≤ j. So we obtain
Mk,n,j(x)

Mk−1,n,j(x)
≥ n− k − 1

k

j

n+ 1− j

j − k

j − k + 1
≥ 1,

which gives the desired result. □
At this point, we also recall the following lemma.

Lemma 4.3 ([7]). Denoting sn,k (x) =
(
n
k

)
xk, we have

n∨
k=0

sn,k (x) = sn,j(x), for all x ∈
[

j

n− j + 1
,
j + 1

n− j

]
, j = 0, 1, . . . , n− 1

and
n∨

k=0

sn,k (x) = sn,n(x) if x ∈ [n,∞) .

5. Pointwise rate of convergence

Let us take x0 as fixed point on the interval [0,∞). The main aim of this
section is to obtain a better order of pointwise approximation for the operators
H

(M)
n (f)(x0) to the function f(x0) by means of the classical modulus of continu-

ity. According to the following theorem, we can say that the order of pointwise
approximation can be improved when the α is big enough. Moreover if we choose
α = 2, these approximation results turn out to be the results in [7].
Theorem 5.1. Let f : [0,∞) → R+ be continuous. Then for any fixed point x0

on the interval [0,∞) satisfying
(n+ 1)α−1 ≥ max

{
[2 (1 + x0)]

α−1 , 2α+2x0 (1 + x0)
α−1} ,

we have the following order of approximation for the operators (3.1) to the function
f by means of the modulus of continuity:∣∣H(M)

n (f)(x0)− f(x0)
∣∣ ≤ (1 + 8 (1 + x0)

2− 1
α x

1
α
0 ) ω

(
f ;

1

(n+ 1)1−
1
α

)
,

for all n ∈ N, where ω (f ; δ) is the classical modulus of continuity defined by (1.1)
and α = 2, 3, . . ..
Proof. Since nonlinear maximum product BBH operators satisfy the conditions
in Corollary 2.4, for any x0 ∈ [0,∞), using the properties of ω (f ; δ) , we get∣∣H(M)

n (f) (x0)− f (x0)
∣∣ ≤ [1 + 1

δn
H(M)

n (φx0) (x0)

]
ω (f, δ) , (5.1)
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where φx0 (t) = |t− x0| . At this point, let us denote

En (x0) := H(M)
n (φx0) (x0) =

n∨
k=0

sn,k (x0)
∣∣ k
n+1−k

− x0

∣∣
n∨

k=0

sn,k (x0)
, x0 ∈ [0,∞) .

Let x0 ∈
[

j
n−j+1

, j+1
n−j

]
, where j ∈ {0, 1, . . . , n− 1} is fixed, arbitrary. By Lemma

4.3 we easily obtain

En (x0) = max
k=0,1,...,n

{Mk,n,j (x0)} , x0 ∈
[

j

n− j + 1
,
j + 1

n− j

]
.

Firstly let us examine for j = 0, where x0 ∈
[
0, 1

n

]
and α = 2, 3, . . . .

For k = 0, we get

M0,n,0 (x0) = x0 = x
1
α
0 x

1− 1
α

0 ≤ x
1
α
0

n1− 1
α

.

Also, for k ≥ 1, we get

Mk,n,0 (x0) =

(
n

k

)
xk
0

(
k

n+ 1− k
− x0

)
≤

(
n

k

)
xk
0

k

n+ 1− k

=
n!

(n− k)!k!
xk
0

k

n+ 1− k

=
n!

(n+ 1− k)! (k − 1)!
xk
0

=

(
n

k − 1

)
xk−1
0 x0.

Since (1 + x0)
n = 1 +

∞∑
k=1

(
n
k

)
xk
0, then

(
n

k−1

)
xk−1
0 ≤ (1 + x0)

n . Using this result in

the last inequality and since x0 ≤ 1
n
, we obtain

Mk,n,0 (x0) ≤ (1 + x0)
n x0

≤
(
1 +

1

n

)n

x0

≤ e x
1
α
0 x

1− 1
α

0

≤ e
x

1
α
0

n1− 1
α

.

So, we find an upper estimate for any k = 0, 1, . . . , n, En (x0) ≤ e
x

1
α
0

n1− 1
α

when
j = 0.
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Now, it remains to find an upper estimate for each Mk,n,j (x0) when j =

1, 2, . . . , n− 1, is fixed, x0 ∈
[

j
n−j+1

, j+1
n−j

]
, k ∈ {0, 1, . . . , n} and α = 2, 3, . . ..

In fact, we will prove that

Mk,n,j (x0) ≤ 8
(1 + x0)

2− 1
α x

1
α
0

(n+ 1)1−
1
α

(5.2)

for all x0 ∈
[

j
n−j+1

, j+1
n−j

]
, k = 0, 1, 2, . . . , n, which directly will imply that

En (x0) ≤ 8
(1 + x0)

2− 1
α x

1
α
0

(n+ 1)1−
1
α

, for all n ∈ N.

Taking δn = 1

(n+1)1−
1
α

in (5.1), we obtain the estimate in the statement immedi-
ately.

So, in order to completing the proof of (5.2), we consider the following cases:
(i∗) k ∈ {j + 1, j + 2, . . . , n} with j ∈ {1, 2, . . . , n− 1} ,
(ii∗) k ∈ {0, 1, . . . , j} with j ∈ {1, 2, . . . , n− 1} .

Case (i∗). Subcase (a). Assume first that k − (k + 1)
1
α ≤ j. Then we get

Mk,n,j (x0) = mk,n,j (x0)

(
k

n+ 1− k
− x0

)
≤ k

n+ 1− k
− x0

≤ k

n+ 1− k
− j

n− j + 1

=
nk − kj + k − nj + kj − j

(n− j + 1) (n+ 1− k)

=
(k − j) (n+ 1)

(n− j + 1) (n+ 1− k)
.

Now, using k − (k + 1)
1
α ≤ j =⇒ k − j ≤ (k + 1)

1
α and −k ≥ − (k + 1)

1
α − j, we

have

Mk,n,j (x0) ≤ (k + 1)
1
α (n+ 1)

(n− j + 1) (n+ 1− k)

≤ (k + 1)
1
α (n+ 1)

(n− j + 1)
(
n+ 1− j − (k + 1)

1
α

) .
Taking into account that j

n−j+1
≤ x0, we have n+1

n−j+1
≤ 1+ x0. Then we obtain

Mk,n,j (x0) ≤ (1 + x0)
(k + 1)

1
α(

n+ 1− j − (k + 1)
1
α

) .
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We observe that k − (k + 1)
1
α ≤ j gives k + 1 ≤ 4j. In fact, if we assume that

k+1 > 4j, then 4j−1− (4j)
1
α < k− (k + 1)

1
α ≤ j, which implies 3j−1 < (4j)

1
α ,

and this is false if j ≥ 1. Also, since j
n−j+1

≤ x0, we have j ≤ (n+1)x0

1+x0
, and for

n+ 1 > j + (4j)
1
α , we get

Mk,n,j (x0) ≤ (1 + x0)
(4j)

1
α(

n+ 1− j − (4j)
1
α

)

≤ 4
1
α (1 + x0)

[
(n+1)x0

1+x

] 1
α

n+ 1− (n+1)x0

1+x0
− 4

1
α

[
(n+1)x0

1+x0

] 1
α

= 4
1
α (1 + x0)

1− 1
α

x
1
α
0 (n+ 1)

1
α

n+1
1+x0

− 4
1
α

[
(n+1)x0

1+x0

] 1
α

= 4
1
α (1 + x0)

1− 1
α

x
1
α
0 (n+ 1)

1
α (1 + x0)

n+ 1− 4
1
α (n+ 1)

1
α x

1
α
0 (1 + x0)

1− 1
α

= 4
1
α (1 + x0)

2− 1
α x

1
α
0

(n+ 1)
1
α

n+ 1− 4
1
α (n+ 1)

1
α x

1
α
0 (1 + x0)

1− 1
α

.

If (n+ 1)α−1 ≥ 22+αx0 (1 + x0)
α−1, then we observe that

(n+ 1)
1
α

n+ 1− 4
1
α (n+ 1)

1
α x

1
α
0 (1 + x0)

1− 1
α

≤ 2

(n+ 1)1−
1
α

.

Indeed,

n+ 1 ≤ 2n+ 2− 4
1
α (n+ 1)

1
α x

1
α
0 2 (1 + x0)

1− 1
α ,

4
1
α (n+ 1)

1
α x

1
α
0 2 (1 + x0)

1− 1
α ≤ n+ 1,

4
1
αx

1
α
0 2 (1 + x0)

1− 1
α ≤ (n+ 1)1−

1
α ,

2α4 x0 (1 + x0)
α−1 ≤ (n+ 1)α−1 .

Also, the same condition ensures n+ 1 > j + (4j)
1
α . Finally we obtain

Mk,n,j (x0) ≤ 4
1
α (1 + x0)

2− 1
α x

1
α
0

2

(n+ 1)1−
1
α

= 21+
2
α
(1 + x0)

2− 1
α x

1
α
0

(n+ 1)1−
1
α

,

for any (n+ 1)α−1 ≥ 22+αx0 (1 + x0)
α−1.
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Subcase (b). Assume now that k − (k + 1)
1
α > j. For the function g (x0) :=

x0 − (x0 + 1)
1
α , we have

dg(x)

dx

∣∣∣∣
x=x0

= g′ (x0) = 1−
(
1/α (x0 + 1)1−

1
α

)
> 0.

Thus we can say that the function g is nondecreasing on the interval [0,∞) .
It follows that there exists a maximum value k̄ ∈ {0, 1, 2, . . . , n} satisfying the
inequality k̄ −

(
k̄ + 1

) 1
α ≤ j. Then, for k1 = k̄ + 1, we have k1 − (k1 + 1)

1
α > j.

Also, we have k1 ≥ j + 1. Indeed, this is a consequence of the fact that g is
nondecreasing, and it is easy to see that f (j) = j − (x0 + 1)

1
α < j. Then we get

Mk̄+1,n,j (x0) = mk̄+1,n,j (x0)

(
k̄ + 1

n− k̄ + 1− 1
− x0

)
≤ k̄ + 1

n− k̄
− j

n− j + 1

=
nk̄ + n− jk̄ − j + k̄ + 1− nj + jk̄(

n− k̄
)
(n− j + 1)

=
(n+ 1)

(
k̄ − j + 1

)(
n− k̄

)
(n− j + 1)

.

Since n+1
n−j+1

≤ x0 + 1 and k̄ − j ≤
(
k̄ + 1

) 1
α , we have

Mk̄+1,n,j (x0) ≤
(x0 + 1)

(
k̄ − j + 1

)(
n− k̄

)
≤

(x0 + 1)
((

k̄ + 1
) 1

α + 1
)

(
n− k̄

)
≤

2 (x0 + 1)
(
k̄ + 1

) 1
α(

n− k̄
) .

Moreover, k1 ≤ 4j and similar to subcase a) and j ≤ x0(n+1)
1+x0

, we obtain

Mk̄+1,n,j (x0) ≤ 2 (x0 + 1) (4j)
1
α(

n− j − (4j)
1
α

)
≤

4
1
α2 (x0 + 1)

(
x0(n+1)
1+x0

) 1
α

n− x0(n+1)
1+x0

− 4
1
α

(
x0(n+1)
1+x0

) 1
α

=
21+

2
α (x0 + 1)2−

1
α x

1
α
0 (n+ 1)

1
α

n− x0 − 4
1
αx

1
α
0 (n+ 1)

1
α (x0 + 1)1−

1
α

.
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We observe that if (n+ 1)α−1 ≥ 2α+2x0 (1 + x0)
α−1, then

(n+ 1)
1
α

n− x0 − 4
1
αx

1
α
0 (n+ 1)

1
α (x0 + 1)1−

1
α

≤ 2

(n+ 1)1−
1
α

.

Indeed,
n+ 1 ≤ 2n− 2x0 − 4

1
αx

1
α
0 2 (n+ 1)

1
α (x0 + 1)1−

1
α ,

4
1
αx

1
α
0 2 (n+ 1)

1
α (x0 + 1)1−

1
α ≤ n− 1− 2x0 ≤ n+ 1,

4
1
αx

1
α2 (x0 + 1)1−

1
α ≤ (n+ 1)1−

1
α ,

2α4x0 (x0 + 1)α−1 ≤ (n+ 1)α−1 .

Using the last inequality, eventually we get

Mk̄+1,n,j (x) ≤ 21+
2
α2 (x+ 1)2−

1
α x

1
α

(n+ 1)1−
1
α

=
22+

2
α (x+ 1)2−

1
α x

1
α

(n+ 1)1−
1
α

.

By Lemma 4.2, (i), it follows that
Mk̄+1,n,j (x0) ≥ Mk̄+2,n,j (x0) ≥ · · · ≥ Mn,n,j (x0) .

Thus we have Mk,n,j (x0) ≤ 22+
2
α (x0+1)2−

1
α x

1
α
0

(n+1)1−
1
α

for any k ∈
{
k̄ + 1, k̄ + 2, . . . , n

}
.

Case (ii∗). Subcase (a). Assume first that k + k
1
α > j. Then we obtain

Mk,n,j (x0) = mk,n,j (x0)

(
x0 −

k

n+ 1− k

)
≤ x0 −

k

n+ 1− k

≤ j + 1

n− j
− k

n+ 1− k

=
nj + n+ j + 1− kj − k − nk + kj

(n− j) (n+ 1− k)

=
−k (n+ 1) + j (n+ 1) + n+ 1

(n− j) (n+ 1− k)

=
(n+ 1) (j − k + 1)

(n− j) (n+ 1− k)
.

Since j − k < k
1
α , j ≥ k, and j

n−j+1
≤ x0, we have j ≤ x0(n+1)

x0+1
. When we use

these inequalities, respectively, we could have

Mk,n,j (x0) ≤
(n+ 1)

(
k

1
α + 1

)
(n− j)

(
n+ 1− k

1
α − j

)
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≤
(n+ 1)

(
j

1
α + 1

)
(n− j)

(
n+ 1 + j

1
α − j

)
≤ 2 (n+ 1) j

1
α

(n− j)
(
n+ 1 + j

1
α − j

)
≤

2 (n+ 1)
(

x0(n+1)
x0+1

) 1
α

(
n− x0(n+1)

x0+1

)(
n+ 1 +

(
x0(n+1)
x0+1

) 1
α − x0(n+1)

x0+1

)
=

2 (n+ 1)1+
1
α x

1
α
0 (1 + x0)

− 1
α(

nx0+n−nx0−x0

x0+1

)(
nx0+x0+n+1−nx0−x0

x0+1
+

x
1
α
0 (n+1)

1
α (x0+1)1−

1
α

x0+1

)
=

2 (n+ 1)1+
1
α x

1
α
0 (1 + x0)

2− 1
α

(n− x0)
(
n+ 1 + x

1
α
0 (n+ 1)

1
α (x0 + 1)1−

1
α

) .
Now, we observe that

(n+ 1)1+
1
α(

n+ 1 + x
1
α
0 (n+ 1)

1
α (x0 + 1)1−

1
α

) ≤ (n+ 1)
1
α .

Indeed,

n+ 1 ≤ n+ 1 + x
1
α
0 (n+ 1)

1
α (x0 + 1)1−

1
α ,

0 ≤ x
1
α
0 (n+ 1)

1
α (x0 + 1)1−

1
α .

So, we have

Mk,n,j (x0) ≤ 2x
1
α
0 (1 + x0)

2− 1
α
(n+ 1)

1
α

(n− x0)
.

Also, if n ≥ 1 + 2x0, that is (n+ 1)α−1 ≥ [2 (1 + x0)]
α−1, then we have

(n+ 1)
1
α

(n− x0)
≤ 2

(n+ 1)1−
1
α

.

So we get
1 + 2x0 ≤ n.

Finally we obtain

Mk,n,j (x0) ≤ 2x
1
α
0 (1 + x0)

2− 1
α

2

(n+ 1)1−
1
α

= 4
x

1
α
0 (1 + x0)

2− 1
α

(n+ 1)1−
1
α

.
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Subcase (b). Assume now that k + k
1
α ≤ j. Let k̃ ∈ {0, 1, 2, . . . , n} be the

minimum value such that k̃+
(
k̃
) 1

α
> j. Then k2 = k̃− 1 satisfies k2 + (k2)

1
α < j

and

Mk̃−1,n,j (x0) = mk̃−1,n,j (x0)

(
x0 −

k̃ − 1

n− k̃ + 2

)

≤ x0 −
k̃ − 1

n− k̃ + 2

≤ j + 1

n− j
− k̃ − 1

n− k̃ + 2

=
nj + n− k̃j − k̃ + 2j + 2− nk̃ + n+ k̃j − j

(n− j)
(
n− k̃ + 2

)
=

(n+ 1)
(
j − k̃ + 2

)
(n− j)

(
n− k̃ + 2

)

≤
(n+ 1)

((
k̃
) 1

α
+ 2

)
(n− j)

(
n+

(
k̃
) 1

α − j + 2

)

≤
3 (n+ 1)

(
k̃
) 1

α

(n− j)

(
n+

(
k̃
) 1

α − j + 2

)
≤ 3 (n+ 1) (j)

1
α

(n− j)
(
n+ (j)

1
α − j

) .
Since j ≤ x0(n+1)

x0+1
, we have

Mk̃−1,n,j (x0) ≤
3 (n+ 1)

(
x0(n+1)
x0+1

) 1
α

(
n− x0(n+1)

x0+1

)(
n+

(
x0(n+1)
x0+1

) 1
α − x0(n+1)

x0+1

)
=

3 (n+ 1)1+
1
α x

1
α
0 (x0 + 1)−

1
α(

nx0+n−nx0−x0

x0+1

)(
nx0+n−nx0−x0

x0+1
+

x
1
α
0 (n+1)

1
α (x0+1)1−

1
α

x0+1

)
= 3x

1
α
0 (x0 + 1)2−

1
α

(n+ 1)1+
1
α

(n− x0)
(
n− x0 + x

1
α
0 (n+ 1)

1
α (x0 + 1)1−

1
α

) .
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After simple computations, we observe that

(n+ 1)1+
1
α

n− x0 + x
1
α
0 (n+ 1)

1
α (x0 + 1)1−

1
α

≤ (n+ 1)
1
α .

So we obtain

Mk̃−1,n,j (x0) ≤ 3x
1
α
0 (x0 + 1)2−

1
α
(n+ 1)

1
α

n− x0

.

Also, using (n+1)
1
α

n−x0
≤ 2

(n+1)1−
1
α

in the last inequality, we get

Mk̃−1,n,j (x0) ≤ 3x
1
α
0 (x0 + 1)2−

1
α

2

(n+ 1)1−
1
α

= 6
x

1
α
0 (x0 + 1)2−

1
α

(n+ 1)1−
1
α

.

In the light of Lemma 4.2(ii), it follows that
Mk̃−1,n,j (x0) ≥ Mk̃−2,n,j (x0) ≥ · · · ≥ M0,n,j (x0) .

Thus we obtain

Mk,n,j (x0) ≤ 6
x

1
α
0 (x0 + 1)2−

1
α

(n+ 1)1−
1
α

for any k ≤ j and x0 ∈
[

j
n−j+1

, j+1
n−j

]
.

So, taking into consideration the fact that

max


x

1
α
0

n1− 1
α
, e

x
1
α
0

n1− 1
α
, 21+

2
α
(1+x0)

2− 1
α x

1
α
0

(n+1)1−
1
α

, 22+
2
α
(x0+1)2−

1
α x

1
α
0

(n+1)1−
1
α

,

4
x

1
α
0 (1+x0)

2− 1
α

(n+1)1−
1
α

, 6
x

1
α
0 (x0+1)2−

1
α

(n+1)1−
1
α

 ≤ 8
x

1
α
0 (x0 + 1)2−

1
α

(n+ 1)1−
1
α

,

we have the desired result. □

6. Weighted rate of convergence

In the previous section, pointwise convergence properties of the operators were
given at a fixed point x0. Nevertheless, if we want to obtain a uniform approx-
imation order on infinite intervals, then we should use the weighted modulus of
continuities.

Before giving useful properties about these type of modulus of continuities, let
us recall the following spaces and norm (see, for instance, [20, 21]):

Bρ(R) = {f : R → R| a constant Mf depending on f exists
such that |f | ≤ Mfρ} ,

Cρ(R) = {f ∈ Bρ(R)| f continuous on R} ,
endowed with the norm

∥f∥ρ = sup
x≥0≥

|f(x)|
ρ(x)

.
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In order to obtain the rate of weighted approximation of the positive linear
operators defined on infinite intervals, various weighted modulus of continuities
are introduced. Some of them include the term h in the denominator of the
supremum expression. In the chronological order, let us refer to some related
papers as [1, 4, 16, 19, 22, 23, 25, 27].

In order to obtain weighted approximation properties of Szász–Mirakjan oper-
ators on R+, a weighted modulus was defined in [1].

In [23], the second author, jointly with Gadjieva, introduced the following
modulus of continuity:

Ω(f ; δ) = sup
0≤x,|h|≤δ

|f(x+ h)− f(x)|
(1 + h2)(1 + x2)

. (6.1)

There are some papers including rates of weighted approximation with the help
of Ω(f ; δ). (see, for instance, [3, 14, 17, 26]).

Then the second author [16] defined the following modulus of continuity:

ωρ(f ; δ) = sup
0≤x,|h|≤δ

|f(x+ h)− f(x)|
ρ(x+ h)

, (6.2)

where ρ(x) ≥ max(1, x).
In [16], a generalization of the Gadjiev–Ibragimov operators was introduced,

which includes many well-known operators, and its rate of weighted convergence
with the help of ωρ(f ; δ) defined in (6.2) was obtained.

Moreno [27] introduced another type of modulus of continuity in (6.2) as fol-
lows:

Ωα(f ; δ) = sup
0≤x,|h|≤δ

|f(x+ h)− f(x)|
1 + (x+ h)α

.

Gadjiev and Aral [22] defined the following modulus of continuity:

Ω̃ρ(f ; δ) = sup
x,t∈R+,|ρ(t)−ρ(x)|≤δ

|f(t)− f(x)|
(|ρ(t)− ρ(x)|+ 1) ρ(x)

,

where ρ(0) = 1 and infx≥0 ρ(x) ≥ 1.
By choosing α = 2, in the definition of Ωα(f ; δ), then we obtain Ω2(f ; δ) =

ωρ0(f ; δ) for ρ0(x) = 1 + x2, and if we choose α = 2 + λ in the definition of
Ωα(f ; δ), then we obtain

Ω̂ρλ(f ; δ) = sup
0≤x,|h|≤δ

|f(x+ h)− f(x)|
1 + (x+ h)2+λ

(see [2]).
Finally, Holhoş [25] defined a more general weighted modulus of continuity as

ωφ(f ; δ) = sup
0≤x≤y,|φ(y)−φ(x)|≤δ

|f(x)− f(y)|
ρ(x) + ρ(y)

such that, for φ(x) = x, this modulus of continuity is equivalent to Ω(f ; δ) defined
in (6.1).

Also, let C0
ρ(R) be the subspace of all functions in Cρ(R) such that lim|x|→∞

f(x)
ρ(x)

exists finitely.
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Note also that some remarkable properties about these type of modulus of
continuities can be found in [15].

In the light of these definitions, we can give the following theorem.

Theorem 6.1. Let f : [0,∞) → R+ be continuous. Then for all x ∈ [0,∞),
satisfying

(n+ 1)α−1 ≥ max
{
[2 (1 + x)]α−1 , 2α+2x (1 + x)α−1} ,

we have the following order of approximation for the operators (3.1) to the function
f by means of the weighted modulus of continuity defined in (6.2). Then for each
f ∈ C0

ρ0
(R+), we have∣∣∣H(M)

n (f)(x)− f(x)
∣∣∣

(ρ0(x))2
≤ (1 + 9x2)(1 + 8 (1 + x)2−

1
α x

1
α )

(1 + x2)2
ωρ0

(
f ;

1

(n+ 1)1−
1
α

)
,

(6.3)
for all n ∈ N, where ρ0(x) = 1 + x2 and α = 2, 3, . . ..

Proof. By using the properties of ωρ0(f ; δ), (see [27] ), we can write∣∣H(M)
n (f)(x)− f(x)

∣∣
≤
(
1 + (2x+H(M)

n (e1) (x))
2
)(1

δ
H(M)

n (φx) (x) + 1

)
ωρ0(f ; δ). (6.4)

In the proof of Theorem 5.1, under the condition
(n+ 1)α−1 ≥ max

{
[2 (1 + x)]α−1 , 2α+2x (1 + x)α−1} ,

we obtain

H(M)
n (φx) (x) ≤ 8

(1 + x)2−
1
α x

1
α

(n+ 1)1−
1
α

, for all n ∈ N. (6.5)

On the other hand, since

H(M)
n (e1) (x) =

x
n∨

k=1

n!
(n−k)!(k−1)!

xk−1 1
n+1−k

n∨
k=0

(
n
k

)
xk

=

x
n−1∨
k=0

(
n
k

)
xk

n∨
k=0

(
n
k

)
xk

,

we have
H(M)

n (e1) (x) ≤ x. (6.6)
So, using the inequalities (6.5) and (6.6) in (6.4) and choosing

δ =
1

(n+ 1)1−
1
α

,

the proof is completed. □
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This theorem allows us to express the following weighted uniform approxima-
tion result.

Theorem 6.2. Let f : [0,∞) → R+ be continuous. Then for all x ∈ [0,∞),
satisfying

(n+ 1)α−1 ≥ max
{
[2 (1 + x)]α−1 , 2α+2x (1 + x)α−1} ,

we have the following order of approximation for the operators (3.1) to the function
f by means of the weighted modulus of continuity defined in (6.2). Then for each
f ∈ C0

ρ0
(R+), we have

∥∥H(M)
n (f)(x)− f(x)

∥∥
ρ20(x)

≤ 170 ωρ0

(
f ;

1

(n+ 1)1−
1
α

)
, (6.7)

for all n ∈ N, where ρ0(x) = 1 + x2 and α = 2, 3, . . ..

Proof. By using the inequalities 1
1+x2 ≤ 1, x2

1+x2 ≤ 1, x
1
α

1+x2 ≤ 1, and x2− 1
α

1+x2 ≤ 1, we
have

(1 + 9x2)(1 + 8 (1 + x)2−
1
α x

1
α )

(1 + x2)2
≤ 170. (6.8)

If we use (6.8) in (6.3), then we obtain the desired result. □

Remark 6.3. In [7], the order of approximation for nonlinear max-product BBH
operators was found as 1/

√
n by means of modulus of continuity and the au-

thors claimed that this order of approximation cannot be improving except for
some subclasses of functions such as concave functions. So, Theorems 5.1, 6.1,
and 6.2 show that the orders of pointwise approximation, weighted approxima-
tion, and weighted uniform approximation are 1/ (n+ 1)1−

1
α . For big enough α,

1/ (n+ 1)1−
1
α tends to 1/(n + 1). As a result, since 1 − 1

α
≥ 1

2
for α = 2, 3, . . . ,

this selection of α improves the order of approximation.
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