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BOUNDEDNESS OF THE HARDY–LITTLEWOOD MAXIMAL
OPERATOR, FRACTIONAL INTEGRAL OPERATORS,

AND CALDERÓN–ZYGMUND OPERATORS ON
GENERALIZED WEIGHTED MORREY SPACES
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Abstract. In this paper, we investigate the boundedness of classical opera-
tors, namely the Hardy–Littlewood maximal operator, fractional integral op-
erators, and Calderón–Zygmund operators, on generalized weighted Morrey
spaces and generalized weighted weak Morrey spaces. We prove that each of
the three operators is bounded on these function spaces under some assump-
tions.

1. Introduction

We shall discuss the boundedness of three classical operators, namely the
Hardy–Littlewood maximal operator, fractional integral operators, and Calderón–
Zygmund operators, on generalized weighted Morrey spaces. Throughout this
paper, we denote by B(a, r) an open ball centered at a ∈ Rn with radius r > 0.
For a set E in Rn, we denote by Ec the complement of E. Moreover, if E is a
measurable set in Rn, then |E| denotes the Lebesgue measure of E. The Hardy–
Littlewood maximal operator M and fractional maximal operator Mα, where
0 ≤ α < n, are defined by

Mf(x) := sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy, x ∈ Rn,
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and
Mαf(x) := sup

r>0

1

|B(x, r)|1−α
n

∫
B(x,r)

|f(y)|dy, x ∈ Rn,

for locally integrable functions f on Rn. It is well known that M is bounded on
Lebesgue spaces Lp = Lp(Rn) for 1 < p ≤ ∞, and from L1 to the weak Lebesgue
space WL1 = WL1(Rn); see, for example, [11, 27, 29].

For 0 < α < n, we also know the Riesz potential or the fractional integral
operator Iα, which is defined by

Iαf(x) :=

∫
Rn

f(y)

|x− y|n−α
dy, x ∈ Rn,

for suitable functions f on Rn. The operator Iα is bounded from Lp to Lq for
1 < p < ∞ and 1

q
= 1

p
− α

n
; see, for example, [29]. Since from the definitions we

have
Mαf(x) ≤ CnIα(|f |)(x), x ∈ Rn, (1.1)

where Cn is the Lebesgue measure of the unit ball in Rn, it thus follows that the
operator Mα is also bounded from Lp to Lq for 1 < p <∞ and 1

q
= 1

p
− α

n
.

The next operator that we discuss is the Calderón–Zygmund operator. Let
T = TK be a linear operator from the Schwartz class S = S(Rn) to S ′, which is
L2−bounded and, for each f ∈ C∞

c (Rn), we have

Tf(x) :=

∫
Rn
K(x, y)f(y)dy, x /∈ supp(f),

where K = K(·, ·) is the standard kernel defined on Rn × Rn except for the
diagonal {(x, x) : x ∈ Rn} with the following properties: There exists a constant
A > 0 for which

|K(x, y)| ≤ A

|x− y|n
, x 6= y,

and, for some δ > 0,

|K(x, y)−K(x′, y)| ≤ A|x− x′|δ

(|x− y|+ |x′ − y|)n+δ
, |x−x′| ≤ 1

2
max(|x−y|, |x′−y|),

and

|K(x, y)−K(x, y′)| ≤ A|y − y′|δ

(|x− y|+ |x− y′|)n+δ
, |y−y′| ≤ 1

2
max(|x−y|, |x−y′|).

The operator T is called the Calderón–Zygmund operator, which was introduced
by Coifman and Meyer [4] in 1979. The operator is bounded on Lp for 1 < p <∞
and from L1 to WL1 [11].

Let us now discuss about Morrey spaces that we shall work on. For 1 ≤ p <∞
and 0 ≤ λ < n, the classical Morrey space Mp,λ = Mp,λ(Rn), equipped with the
following norm

‖f‖Mp,λ := sup
a∈Rn,r>0

1

rλ

(∫
B(a,r)

|f(x)|pdx
) 1

p

<∞,
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was first introduced in [18]. The same space may be denoted by Mp
q = Mp

q(Rn),
equipped with

‖f‖Mq
p
:= sup

a∈Rn,r>0

1

|B(a, r)|
1
p
− 1
q

(∫
B(a,r)

|f(x)|pdx
) 1

p

= sup
a∈Rn,r>0

1

|B(a, r)|
1
p
− 1
q

‖f‖Lp(B(a,r)),

where 1 ≤ p ≤ q < ∞, as used widely in, for examples, [13, 15, 27]. Note that if
we set p = q, then Mp

q = Lp. In companion with Mp
q , one may also define the

weak Morrey space WMp
q = WMp

q(Rn) to be the set of all measurable functions
f on Rn such that

‖f‖WMp
q
:= sup

a∈Rn,r>0

1

|B(a, r)|
1
p
− 1
q

‖f‖WLp(B(a,r)) <∞,

where ‖f‖WLp(B(a,r) := sup
γ>0

γ |{x ∈ B(a, r) : |f(x)| > γ}|1/p. The last two

definitions were used in, for example, [14].
According to [6], T is bounded on Mq

p for 1 < p ≤ q < ∞ and is bounded
from Mq

1 to WMq
1 for 1 ≤ q < ∞. In addition, M is bounded on Mq

p for
1 < p ≤ q <∞ and is bounded from Mq

1 to WMq
1 for 1 ≤ q <∞ [2]. Moreover,

Iα is bounded from one Morrey space to another under certain conditions [1], [25].
In [17, 21], the Morrey space Mp

q was generalized to Mp
ψ = Mp

ψ(Rn), which
consists of all locally integrable functions f on Rn such that the norm

‖f‖Mp
ψ
:= sup

a∈Rn

(
1

ψ(B(a, r))

∫
Rn

|f(x)|pdx
) 1

p

<∞.

Here ψ is a function from (0,Rn × ∞) to (0,∞) satisfying certain conditions.
Moreover, the weak generalized Morrey space WMp

ψ = WMp
ψ(Rn), where 1 <

p <∞ was defined as the set of all functions f for which there exists a constant
C > 0 such that

γp

ψ(B)
|{x ∈ B : |f(x)| > γ}| ≤ C

for every ball B = B(a, r) and γ > 0. We can see that if we set ψ(B(a, r)) =

|B(a, r)|1−
p
q , where 1 ≤ q < ∞, then Mp

ψ = Mp
q . Nakai [21] investigated the

sufficient conditions on the function ψ to ensure the boundedness of the operator
M,T , and Iα on these spaces. Similar results are obtained by Mizuhara [17],
where ψ was assumed to be a growth function satisfying doubling condition with
a doubling constant 1 ≤ D = D(ψ) < 2n.

Guliyev [12] defined generalized Morrey spaces Mp
ϕ = Mp

ϕ(Rn) with the norm

‖f‖Mp
ϕ
:= sup

a∈Rn,r>0

r−
n
p

ϕ(a, r)
‖f‖Lp(B(a,r))
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and also defined generalized weak Morrey spaces WMp
ϕ = WMp

ϕ(Rn) with the
norm

‖f‖WMp
ϕ
= sup

a∈Rn,r>0

r−
n
p

ϕ(a, r)
‖f‖WLp(B(a,r)).

In contrast with Nakai’s approach, Guliyev did not use the doubling condition to
prove the boundedness of the operators M and T on these spaces. Furthermore,
Guliyev also investigated the boundedness of M and T from Mp

ϕ1
to Mp

ϕ2
for

1 < p <∞, and from M1
ϕ1

to WM1
ϕ2

for p = 1, for some functions ϕ1 and ϕ2 on
Rn × (0,∞). To be precise, he obtained the following theorem.

Theorem 1.1 ([12]). Let 1 ≤ p < ∞ and let the functions ϕ1(a, r) and ϕ2(a, r)
satisfy ∫ ∞

r

ϕ1(a, t)
dt

t
≤ Cϕ2(a, r)

for every (a, r) ∈ Rn × (0,∞), where C > 0 does not depend on a and r. Then
M and T are bounded from Mp

ϕ1
to Mp

ϕ2
for 1 < p < ∞ and are bounded from

M1
ϕ1

to WM1
ϕ2

.

Let φ : (0,∞) → (0,∞) be a function and let ω be a weight, that is, a
nonnegative locally integrable function taking value (0,∞) almost everywhere on
Rn. For 0 < p < ∞, Nakamura [22] introduced the generalized weighted Morrey
space Mφ

p (ω) to be the set of all measurable functions f for which

‖f‖Mφ
p (ω) = sup

Q∈Q
φ(l(Q))

(
1

|Q|

∫
Q

|f(x)|pω(x)dx
) 1

p

<∞,

and the generalized weighted weak Morrey space, denoted by wMφ
p (ω), which is

equipped with ‖f‖wMφ
p (ω), where

‖f‖wMφ
p (ω) = sup

Q∈Q,λ>0
φ(l(Q))λ

(
1

|Q|

∫
Q

X{|f |>λ}(x)ω(x)dx

) 1
p

<∞.

Here Q is a set of all cubes in Rn that have sides parallel to the coordinate axis
and l(Q) denotes the side-length of Q ∈ Q. By the definition, notation, and the
assumption that the weight ω is in Muckenhoupt class Ap (defined in Section 2),
Nakamura obtained the following theorem.

Theorem 1.2 ([22, Theorems 1.3 and 1.10]). Let 1 ≤ p < ∞ and let φ ∈ Gp,
that is, φ is nondecreasing and the map t 7→ t−n/pφ(t) is nonincreasing. Assume
that ω ∈ Ap and there is a positive constant C such that for Q0 ∈ Q,

sup
Q∈Q,Q⊂Q0

φ(l(Q))

(
ω(Q)

|Q|

) 1
p

≤ Cφ(l(Q0))

(
ω(Q0)

|Q0|

) 1
p

,

where ω(Q) =
∫
Q
ω(x)dx for Q ∈ Q. Then M and T are bounded on Mφ

p (ω) for
1 < p <∞. Moreover, the operators are bounded from Mφ

1 (ω) to wMφ
1 (ω).
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In Theorem 1.2, the author used a function φ of one variable, which satisfies
some assumptions, on the generalized weighted Morrey spaces and the weak gen-
eralized weighted Morrey spaces. Meanwhile, Guliyev used two functions ϕ1 and
ϕ2 of two variables in his results, where the assumptions are different from those
in Nakamura’s.

In this paper, we use definitions for the generalized weighted Morrey spaces
and the weak generalized weighted Morrey space which are more general than the
definition introduced by Nakamura. Our aim is then to investigate the bound-
edness of M, Iα, and T on the generalized weighted Morrey spaces and the weak
generalized weighted Morrey spaces. Our results, which are presented in Sec-
tions 3-5, generalize the previous results obtained by Guliyev. These results are
also different from Nakamura’s results as we use more general definitions for the
generalized weighted Morrey spaces and the weak generalized weighted Morrey
spaces.

2. Ap weights and generalized weighted Morrey spaces

In this section, we discuss Ap weights, weighted Lebesgue spaces, and weighted
Morrey spaces. We also present the definition of generalized weighted Morrey
spaces, generalized weighted weak Morrey spaces, and some lemmas, which we
shall use to prove the main results about the boundedness of the three classical
operators on generalized weighted Morrey spaces and generalized weighted weak
Morrey spaces.

A weight w is a nonnegative locally integrable function on Rn taking values
in the interval (0,∞) almost everywhere. The weight class that we use in this
article is the Muckenhoupt class Ap (see, e.g., [10]).

Definition 2.1. For 1 < p <∞, we denote by Ap the set of all weights w on Rn

for which there exists a constant C > 0 such that(
1

|B(a, r)|

∫
B(a,r)

w(x)dx

)(
1

|B(a, r)|

∫
B(a,r)

w(x)−
1
p−1dx

)p−1

≤ C

for every ball B(a, r) in Rn. For p = 1, we denote by A1 the set of all weights w
for which there exists a constant C > 0 such that

1

|B(a, r)|

∫
B(a,r)

w(x)dx ≤ C‖w‖L∞(B(a,r))

for every ball B(a, r) in Rn.

Remark 2.2. The last inequality is equivalent to the following equation(
1

|B(a, r)|

∫
B(a,r)

w(x)dx)

)
· ‖w−1‖L∞(B(a,r)) ≤ C

for every ball B(a, r) in Rn.

Theorem 2.3 ([10]). For each 1 ≤ p < ∞ and w ∈ Ap, there exists C > 0 such
that

w(B)

w(E)
≤ C

(
|B|
|E|

)p
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for every ball B and measurable sets E ⊆ B, where w(B) =
∫
B
w(x)dx.

Associated to a weight w ∈ Ap with 1 ≤ p < ∞, the weighted Lebesgue space
Lp,w = Lp,w(Rn) is the set of all measurable functions f on Rn for which

‖f‖Lp,w :=

∫
Rn

|f(x)|pw(x)dx <∞.

In addition, WLp,w = WLp,w(Rn) is the weighted weak Lebesgue space that
consists of all measurable functions f on Rn for which

‖f‖WLp,w := sup
γ>0

γw({x ∈ Rn : |f(x)| > γ})
1
p <∞.

Note that if w is a constant function a.e., then we have that Lp,w = Lp and
WLp,w = WLp. We note from [10] that w ∈ Ap if and only if M is bounded on
Lp,w for 1 < p <∞ and w ∈ A1 if and only if M is bounded from L1,w to WL1,w.

Related to the fractional integral operator Iα, we have another class of weights
Ap,q.

Definition 2.4 ([20, 27]). Let 1 < p < q < ∞ and let p′ satisfy 1/p + 1/p′ = 1.
We denote by Ap,q the collection of all weight functions w satisfying(

1

|B(a, r)|

∫
B(a,r)

w(x)qdx

) 1
q
(

1

|B(a, r)|

∫
B(a,r)

w(x)−p
′
dx

) 1
p′

≤ C

for every (a, r) ∈ Rn× (0,∞), where C is a constant independent of a and r. For
p = 1 and q > 1, we denote by A1,q the collection of weight functions w for which
there exists a constant C > 0 such that for every (a, r) ∈ Rn × (0,∞),(

1

|B(a, r)|

∫
B(a,r)

w(x)qdx

)1/q

≤ C‖w‖L∞(B(a,r)).

One may observe that w ∈ Ap,q if and only if wq ∈ Aq/p′+1 for 1 ≤ p < q < ∞
(see [5]). Moreover, we have the following proposition.

Proposition 2.5 ([16, Theorem 3.2.2]). Let 1 ≤ p < q < ∞. If w ∈ Ap,q, then
wp ∈ Ap and wq ∈ Aq.

We rewrite the following results of Muckenhoupt [19] for M , Muckenhoupt and
Wheeden [20] for Iα, Coifman and Fefferman [3], Garcia-Cuerva and Rubio de
Francia [10], and Sawyer [28] for T on weighted Lebesgue spaces.

Theorem 2.6 ([10]). Let 1 < p < ∞. Then M is bounded on Lp,w if w ∈ Ap.
Moreover, M is bounded from L1,w to WL1,w if w ∈ A1.

Theorem 2.7 ([20]). Let 0 < α < n, 1 < p < n/α, 1/q = 1/p − α/n, and
w ∈ Ap,q. Then, the operator Iα is bounded from Lp,w

p to Lq,w
q . Moreover, if

w ∈ A1,p with 1/q = 1− α/n, then Iα is bounded from L1,w to WLq,w
q .

Theorem 2.8 ([3,10,28]). Let 1 ≤ p <∞. Then, T is bounded on Lp,w if w ∈ Ap
and 1 < p <∞. Moreover, T is bounded from L1,w to WL1,w if w ∈ A1.
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We now present the definition of the generalized weighted Morrey spaces and
the generalized weighted weak Morrey spaces, which will become the spaces of
our interest in this article.

Definition 2.9. Let 1 ≤ p <∞, let w ∈ Ap, and let ψ be a positive function on
Rn× (0,∞). The generalized weighted Morrey space Mp,w

ψ = Mp,w
ψ (Rn) is the set

of all functions f ∈ Lp,wloc such that

‖f‖Mp,w
ψ

= sup
a∈Rn,r>0

1

ψ(a, r)

(
1

w(B(a, r))

∫
B(a,r)

|f(x)|pw(x)dx
)1/p

= sup
a∈Rn,r>0

1

ψ(a, r)

1

w(B(a, r))
1
p

‖f‖Lp,w(B(a,r)) <∞.

Definition 2.10. Let 1 ≤ p < ∞, let w ∈ Ap, and let ψ be a positive function
defined on Rn × (0,∞). The generalized weighted weak Morrey space WMp,w

ψ =

WMp,w
ψ (Rn) is the set of all functions f ∈ Lp,wloc such that

‖f‖WMp,w
ψ

= sup
a∈Rn,r>0

sup
γ>0

1

ψ(a, r)

γ

w(B(a, r))
1
p

w({x ∈ Rn : |f(x)| > γ})
1
p

= sup
a∈Rn,r>0

1

ψ(a, r)

1

w(B(a, r))
1
p

‖f‖WLp,w(B(a,r)) <∞.

Remark 2.11. There are some other variations of generalized weighted Morrey
spaces and generalized weighted weak Morrey spaces and their specific conditions,
as well as their relations with some classical operators such as in [7–9, 23, 24].

With Definitions 2.9 and 2.10, we shall investigate the boundedness of the clas-
sical operators: the Hardy–Littlewood maximal operator, the fractional integral
operators, the fractional maximal operators, and the Calderón–Zygmund opera-
tors on those spaces in the next section. We end this section with lemmas, which
will be used later in proving our main theorems.

Lemma 2.12. Let φ be a nonnegative function on Rn× (0,∞) such that the map
r 7→ φ(a, r) is increasing for each a ∈ Rn. Let w ∈ Ap, where 1 ≤ p < ∞. Then,
for every ball B(a, r), we have

φ(a, r) ≤ Cw(B(a, r))
1
p sup
r<s<∞

1

w(B(a, s))
1
p

φ(a, s)

and

φ(a, r) ≤ Cw(B(a, r))
1
p

∫ ∞

r

1

w(B(a, s))
1
p

φ(a, s)
ds

s
,

where C > 0 is independent of the function φ, a ∈ Rn and r > 0.
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Proof. Let a ∈ Rn and let r > 0. By Theorem 2.3 and the fact that the map
s 7→ φ(a, s) is increasing for each a ∈ Rn, we have

w(B(a, r))
1
p sup
r<s<∞

1

w(B(a, s))
1
p

φ(a, s) = sup
r<s<∞

w(B(a, r))
1
p

w(B(a, s))
1
p

φ(a, s)

≥ C sup
r<s<∞

rn

sn
φ(a, r)

= Cφ(a, r).

Moreover,

w(B(a, r))
1
p

∫ ∞

r

1

w(B(a, s))
1
p

φ(a, s)
ds

s
=

∫ ∞

r

w(B(a, r))
1
p

w(B(a, s))
1
p

φ(a, s)
ds

s

≥
∫ ∞

r

C
|B(a, r)|
|B(a, s)|

φ(a, s)
ds

s

≥ C

∫ 2r

r

rn

(2r)n
φ(a, r)

ds

2r

= Cφ(a, r).

Therefore,

φ(a, r) ≤ Cw(B(a, r))
1
p sup
r<s<∞

1

w(B(a, s))
1
p

φ(a, s)

and
φ(a, r) ≤ Cw(B(a, r))

1
p

∫ ∞

r

1

w(B(a, s))
1
p

φ(a, s)
ds

s
,

which proves the lemma. □

Lemma 2.13. Let 1 ≤ p < ∞ and let w ∈ Ap. Then, there is a constant C > 0
such that for each (a, s) ∈ Rn × (0,∞),

1

|B(a, s)|

∫
B(a,s)

|f(y)|dy ≤ C

w(B(a, s))
1
p

‖f‖Lp,w(B(a,s)), f ∈ Lp,wloc .

Proof. First, we assume that 1 < p < ∞. Thus, by using Hölder’s inequality, we
have for every a ∈ Rn and s > 0,

1

|B(a, s)|

∫
B(a,s)

|f(y)|dy

=
w(B(a, s))

1
p

|B(a, s)|
1

w(B(a, s))
1
p

∫
B(a,s)

|f(y)|w(y)
1
p

w(y)
1
p

dy

≤ w(B(a, s))
1
p

|B(a, s)|
1

w(B(a, s))
1
p

(∫
B(a,s)

|f(y)|pw(y)dy
) 1

p
(∫

B(a,s)

w(y)−
p′
p dy

) 1
p′

.

From the previous inequality and using the assumption that w ∈ Ap, we have
the following inequality:
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1

|B(a, s)|

∫
B(a,s)

|f(y)|dy

=

(
1

|B(a, s)|

∫
B(a,s)

w(y)dy

) 1
p
(

1

|B(a, s)|

∫
B(a,s)

w(y)−
p′
p dy

) 1
p′

· 1

w(B(a, s))
1
p

(∫
B(a,s)

|f(y)|pw(y)dy
) 1

p

≤ C

w(B(a, s))
1
p

(∫
B(a,s)

|f(y)|pw(y)dy
) 1

p

=
C

w(B(a, s))
1
p

‖f‖Lp,w(B(a,s)).

This proves the case for 1 < p < ∞. For p = 1, by using Hölder’s inequality and
the assumption that w ∈ A1, we get

1

|B(a, s)|

∫
B(a,s)

|f(y)|dy

=
w(B(a, s))

|B(a, s)|
1

w(B(a, s))

∫
B(a,s)

|f(y)|w(y)
w(y)

dy

≤ w(B(a, s))

|B(a, s)|
1

w(B(a, s))

∫
B(a,s)

|f(y)|w(y)dy ‖w−1‖L∞(B(a,s))

=
1

|B(a, s)|

∫
B(a,s)

w(y)dy ‖w−1‖L∞(B(a,s)) ·
1

w(B(a, s))

∫
B(a,s)

|f(y)|w(y)dy

≤ C

w(B(a, s))

∫
B(a,s)

|f(y)|w(y)dy

=
C

w(B(a, s))
‖f‖L1,w(B(a,s)),

as desired. □
Corollary 2.14. For each 1 ≤ p < ∞ and w ∈ Ap, there exists C > 0 such that
for every a ∈ Rn and r > 0, we have∫

Rn\B(a,r)

|f(y)|
|a− y|n

dy ≤ C

∫ ∞

r

w(B(a, s))−
1
p‖f‖Lp,w(B(a,s))

ds

s
, f ∈ Lp,wloc .

Proof. Let a ∈ Rn and let r > 0. By Fubini’s theorem,∫
Rn\B(a,r)

f(y)

|a− y|n
dy =

∫
B(a,r)c

|f(y)|
∫ ∞

|a−y|

1

sn
ds

s
dy

=

∫ ∞

r

∫
B(a,s)\B(a,r)

|f(y)|dy 1

sn
ds

s

≤ C

∫ ∞

r

1

|B(a, s)|

∫
B(a,s)

|f(y)|dyds
s
.
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Hence, by Lemma 2.13,∫
Rn\B(a,r)

|f(y)|
|a− y|n

dy ≤ C

∫ ∞

r

1

|B(a, s)|

∫
B(a,s)

|f(y)|dyds
s

≤ C

∫ ∞

r

1

w(B(a, s))
1
p

‖f‖Lp,w(B(a,s))
ds

s
,

as claimed. □

3. Hardy–Littlewood maximal operator on generalized weighted
Morrey spaces

In this section, we prove the boundedness of the Hardy–Littlewood operator
M on generalized weighted Morrey spaces and generalized weighted weak Morrey
spaces. Keeping in mind Theorem 2.6, we have the following results.

Theorem 3.1. Let 1 ≤ p <∞ let w ∈ Ap. Then, for every a ∈ Rn and r > 0,

‖Mf‖Lp,w(B(a,r)) ≤ C1w(B(a, r))
1
p sup
r<t<∞

w(B(a, t))−
1
p‖f‖Lp,wB(a,t), f ∈ Lp,wloc ,

for 1 < p <∞, and

‖Mf‖WL1,w(B(a,r)) ≤ C2w(B(a, r)) sup
r<t<∞

w(B(a, t))−1‖f‖L1,wB(a,t), f ∈ L1,w
loc ,

where C1 and C2 are positive constants that do not depend on f, a, and r.

Proof. Let a ∈ Rn and let r > 0, and write f in the form of f := f1 + f2, where
f1 := f · XB(a,2r). Assume that 1 < p <∞. Since w ∈ Ap,M is bounded on Lp,w.
Thus,

‖Mf‖Lp,w(B(a,r)) ≤ ‖Mf1‖Lp,w(B((a,r)) + ‖Mf2‖Lp,w(B((a,r))

and
‖Mf1‖Lp,w(B(a,r)) ≤ ‖Mf1‖Lp,w ≤ C‖f1‖Lp,w ≤ C‖f‖Lp,w(B(a,2r)).

We can see that the map r 7→ ‖f‖Lp,w(B(a,2r)) is increasing for each a ∈ Rn. Then,
by Theorem 2.3 and Lemma 2.12,

‖Mf1‖Lp,w(B(a,r)) ≤ Cw(B(a, r))
1
p sup
r<t<∞

1

w(B(a, t))
1
p

‖f‖Lp,w(B(a,t)).

Let x ∈ B(a, r). If y ∈ B(x, t)∩B(a, 2r)c, then r = 2r− r ≤ |y− a|− |a−x| ≤
|y − x| < t. In other words,∫

B(x,t)∩B(a,2r)c
|f(y)|dy = 0, t ≤ r.

Moreover, |y − a| ≤ |y − x| + |x − a| ≤ t + r < 2t, which implies that B(x, t) ∩
B(a, 2r)c ⊆ B(a, 2t). It then follows that
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Mf2(x)

= sup
t>0

1

|B(x, t)|

∫
B(x,t)

|f2(y)|dy

= max

(
sup
t>r

1

|B(x, t)|

∫
B(x,t)

|f2(y)|dy, sup
0<t≤r

1

|B(x, t)|

∫
B(x,t)

|f2(y)|dy
)

≤ sup
t>r

1

|B(x, t)|

∫
B(x,t)∩B(a,2r)c

|f(y)|dy

≤ sup
t>r

1

|B(x, t)|

∫
B(a,2t)

|f(y)|dy

= C sup
t>2r

1

|B(a, t)|

∫
B(a,t)

|f(y)|dy

≤ C sup
t>r

1

w(B(a, t))
1
p

‖f‖Lp,w(B(a,t))

and

Mf2(x) ≤ C sup
r<t<∞

w(B(a, t))−
1
p‖f‖Lp,w(B(a,t)), x ∈ B(a, r). (3.1)

Hence,

‖Mf2‖Lp,w(B(a,r)) ≤ Cw(B(a, r))
1
p sup
r<t<∞

w(B(a, t))−
1
p‖f‖Lp,wB(a,t),

and so we conclude that

‖Mf‖Lp,w(B(a,r)) ≤ C1w(B(a, r))
1
p sup
r<t<∞

w(B(a, t))−
1
p‖f‖Lp,wB(a,t).

Assume now that p = 1. Thus,

‖Mf‖WL1,w(B(a,r)) ≤ 2
(
‖Mf1‖WL1,w(B(a,r) + ‖Mf2‖WL1,w(B(a,r))

)
.

Since M is bounded from L1,w to WL1,w, we have

‖Mf1‖WL1,w(B(a,r)) ≤ ‖Mf1‖WL1,w ≤ C‖f1‖L1,w = C‖f‖L1,w(B(a,2r)).

Theorem 2.3 and Lemma 2.12 then imply that

‖Mf1‖WL1,w(B(a,r)) ≤ Cw(B(a, r)) sup
r<t<∞

w(B(a, t))−1‖f‖L1,wB(a,t).

On the other hand, we can see that 3.1 also holds for p = 1, which implies the
following estimates.
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‖Mf2‖WL1,w(B(a,r)) = sup
γ>0

γw({x ∈ B(a, r) : |Mf2(x)| > γ})

= sup
γ>0

γ

∫
{x∈B(a,r):|Mf2(x)|>γ}

w(x)dx

≤
∫
B(a,r)

|Mf2(x)|w(x)dx

≤ C

∫
B(a,r)

sup
r<t<∞

w(B(a, t))−1‖f‖L1,w(B(a,t))w(x)dx

= Cw(B(a, r)) sup
r<t<∞

w(B(a, t))−1‖f‖L1,w(B(a,t)).

Therefore,
‖Mf‖WL1,w(B(a,r)) ≤ C2w(B(a, r)) sup

r<t<∞
w(B(a, t))−1‖f‖Lp,w(B(a,t)),

and this proves Theorem 3.1. □
The following theorem is one of our main results.

Theorem 3.2. Let 1 ≤ p < ∞, let w ∈ Ap, and let M be the Hardy–Littlewood
maximal operator. Suppose that ψ1 and ψ2 are two positive functions on Rn ×
(0,∞) satisfying

sup
r<t<∞

ψ1(a, t) ≤ Cψ2(a, r)

for every (a, r) ∈ Rn×(0,∞), where C is a positive constant that does not depend
on a and r. Then

(1) M is bounded from Mp,w
ψ1

to Mp,w
ψ2

for 1 < p <∞.

(2) M is bounded from M1,w
ψ1

to WM1,w
ψ2
.

Proof. First, assuming that 1 < p <∞, let f ∈ Mp,w
ψ1
. By using Theorem 3.1 and

the hypothesis about ψ1 and ψ2, we get

‖Mf‖Mp,w
ψ2

= sup
a∈Rn,r>0

1

ψ2(a, r)
w(B(a, r))−

1
p‖Mf‖Lp,w(B(a,r))

≤ C sup
a∈Rn,r>0

1

ψ2(a, r)
sup

r<t<∞
w(B(a, t))−

1
p‖f‖Lp,wB(a,t)

= C sup
a∈Rn,r>0

1

ψ2(a, r)
sup

r<t<∞

ψ1(a, t)

ψ1(a, t)
w(B(a, t))−

1
p‖f‖Lp,w(B(a,t))

≤ C sup
a∈Rn,r>0

1

ψ2(a, r)
sup

r<t<∞
ψ1(a, t)‖f‖Mp,w

ψ1

= C‖f‖Mp,w
ψ1

sup
a∈Rn,r>0

1

ψ2(a, r)
sup

r<t<∞
ψ1(a, t) ≤ C‖f‖Mp,w

ψ1
.

Therefore, we conclude that M is bounded from Mp,w
ψ1

to Mp,w
ψ2
. Next, we as-

sume that p = 1, and let f ∈ M1,w
ψ1
. By using Theorem 3.1 and the hypothesis

concerning ψ1 and ψ2, we get
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‖Mf‖WM1,w
ψ2

= sup
a∈Rn,r>0

1

ψ2(a, r)
w(B(a, r))−1‖Mf‖WL1,w(B(a,r))

≤ C sup
a∈Rn,r>0

1

ψ2(a, r)
sup

r<t<∞
w(B(a, t))−1‖f‖L1,wB(a,t)

≤ C sup
a∈Rn,r>0

1

ψ2(a, r)
sup

r<t<∞
ψ1(a, t)‖f‖M1,w

ψ1

= C‖f‖M1,w
ψ1

sup
a∈Rn,r>0

1

ψ2(a, r)
sup

r<t<∞
ψ1(a, t)

≤ C‖f‖M1,w
ψ1

.

Therefore, M is bounded from M1,w
ψ1

to WM1,w
ψ2
, and this completes the proof of

the theorem. □

Consider the function (a, t) 7→ ψ1(a, t) on Rn × (0,∞) by ψ1(a, t) = n, where
t = 1/n for some n ∈ N and ψ1(a, t) = te−t for otherwise. We also consider the
function (a, t) 7→ ψ2(a, t) by ψ2(a, t) = e−t for every a ∈ Rn and t > 0. We can
see that ∫ ∞

r

ψ1(a, t)
dt

t
≤ ψ2(a, r)

for every (a, r) ∈ Rn × (0,∞), but there is no C > 0 such that
sup

r<t<∞
ψ1(a, t) ≤ ψ2(a, r), (a, r) ∈ Rn × (0,∞).

Moreover, we also consider the constant functions (a, t) 7→ ψ1(a, t) and (a, t) 7→
ψ2(a, t), where ψ2(a, t) = 2ψ1(a, t) := 2 for a ∈ Rn and t > 0. It is easy to see
that

sup
r<t<∞

ψ1(a, t) ≤ ψ2(a, r), r > 0,

but there is no C > 0 such that∫ ∞

r

ψ1(a, t)
dt

t
≤ Cψ2(a, r), r > 0,

since the left-hand side is not convergent. Hence, we also investigate the condition∫ ∞

r

ψ1(a, t)
dt

t
≤ Cψ2(a, r), (a, r) ∈ Rn × (0,∞)

for the boundedness of the Hardy–Littlewood maximal operator and obtain the
following results.

Theorem 3.3. Let 1 ≤ p < ∞ and let w ∈ Ap. Suppose that ψ1 and ψ2 are
positive functions on Rn × (0,∞) satisfying∫ ∞

r

ψ1(a, t)
dt

t
≤ Cψ2(a, r)

for every (a, r) ∈ Rn×(0,∞), where C is a positive constant that does not depend
on a and r. Then
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(1) M is bounded from Mp,w
ψ1

to Mp,w
ψ2

for 1 < p <∞.

(2) M is bounded from M1,w
ψ1

to WM1,w
ψ2
.

Before we present the proof of Theorem 3.3, we prove the following theorem.

Theorem 3.4. Let 1 ≤ p < ∞ and let w ∈ Ap. Then, for every a ∈ Rn and
r > 0,

‖Mf‖Lp,w(B(a,r)) ≤ C1w(B(a, r))
1
p

∫ ∞

r

w(B(a, s))−
1
p‖f‖Lp,w(B(a,s))

ds

s
, f ∈ Lp,wloc ,

for 1 < p <∞, and

‖Mf‖WL1,w(B(a,r)) ≤ C2w(B(a, r))

∫ ∞

r

w(B(a, s))−1‖f‖L1,w(B(a,s))

ds

s
, f ∈ L1,w

loc ,

where C1 and C2 are positive constants that are independent of f, a, and r.

Proof. Given a ∈ Rn and r > 0, we write f := f1 + f2, where f1 := f · XB(a,2r).
Then, by Theorems 2.3 and 2.6 and Lemma 2.12,

‖Mf1‖Lp,w(B(a,r)) ≤ C‖f‖Lp,w(B(a,r))

≤ Cw(B(a, r))
1
p

∫ ∞

r

w(B(a, s))−
1
p‖f‖Lp,w(B(a,s))

ds

s

for 1 < p <∞. Meanwhile, for p = 1, we have
‖Mf1‖WL1,w(B(a,r)) ≤ C‖f‖L1,w(B(a,r))

≤ Cw(B(a, r))

∫ ∞

r

w(B(a, s))−1‖f‖L1,w(B(a,s))

ds

s
.

Regarding f2, for every x ∈ B(a, r), we have

Mf2(x) ≤ C sup
t>r

1

|B(a, 2t)|

∫
B(a,2t)

|f(y)|dy,

so that we get
Mf2(x) ≤ C sup

t>2r

1

|B(a, t)|

∫
B(a,t)

|f(y)|dy.

Hence,
Mf2(x) ≤ C sup

t>r

1

w(B(a, t))
1
p

‖f‖Lp,w(B(a,t))

for 1 ≤ p <∞. Therefore,

Mf2(x) ≤ C sup
t>r

∫ ∞

t

w(B(a, s))−
1
p‖f‖Lp,w(B(a,s))

ds

s

≤
∫ ∞

r

w(B(a, s))−
1
p‖f‖Lp,w(B(a,s))

ds

s
,

for every x ∈ B(a, r). It thus follows that

‖Mf2‖Lp,w(B(a,r)) ≤ C1w(B(a, r))
1
p

∫ ∞

r

w(B(a, s))−
1
p‖f‖Lp,w(B(a,s))

ds

s
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for 1 < p <∞ and

‖Mf2‖WL1,w(B(a,r)) ≤ C2w(B(a, r))

∫ ∞

r

w(B(a, s))−1‖f‖L1,w(B(a,s))

ds

s
.

This proves Theorem 3.4. □

Now, we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. First, we assume that 1 < p < ∞. Given f ∈ Mp,w
ψ1
. By

using Theorem 3.4 and the assumption concerning ψ1 and ψ2, we get

‖Mf‖Mp,w
ψ2

= sup
a∈Rn,r>0

1

ψ2(a, r)
w(B(a, r))−

1
p‖Mf‖Lp,w(B(a,r))

≤ C sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

r

w(B(a, s))−
1
p‖f‖Lp,w(B(a,s))

ds

s

= C sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

r

ψ1(a, s)

ψ1(a, s)
w(B(a, s))−

1
p‖f‖Lp,w(B(a,s))

ds

s

≤ C sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

r

ψ1(a, s)‖f‖Mp,w
ψ1

ds

s

= C‖f‖Mp,w
ψ1

sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

r

ψ1(a, s)
ds

s

≤ C‖f‖Mp,w
ψ1
.

Therefore, we conclude that M is bounded from Mp,w
ψ1

to Mp,w
ψ2
. Next, we as-

sume that p = 1. Given f ∈ M1,w
ψ1
. By using Theorem 3.4 and the assumption

concerning ψ1 and ψ2, we get

‖Mf‖WM1,w
ψ2

= sup
a∈Rn,r>0

1

ψ2(a, r)
w(B(a, r))−1‖Mf‖WL1,w(B(a,r))

≤ C sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

r

w(B(a, s))−1‖f‖L1,w(B(a,s))

ds

s

= C sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

r

ψ1(a, s)

ψ1(a, s)
w(B(a, s))−1‖f‖L1,w(B(a,s))

ds

s

≤ C sup
a∈Rn

1

ψ2(a, r)

∫ ∞

r

ψ1(a, s)‖f‖M1,w
ψ1

ds

s

= C‖f‖M1,w
ψ1

sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

r

ψ1(a, s)
ds

s

≤ C‖f‖M1,w
ψ1

.

Therefore, we conclude that M is bounded from M1,w
ψ1

to WM1,w
ψ2
. This completes

the proof of Theorem 3.3. □
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4. Fractional integral and fractional maximal operators on
generalized weighted Morrey spaces

In this section, we prove the boundedness of the fractional integral operator
Iα on generalized weighted Morrey spaces and generalized weighted weak Morrey
spaces. The results then imply the boundedness of the fractional maximal oper-
ators on those spaces. As an application of Theorem 2.7, we have the following
results.

Theorem 4.1. Let 0 < α < n, 1 ≤ p < n/α, 1/q = 1/p − α/n, and w ∈ Ap,q.
Then

‖Iαf‖Lq,wq (B(a,r)) ≤ C1w
q(B(a, r))

1
q

∫ ∞

r

wq(B(a, s))−
1
q ‖f‖Lp,wp (B(a,s))

ds

s
,

for every a ∈ Rn r > 0, and f ∈ Lp,wloc , where 1 < p <∞, and

‖Iαf‖WLq,w
q
(B(a,r)) ≤ C2w

q(B(a, r))
1
q

∫ ∞

r

wq(B(a, s))−
1
q ‖f‖L1,w(B(a,s))

ds

s
,

for every a ∈ Rn r > 0, and f ∈ L1,w
loc . The constants C1 and C2 are positive

constants that do not depend on f, a, and r.

Proof. Given a ∈ Rn and r > 0, we decompose the function f as f := f1 + f2,
where f1 := fXB(a,2r), such that

Iαf(x) = Iαf1(x) + Iαf2(x).

First, we assume that 1 < p < n/α. By Theorem 2.7, Iα is bounded from Lp,w
p

to Lq,wq . Hence,

‖Iαf1‖Lq,wq (B(a,r)) ≤ ‖Iαf1‖Lq,wq ≤ C‖f1‖Lp,wp = C‖f‖Lp,wp (B(a,2r)).

Since w ∈ Ap,q, it follows from Proposition 2.5 that wq ∈ Aq. We see that the
map r 7→ ‖f‖Lp,wp (B(a,2r)) is increasing for each a ∈ Rn, and so by Theorem 2.3
and Lemma 2.12, we have

‖Iαf1‖Lq,wq ≤ Cwq(B(a, r))
1
q

∫ ∞

r

wq(B(a, s))−
1
q ‖f‖Lp,wp (B(a,s))

ds

s
.

Next, we obtain the same estimate for Iαf2. For this, we observe that

|Iαf2(x)| ≤
∫
B(a,2r)c

|f(y)|
|x− y|n−α

dy.

The inequalities |a− x| < r and |x− y| ≥ 2r imply
1

2
|a− y| ≤ |x− y| ≤ 3

2
|a− y|.

Then

|Iαf2(x)| ≤ C

∫
B(a,2r)c

|f(y)|
|a− y|n−α

dy, x ∈ B(a, r).
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By Fubini’s theorem,

|Iαf2(x)| ≤ C

∫
B(a,2r)c

|f(y)|
|a− y|n−α

dy

= C

∫
B(a,2r)c

|f(y)|
∫ ∞

|a−y|

1

sn−α
ds

s
dy

= C

∫ ∞

r

∫
B(a,s)\B(a,r)

1

|B(a, s)|1−α
n

|f(y)|dyds
s

=

∫ ∞

r

1

|B(a, s)|1+
1
q
− 1
p

∫
B(a,s)

|f(y)|dyds
s
.

Next, by the Hölder’s inequality and the assumption that w ∈ Ap,q, we have
1

|B(a, s)|1+
1
q
− 1
p

∫
B(a,s)

|f(y)|dy

=
1

|B(a, s)|1+
1
q
− 1
p

∫
B(a,s)

|f(y)|w(y)
w(y)

dy

≤ 1

|B(a, s)|1+
1
q
− 1
p

(∫
B(a,s)

|f(y)|pw(y)pdy
) 1

p
(∫

B(a,s)

w(y)−p
′
dy

) 1
p′

= wq(B(a, s))−
1
q ‖f‖Lp,wp (B(a,s))

(
1

|B(a, s)|

∫
B(a,s)

w(y)qdy

) 1
q

·
(

1

|B(a, s)|

∫
B(a,s)

w(y)−p
′
dy

) 1
p′

≤ Cwq(B(a, s))−
1
q ‖f‖Lp,wp (B(a,s)).

Hence,

|Iαf2(x)| ≤ C

∫ ∞

r

wq(B(a, s))−
1
q ‖f‖Lp,wp (B(a,s))

ds

s
, x ∈ B(a, r),

and this implies that

‖Iαf2‖Lq,wq (B(a,r)) ≤ Cwq(B(a, r))
1
q

∫ ∞

r

wq(B(a, s))−
1
q ‖f‖Lp,wp (B(a,s))

ds

s
.

Therefore,

‖Iαf‖Lq,wq (B(a,r)) ≤ C1w
q(B(a, r))

1
q

∫ ∞

r

wq(B(a, s))−
1
q ‖f‖Lp,wp (B(a,s))

ds

s
.

Next, we assume p = 1. Note that

‖Iαf‖WLq,w
q
(B(a,r)) ≤ 2

(
‖Iαf1‖WLq,w

q
(B(a,r)) + ‖Iαf2‖WLq,w

q
(B(a,r))

)
.

By Theorem 2.7, we have

‖Iαf1‖WLq,w
q
(B(a,r)) ≤ ‖Iαf1‖WLq,w

q ≤ C‖Iαf1‖L1,w = C‖Iαf‖L1,w(B(a,2r)).
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Since w ∈ A1,q, it follows from Proposition 2.5 that wq ∈ Aq. By the same
argument as for the case p > 1, we obtain

‖Iαf1‖WLq,w
q
(B(a,r)) ≤ Cwq(B(a, r))

1
q

∫ ∞

r

wq(B(a, s))−
1
q ‖f‖L1,w(B(a,s))

ds

s
.

Since

|Iαf2(x)| ≤ C

∫
B(a,2r)c

|f(y)|
|a− y|n−α

dy, x ∈ B(a, r),

by Fubini’s theorem, the following estimates hold:

|Iαf2(x)| ≤ C

∫
Rn\B(a,2r)

|f(y)|
|a− y|n−α

dy

= C

∫
B(a,2r)c

|f(y)|
∫ ∞

|a−y|

1

sn−α
ds

s
dy

= C

∫ ∞

r

∫
B(a,s)\B(a,r)

1

|B(a, s)|1−α
n

|f(y)|dyds
s

=

∫ ∞

r

1

|B(a, s)|
1
q

∫
B(a,s)

|f(y)|dyds
s
.

By Hölder’s inequality combined with the assumption w ∈ A1,q and the fact that
q > 1, we obtain

1

|B(a, s)|
1
q

∫
B(a,s)

|f(y)|dy

≤ 1

|B(a, s)|
1
q

∫
B(a,s)

|f(y)|w(y)
w(y)

dy

≤ 1

|B(a, s)|
1
q

(∫
B(a,s)

|f(y)|w(y)dy
)
‖w−1‖L∞(B(a,s))

= wq(B(a, s))−
1
q ‖f‖L1,w(B(a,s))

(
1

|B(a, s)|

∫
B(a,s)

w(y)qdy

) 1
q

‖w−1‖L∞(B(a,s))

≤ Cwq(B(a, s))−
1
q ‖f‖L1,w(B(a,s)).

Hence, for x ∈ B(a, r),

|Iαf2(x)| ≤ C

∫ ∞

r

1

|B(a, s)|
1
q

∫
B(a,s)

|f(y)|dyds
s

≤ C

∫ ∞

r

wq(B(a, s))−
1
q ‖f‖L1,w(B(a,s))

ds

s
,
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and

‖Iαf2‖WLq,w
q
(B(a,r)) = sup

γ>0
γwq({x ∈ B(a, r) : |Iαf2(x)| > γ})

1
q

= sup
γ>0

γ

(∫
{x∈B(a,r):|Iαf2(x)|>γ}

w(x)qdx

) 1
q

≤ sup
γ>0

(∫
{x∈B(a,r):|Iαf2(x)|>γ}

|Iαf2(y)|qw(y)qdy
) 1

q

=

(∫
B(a,r)

|Iαf2(y)|qw(y)qdy
) 1

q

≤ Cwq(B(a, r))
1
q

∫ ∞

r

wq(B(a, s))−
1
q ‖f‖L1,w(B(a,s))

ds

s
.

Therefore,

‖Iαf‖WLq,w
q
(B(a,r)) ≤ C2w

q(B(a, r))
1
q

∫ ∞

r

wq(B(a, s))−
1
q ‖f‖L1,w(B(a,s))

ds

s
.

□

The following theorem is our main results concerning the boundedness of
the fractional integrals on generalized weighted Morrey spaces and generalized
weighted weak Morrey spaces.

Theorem 4.2. Let 0 < α < n, 1 ≤ p < n/α, 1/q = 1/p − α/n,w ∈ Ap,q, and
let Iα be the fractional integral operator. Suppose that ψ1 and ψ2 are nonnegative
functions on Rn × (0,∞) satisfying

∫ ∞

r

wp(B(a, t))
1
p

wq(B(a, t))
1
q

ψ1(a, t)
dt

t
≤ Cψ2(a, r)

for every (a, r) ∈ Rn×(0,∞), where C is a positive constant that does not depend
on a and r. Then

(1) Iα is bounded from Mp,wp

ψ1
to Mq,wq

ψ2
for 1 < p <∞.

(2) Iα is bounded from M1,w
ψ1

to WMq,wq

ψ2
.
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Proof. First, we assume that 1 < p < n/α, and let f ∈ Mp,wp

ψ1
. By using Theorem

4.1 and the assumption on ψ1 and ψ2, we get

‖Iαf‖Mq,wq

ψ2

= sup
a∈Rn,r>0

1

ψ2(a, r)

(
1

wq(B(a, r))

∫
B(a,r)

|Iαf(x)|qw(x)qdx
) 1

q

= sup
a∈Rn,r>0

1

ψ2(a, r)
wq(B(a, r))−

1
q ‖Iαf‖Lq,wq (B(a,r))

≤ C sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

r

wq(B(a, s))−
1
q ‖f‖Lp,wp (B(a,s))

ds

s

= C sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

r

ψ1(a, s)

ψ1(a, s)
wq(B(a, s))−

1
q ‖f‖Lp,wp (B(a,s))

ds

s

≤ C sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

r

ψ1(a, s)
wq(B(a, s))−

1
q

wp(B(a, s))−
1
p

‖f‖Mp,wp

ψ1

ds

s

= C‖f‖Mp,wp

ψ1

sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

t

ψ1(a, s)
wp(B(a, s))

1
p

wq(B(a, s))
1
q

ds

s

≤ C‖f‖Mp,wp

ψ1

.

Therefore, we conclude that Iα is bounded from Mp,wp

ψ1
to Mq,wq

ψ2
. Next, we assume

that p = 1, and let f ∈ M1,w
ψ1
. By using Theorem 4.1 and the assumption on ψ1

and ψ2, we get

‖Iαf‖WMq,wq

ψ2

= sup
a∈Rn,r>0

1

ψ2(a, r)
wq(B(a, r))−

1
q ‖Iαf‖WL1,w(B(a,r))

≤ C sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

r

wq(B(a, s))−
1
q ‖f‖L1,w(B(a,s))

ds

s

≤ C sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

r

ψ1(a, s)
wq(B(a, s))−

1
q

w(B(a, s))−1
‖f‖M1,w

ψ1

ds

s

= C‖f‖M1,w
ψ1

sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

t

ψ1(a, s)
w(B(a, s))

wq(B(a, s))
1
q

ds

s

≤ C‖f‖M1,w
ψ1

.

Hence, Iα is bounded from M1,w
ψ1

to WMq,wq

ψ2
, which completes the proof. □

The relation (1.1) and Theorem 4.2 imply the following corollary for Mα.

Corollary 4.3. Let 0 < α < n, 1 ≤ p < n/α, 1/q = 1/p − α/n, and w ∈ Ap,q.
Suppose that ψ1 and ψ2 are nonnegative functions on Rn × (0,∞) satisfying∫ ∞

r

wp(B(a, t))
1
p

wq(B(a, s))
1
q

ψ1(a, s)
dt

t
≤ Cψ2(a, r)
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for every (a, r) ∈ Rn×(0,∞), where C is a positive constant that does not depend
on a and r. Then, Mα is bounded from Mp,wp

ψ1
to Mq,wq

ψ2
for 1 < p < ∞ and Mα

is bounded from M1,w
ψ1

to WMq,wq

ψ2
.

5. Calderón–Zygmund operators on generalized weighted Morrey
spaces

In this section, we prove the boundedness of the Calderón–Zygmund operators
T = TK on generalized weighted Morrey spaces and generalized weighted weak
Morrey spaces. As stated earlier, we have Theorem 2.8 about the boundedness
of the Calderón–Zygmund operators on weighted Lebesgue spaces and weighted
weak Lebesgue spaces. This means that the Calderón–Zygmund operator, which
is initially defined on S, can be extended to Lp,w for 1 ≤ p < ∞ and w ∈ Ap.
In general, the generalized weighted Morrey space Mp,w

ψ is not equal to Lp,w as
in the case of the classical Morrey space. Therefore, it is a need to define the
Calderón–Zygmund T on Mp,w

ψ . To do so, we refer to the method as in [27].

Definition 5.1 ([27, Definition 95]). Let T be a Calderón-Zymgund operator.
Define T as

Tf(x) = T [f · X2B](x) +

∫
(2B)c

K(x, y)f(y)dy, x ∈ B, (5.1)

for f ∈ L1
loc for which the left-hand side converges for every ball B.

Remark 5.2. Using [11, Poposition 8.2.2], the operator T defined in the definition
is consistent to the original Calderón–Zygmund operator.

The definition is well-defined, in the sense that the definition of Tf is indepen-
dent of the choice of the ball B containing x [27, Proposition 399]. Moreover, the
right-hand side of (5.1) converges for every ball B using the properties of Kernel
K, Theorem 2.8, and Corollary 2.13. We use the definition 5.1 for Calderón–
Zygmund operator T on generalized weighted Morrey spaces. As the result, we
have the following theorem.

Theorem 5.3. Let 1 ≤ p < ∞, w ∈ Ap, and f ∈ Lp,wloc . Then, for every a ∈ Rn

and r > 0,

‖Tf‖Lp,w(B(a,r)) ≤ C1w(B(a, r))
1
p

∫ ∞

r

w(B(a, s))−
1
p‖f‖Lp,w(B(a,s))

ds

s
,

where 1 < p <∞, and

‖Tf‖WL1,w(B(a,r)) ≤ C2w(B(a, r))

∫ ∞

r

w(B(a, s))−1‖f‖L1,w(B(a,s))

ds

s
,

where C1 and C2 are positive constants that do not depend on f, a, and r.

Proof. Write f as f := f1 + f2, where f1 := f · XB(a,2r). As in the definition 5.1,
we have

Tf(x) = Tf1(x) +

∫
Rn
K(x, y)f2(y)dy := Tf1(x) + T2(f)(x), x ∈ B(a, r).
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First, we consider the case where 1 < p <∞. Then, since w ∈ Ap, we know that
T is bounded on Lp,w. Thus, for every a ∈ Rn and r > 0, we have

‖Tf‖Lp,w(B(a,r)) ≤ ‖Tf1‖Lp,w(B((a,r)) + ‖T2f‖Lp,w(B((a,r))

and
‖Tf1‖Lp,w(B(a,r)) ≤ ‖Tf1‖Lp,w ≤ C‖f1‖Lp,w ≤ C‖f‖Lp,w(B(a,2r)).

By Theorem 2.3 and Lemma 2.12,

‖Tf1‖Lp,w(B(a,r)) ≤ Cw(B(a, r))
1
p

∫ ∞

r

1

w(B(a, s))
1
p

‖f‖Lp,w(B(a,s))
ds

s
.

Note that for x ∈ B(a, r), we have

|T2f(x)| ≤ C

∫
B(a,2r)c

|f(y)|
|x− y|n

dy.

On other hand, the inequalities |a− x| < r and |x− y| ≥ 2r imply that
1

2
|a− y| ≤ |x− y| ≤ 3

2
|a− y|.

Then, by using Lemma 2.13,

|T2f(x)| ≤ C

∫
B(a,2r)c

|f(y)|
|a− y|n

dy ≤ C

∫ ∞

r

w(B(a, s))−
1
p‖f‖Lp,w(B(a,s))

ds

s
.

Hence,

‖T2f‖Lp,w(B(a,r)) ≤ Cw(B(a, r))
1
p

∫ ∞

r

w(B(a, s))−
1
p‖f‖Lp,w(B(a,s))

ds

s
.

Therefore, we conclude that

‖Tf‖Lp,w(B(a,r)) ≤ C1w(B(a, r))
1
p

∫ ∞

r

w(B(a, s))−
1
p‖f‖Lp,w(B(a,s))

ds

s
.

Next, for the case where p = 1, we have
‖Tf‖WL1,w(B(a,r)) ≤ 2(‖Tf1‖WL1,w(B(a,r)) + ‖T2f‖WL1,w(B(a,r)))

and
‖Tf1‖WL1,w(B(a,r)) ≤ ‖Tf1‖L1,w ≤ C‖f1‖L1,w ≤ C‖f‖L1,w(B(a,2r))

for every a ∈ Rn and r > 0. By the boundedness of T from L1,w to WL1,w, we
have

‖Tf1‖WL1,w(B(a,r)) ≤ ‖Tf1‖WL1,w ≤ C‖f1‖L1,w ≤ C‖f‖L1,w(B(a,2r)).

By Theorem 2.3 and Lemma 2.12,

‖Tf1‖WL1,w(B(a,r)) ≤ Cw(B(a, r))

∫ ∞

r

w(B(a, s))−1‖f‖L1,w(B(a,s))

ds

s
.

As we do before, for x ∈ B(a, r), we have

|T2f(x)| ≤ C

∫ ∞

r

w(B(a, s))−1‖f‖L1,w(B(a,s))

ds

s
.
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Thus,

‖T2f‖WL1,w(B(a,r)) = sup
γ>0

γw({x ∈ B(a, r) : |Tf2(x)| > γ})

≤
∫
B(a,r)

|Tf2(x)|w(x)dx

≤ Cw(B(a, r))

∫ ∞

r

w(B(a, s))−1‖f‖L1,w(B(a,s))

ds

s
.

Therefore,

‖Tf‖WL1,w(B(a,r)) ≤ C2w(B(a, r))

∫ ∞

r

w(B(a, s))−1‖f‖L1,w(B(a,s))

ds

s
,

and this proves Theorem 5.3. □

The following theorem is our main result concerning the boundedness of the
Calderon–Zygmund operators on generalized weighted Morrey spaces and gener-
alized weighted weak Morrey spaces.

Theorem 5.4. Let 1 ≤ p <∞, let w ∈ Ap, and let T be the Calderon–Zygmund
operator. Suppose that ψ1 and ψ2 are functions on Rn × (0,∞) satisfying∫ ∞

r

ψ1(a, t)
dt

t
≤ Cψ2(a, r)

for every (a, r) ∈ Rn×(0,∞), where C is a positive constant that does not depend
on a and r. Then

(1) T is bounded from Mp,w
ψ1

to Mp,w
ψ2

for 1 < p <∞.

(2) T is bounded from M1,w
ψ1

to WM1,w
ψ2
.

Proof. First, we assume that 1 < p < ∞. Let f ∈ Mp,w
ψ1
. By using Theorem 5.3

and the assumption concerning ψ1 and ψ2, we get

‖Tf‖Mp,w
ψ2

= sup
a∈Rn,r>0

1

ψ2(a, r)
w(B(a, r))−

1
p‖Tf‖Lp,w(B(a,r))

≤ C sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

r

w(B(a, s))−
1
p‖f‖Lp,w(B(a,s))

ds

s

≤ C sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

r

ψ1(a, s)‖f‖Mp,w
ψ1

ds

s

= C‖f‖Mp,w
ψ1

sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

r

ψ1(a, s)
ds

s
≤ C‖f‖Mp,w

ψ1
.
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Therefore, T is bounded from Mp,w
ψ1

to Mp,w
ψ2
. Next, we assume that p = 1, and

let f ∈ M1,w
ψ1
. By using Theorem 5.3 and the assumption on ψ1 and ψ2, we get

‖Tf‖WMp,w
ψ2

= sup
a∈Rn,r>0

1

ψ2(a, r)
w(B(a, r))−1‖Tf‖WL1,w(B(a,r))

≤ C sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

r

w(B(a, s))−1‖f‖L1,w(B(a,s))

ds

s

≤ C sup
a∈Rn

1

ψ2(a, r)

∫ ∞

r

ψ1(a, s)‖f‖M1,w
ψ1

ds

s

= C‖f‖M1,w
ψ1

sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

r

ψ1(a, s)
ds

s
≤ C‖f‖M1,w

ψ1

.

Therefore, T is bounded from M1,w
ψ1

to WM1,w
ψ2

, and this completes the proof. □

Remark 5.5. By using the results in [26], we can extend Theorem 5.4 by replac-
ing T with θ-type Calderon–Zygmund operators Tθ. The definition of θ-type
Calderon–Zygmund Operator Tθ may be found in [31]. Accordingly, one can
obtain a result that is more general than [30].
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