

SUBORDINATION PROBLEMS FOR CERTAIN MEROMORPHIC FUNCTIONS

H. ÖZLEM GÜNEY ${ }^{1 *}$ AND SHIGEYOSHI OWA ${ }^{2}$
Communicated by H.R. Ebrahimi Vishki

Abstract

Let Σ be the class of meromorphic functions f of the form $f(z)=$ $\frac{1}{z}+a_{0}+a_{1} z+\cdots$ that are analytic in the punctured disk \mathbb{U}_{0}. For $f \in \Sigma$, operators $D^{n} f$ with $n \in \mathbb{Z}=\{\ldots,-1,0,1, \ldots\}$ are introduced. Applying differential subordinations for analytic functions in the open unit disc \mathbb{U}, some interesting properties of $f \in \Sigma$ with $D^{n} f$ are discussed, and argument problems of $D^{n} f$ are given. Also, we consider some simple problems for our results.

1. Introduction

Let Σ be the class of meromorphic functions f of the form

$$
f(z)=\frac{1}{z}+\sum_{k=0}^{\infty} a_{k} z^{k}
$$

that are analytic in the punctured disk $\mathbb{U}_{0}=\{z \in \mathbb{C}: 0<|z|<1\}$. For $f \in \Sigma$, Güney, Breaz, and Owa [1] introduced

$$
\begin{gathered}
D^{0} f(z)=f(z), \\
D^{1} f(z)=D f(z)=\frac{1}{z}\left(z^{2} f(z)\right)^{\prime}=\frac{1}{z}+\sum_{k=0}^{\infty}(k+2) a_{k} z^{k}, \\
D^{2} f(z)=D(D f(z))=\frac{1}{z}+\sum_{k=0}^{\infty}(k+2)^{2} a_{k} z^{k},
\end{gathered}
$$

[^0]and
$$
D^{n} f(z)=D\left(D^{n-1} f(z)\right)=\frac{1}{z}+\sum_{k=0}^{\infty}(k+2)^{n} a_{k} z^{k}
$$
for $n \in \mathbb{N}=\{1,2,3, \ldots\}$. On the other hand, Güney, Breaz, and Owa [1] considered
\[

$$
\begin{gathered}
D^{-1} f(z)=\frac{1}{z^{2}} \int_{0}^{z} t f(t) d t=\frac{1}{z}+\sum_{k=0}^{\infty}\left(\frac{1}{k+2}\right) a_{k} z^{k} \\
D^{-2} f(z)=D^{-1}\left(D^{-1} f(z)\right)=\frac{1}{z}+\sum_{k=0}^{\infty}\left(\frac{1}{k+2}\right)^{2} a_{k} z^{k}
\end{gathered}
$$
\]

and

$$
D^{-n} f(z)=D^{-1}\left(D^{-n+1} f(z)\right)=\frac{1}{z}+\sum_{k=0}^{\infty}\left(\frac{1}{k+2}\right)^{n} a_{k} z^{k}
$$

for $n \in \mathbb{N}$. With the above definitions, we say that

$$
\begin{equation*}
D^{n} f(z)=\frac{1}{z}+\sum_{k=0}^{\infty}(k+2)^{n} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

for $n \in \mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$.
Let F and G be analytic in the open unit disc $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. Then F is said to be subordinate to G, written $F \prec G$, if there exists a function w in \mathbb{U} such that $w(0)=0,|w(z)|<1(z \in \mathbb{U})$, and $F(z)=G(w(z))$ for all $z \in \mathbb{U}$. If G is univalent in \mathbb{U}, then $F \prec G$ if and only if $F(0)=G(0)$ and $F(\mathbb{U}) \subseteq G(\mathbb{U})$ (see $[6,7])$. In the present paper, we would like to discuss some interesting problems for differential subordinations of our operator $D^{n} f$.

In this paper, we introduce the operators $D^{n} f$ with $n \in \mathbb{Z}=\{\ldots,-1,0,1, \ldots\}$ for $f \in \Sigma$. Applying differential subordinations for analytic functions in the open unit disc \mathbb{U}, we discuss some interesting properties of $f \in \Sigma$ with $D^{n} f$ and give argument problems of $D^{n} f$. Also, we consider some simple problems for our results.

2. Problems for differential subordinations

To discuss our problems, we first introduce the following lemma proved by Suffridge [8].

Lemma 2.1. If a function p is analytic in \mathbb{U} with $p(0)=1$ satisfying

$$
z p^{\prime}(z) \prec h(z) \quad(z \in \mathbb{U})
$$

for some starlike function h, then

$$
p(z) \prec \int_{0}^{z} \frac{h(t)}{t} d t \quad(z \in \mathbb{U}) .
$$

With the above lemma, we have the following theorem.

Theorem 2.2. Let $D^{n} f$ be given by (1.1) for $n \in \mathbb{Z}$. Then

$$
z D^{n+1} f(z)-z D^{n} f(z) \prec \frac{1+(1-2 \alpha) z}{1-z}
$$

satisfies

$$
z D^{n} f(z) \prec \log \left(\frac{z}{(1-z)^{2(1-\alpha)}}\right),
$$

where $0 \leq \alpha<1$.
Proof. We consider the functions $p(z)=z D^{n} f(z)$ and

$$
h(z)=\frac{1+(1-2 \alpha) z}{1-z}
$$

Then p is analytic in \mathbb{U} with $p(0)=1$, and h is starlike of order α in \mathbb{U}. It follows

$$
z p^{\prime}(z)=z\left(z D^{n} f(z)\right)^{\prime}=z D^{n+1} f(z)-z D^{n} f(z)
$$

and

$$
\int_{0}^{z} \frac{h(t)}{t} d t=\int_{0}^{z}\left(\frac{1}{t}-\frac{2(1-\alpha)}{1-t}\right) d t=\log \left(\frac{z}{(1-z)^{2(1-\alpha)}}\right)
$$

Therefore, applying Lemma 2.1, we prove the theorem.
Taking $\alpha=\frac{1}{2}$ in Theorem 2.2, we have the following corollary.
Corollary 2.3. Let $D^{n} f$ be given by (1.1) for $n \in \mathbb{Z}$. Then

$$
z D^{n+1} f(z)-z D^{n} f(z) \prec \frac{1}{1-z}
$$

satisfies

$$
z D^{n} f(z) \prec \log \left(\frac{z}{1-z}\right) .
$$

Making $n=0$ in Theorem 2.2, we have the following corollary.
Corollary 2.4. If $f \in \Sigma$ satisfies

$$
\begin{equation*}
z f(z)+z^{2} f^{\prime}(z) \prec \frac{1+(1-2 \alpha) z}{1-z}, \tag{2.1}
\end{equation*}
$$

then

$$
\begin{equation*}
z f(z) \prec \log \left(\frac{z}{(1-z)^{2(1-\alpha)}}\right), \tag{2.2}
\end{equation*}
$$

where $0 \leq \alpha<1$.
Example 2.5. We consider a function $f \in \Sigma$ given by

$$
f(z)=\frac{1}{z} \log \left(\frac{z}{(1-z)^{2(1-\alpha)}}\right) .
$$

Then

$$
z f(z)+z^{2} f^{\prime}(z)=1+2(1-\alpha) \frac{z}{1-z}=\frac{1+(1-2 \alpha) z}{1-z}
$$

Thus f satisfies (2.1) and (2.2).
In 1975, Hallenbeck and Ruscheweyh [3] gave the following lemma.

Lemma 2.6. If a function p is analytic in \mathbb{U} with $p(0)=1$ satisfying

$$
p(z)+z p^{\prime}(z) \prec h(z)
$$

for some convex function h, then

$$
p(z) \prec \frac{1}{z} \int_{0}^{z} \frac{h(t)}{t} d t .
$$

Applying the above lemma, we derive the following theorem.
Theorem 2.7. Let $D^{n} f$ be given by (1.1) for $n \in \mathbb{Z}$. Then

$$
\begin{equation*}
z D^{n+1} f(z) \prec \log \left(\frac{z}{(1-z)^{2(1-\alpha)}}\right) \tag{2.3}
\end{equation*}
$$

satisfies

$$
z D^{n} f(z) \prec \log \left(\frac{z}{(1-z)^{2(1-\alpha)}}\right)+\frac{2(1-\alpha)}{z} \log (1-z)+(1-2 \alpha),
$$

where $0 \leq \alpha<1$.
Proof. Consider a function p given by $p(z)=z D^{n} f(z)$. Then p is analytic in \mathbb{U} and $p(0)=1$. It follows that

$$
p(z)+z p^{\prime}(z)=z D^{n} f(z)+z\left(D^{n} f(z)+z\left(D^{n} f(z)\right)^{\prime}\right)=z D^{n+1} f(z)
$$

Furthermore, we know that

$$
h(z)=\log \left(\frac{z}{(1-z)^{2(1-\alpha)}}\right) \quad(z \in \mathbb{U})
$$

satisfies

$$
z h^{\prime}(z)=\frac{1+(1-2 \alpha) z}{1-z}
$$

Since $z h^{\prime}$ is starlike of order α in \mathbb{U}, h is convex in \mathbb{U}. Therefore, applying Lemma 2.6 , we say that if f satisfies the subordination (2.3), then

$$
\begin{aligned}
z D^{n} f(z) & \prec \frac{1}{z} \int_{0}^{z}\left(\log \left(\frac{t}{(1-t)^{2(1-\alpha)}}\right)\right) d t \\
& =\frac{1}{z} \int_{0}^{z}(\log t-2(1-\alpha) \log (1-t)) d t \\
& =\log \left(\frac{z}{(1-z)^{2(1-\alpha)}}\right)+\frac{2(1-\alpha)}{z} \log (1-z)+(1-2 \alpha) \quad(z \in \mathbb{U})
\end{aligned}
$$

Taking $\alpha=\frac{1}{2}$ in Theorem 2.7, we have the following corollary.
Corollary 2.8. Let $D^{n} f$ be given by (1.1) for $n \in \mathbb{Z}$. Then

$$
z D^{n+1} f(z) \prec \log \left(\frac{z}{1-z}\right)
$$

satisfies

$$
z D^{n} f(z) \prec \log \left(\frac{z}{1-z}\right)+\frac{1}{z} \log (1-z)
$$

Next, we have the following theorem.
Theorem 2.9. Let $D^{n} f$ be given by (1.1) for $n \in \mathbb{Z}$. Then

$$
z D^{n+1} f(z) \prec \frac{1+z}{1-z}
$$

satisfies

$$
z D^{n} f(z) \prec \frac{2}{z} \log \left(\frac{1}{1-z}\right)-1 .
$$

Proof. We consider functions $p(z)=z D^{n} f(z)$ and

$$
h(z)=\frac{1+z}{1-z} .
$$

Then p is analytic in \mathbb{U} with $p(0)=1$, and h is a convex function in \mathbb{U}. Noting that

$$
\begin{aligned}
\frac{1}{z} \int_{0}^{z} h(t) d t & =\frac{1}{z} \int_{0}^{z} \frac{1+t}{1-t} d t \\
& =\frac{2}{z} \log \left(\frac{1}{1-z}\right)-1
\end{aligned}
$$

we completes the proof by Lemma 2.6.
Letting $n=0$ in Theorem 2.9, we have the following corollary.
Corollary 2.10. If $f \in \Sigma$ satisfies

$$
z\left(2 f(z)+z f^{\prime}(z)\right) \prec \frac{1+z}{1-z},
$$

then

$$
\begin{equation*}
z f(z) \prec \frac{2}{z} \log \left(\frac{1}{1-z}\right)-1 . \tag{2.4}
\end{equation*}
$$

Example 2.11. We consider a function f given by

$$
f(z)=\frac{1}{z^{2}}\left(2 \log \left(\frac{1}{1-z}\right)-z\right) .
$$

Then f satisfies the subordination (2.4). Also, we have

$$
z\left(2 f(z)+z f^{\prime}(z)\right)=\frac{1+z}{1-z} \quad(z \in \mathbb{U})
$$

Therefore, f is the function satisfying Corollary 2.10.

3. Applications of Miller and Mocanu lemma

We need to introduce the following lemma for differential subordinations by Miller and Mocanu [5].

Lemma 3.1. Let $\beta_{0}=1.21872 \ldots$ be the solution of $\beta \pi=\frac{3}{2} \pi-\tan ^{-1} \beta$ and let $\alpha=\alpha(\beta)=\beta+2 \tan ^{-1}\left(\frac{\beta}{\pi}\right)$ for $0<\beta<\beta_{0}$. If p is analytic in \mathbb{U} with $p(0)=1$, then

$$
p(z)+z p^{\prime}(z) \prec\left(\frac{1+z}{1-z}\right)^{\alpha}
$$

implies that

$$
p(z) \prec\left(\frac{1+z}{1-z}\right)^{\beta}
$$

Remark 3.2. If $\beta=1$ in Lemma 3.1, then $\alpha=\alpha(1)=\frac{3}{2}$. Thus Lemma 3.1 says that if p satisfies

$$
p(z)+z p^{\prime}(z) \prec\left(\frac{1+z}{1-z}\right)^{\frac{3}{2}},
$$

then

$$
p(z) \prec \frac{1+z}{1-z} .
$$

Viewing the proof of Lemma 3.1 done by Miller and Mocanu, we say the following result.
Lemma 3.3. Let $\beta_{0}=1.21872 \ldots$ be the solution of $\beta \pi=\frac{3}{2} \pi-\tan ^{-1} \beta$ and let $\alpha=\alpha(\beta)=\beta+2 \tan ^{-1}\left(\frac{\beta}{\pi}\right)$ for $0<\beta<\beta_{0}$. If p is analytic in \mathbb{U} with $p(0)=1$, then

$$
p(z)+z p^{\prime}(z) \prec\left(\frac{1+(1-2 \gamma) z}{1-z}\right)^{\alpha}
$$

implies that

$$
p(z) \prec\left(\frac{1+(1-2 \gamma) z}{1-z}\right)^{\beta},
$$

where $0 \leq \gamma<1$.
Remark 3.4. Let us take $\gamma=\frac{1}{2}$ in Lemma 3.3. If p satisfies

$$
p(z)+z p^{\prime}(z) \prec\left(\frac{1}{1-z}\right)^{\alpha},
$$

then

$$
p(z) \prec\left(\frac{1}{1-z}\right)^{\beta},
$$

where α and β are given in Lemma 3.3.
Theorem 3.5. Let $\beta_{0}=1.21872 \ldots$ be the solution of $\beta \pi=\frac{3}{2} \pi-\tan ^{-1} \beta$ and let $\alpha=\alpha(\beta)=\beta+2 \tan ^{-1}\left(\frac{\beta}{\pi}\right)$ for $0<\beta<\beta_{0}$. If p is analytic in \mathbb{U} with $p(0)=1$, then

$$
p(z)+z p^{\prime}(z) \prec \delta+(1-\delta)\left(\frac{1+(1-2 \gamma) z}{1-z}\right)^{\alpha}
$$

implies that

$$
p(z) \prec \delta+(1-\delta)\left(\frac{1+(1-2 \gamma) z}{1-z}\right)^{\beta}
$$

where $0 \leq \gamma<1$ and $0 \leq \delta<1$.

Proof. We consider a function F given by

$$
F(z)=\frac{p(z)-\delta}{1-\delta} \quad(z \in \mathbb{U})
$$

Then F is analytic in \mathbb{U} with $F(0)=1$ and

$$
z F^{\prime}(z)=\frac{z p^{\prime}(z)}{1-\delta}
$$

Using Lemma 3.3, we know that

$$
\begin{equation*}
F(z)+z F^{\prime}(z)=\frac{p(z)+z p^{\prime}(z)-\delta}{1-\delta} \prec\left(\frac{1+(1-2 \gamma) z}{1-z}\right)^{\alpha} \quad(z \in \mathbb{U}) \tag{3.1}
\end{equation*}
$$

implies that

$$
\begin{equation*}
F(z)=\frac{p(z)-\delta}{1-\delta} \prec\left(\frac{1+(1-2 \gamma) z}{1-z}\right)^{\beta} \tag{3.2}
\end{equation*}
$$

From the subordinations (3.1) and (3.2), we have

$$
p(z)+z p^{\prime}(z) \prec \delta+(1-\delta)\left(\frac{1+(1-2 \gamma) z}{1-z}\right)^{\alpha}
$$

implies that

$$
p(z) \prec \delta+(1-\delta)\left(\frac{1+(1-2 \gamma) z}{1-z}\right)^{\beta}
$$

Taking $\gamma=\frac{1}{2}$ in Theorem 3.5, we have the following corollary.
Corollary 3.6. Let α and β be defined in Theorem 3.5. If p is analytic in \mathbb{U} with $p(0)=1$, then

$$
p(z)+z p^{\prime}(z) \prec \delta+(1-\delta)\left(\frac{1}{1-z}\right)^{\alpha}
$$

implies that

$$
p(z) \prec \delta+(1-\delta)\left(\frac{1}{1-z}\right)^{\beta},
$$

where $0 \leq \delta<1$.
Remark 3.7. If we take $\gamma=0$ in Theorem 3.5, then we have the result proved by Güney,Breaz and Owa [2].

Corollary 3.8. Let $D^{n} f$ be given by (1.1) for $n \in \mathbb{Z}$. Let α and β be as in Theorem 3.5. If f satisfies

$$
z D^{n+1} f(z) \prec \delta+(1-\delta)\left(\frac{1+(1-2 \gamma) z}{1-z}\right)^{\alpha}
$$

then

$$
z D^{n} f(z) \prec \delta+(1-\delta)\left(\frac{1+(1-2 \gamma) z}{1-z}\right)^{\beta}
$$

where $0 \leq \gamma<1$ and $0 \leq \delta<1$.
Furthermore, taking $n=1$ in Corollary 3.8, we see the following corollary.

Corollary 3.9. Let α and β be as in Theorem 3.5. If $f \in \Sigma$ satisfies

$$
z\left(2 f(z)+z f^{\prime}(z)\right) \prec \delta+(1-\delta)\left(\frac{1+(1-2 \gamma) z}{1-z}\right)^{\alpha}
$$

then

$$
z f(z) \prec \delta+(1-\delta)\left(\frac{1+(1-2 \gamma) z}{1-z}\right)^{\beta}
$$

where $0 \leq \gamma<1$ and $0 \leq \delta<1$.
Letting $\beta=1$ in Theorem 3.5, we have the following corollary.
Corollary 3.10. If p is analytic in \mathbb{U} with $p(0)=1$, and

$$
p(z)+z p^{\prime}(z) \prec \delta+(1-\delta)\left(\frac{1+(1-2 \gamma) z}{1-z}\right)^{\frac{3}{2}}
$$

then

$$
p(z) \prec \frac{1+(1-2(\gamma+\delta-\gamma \delta)) z}{1-z}
$$

and

$$
\operatorname{Rep}(z)>\gamma+\delta-\gamma \delta \quad(z \in \mathbb{U})
$$

where $0 \leq \gamma<1$ and $0 \leq \delta<1$.
Taking $p(z)=z D^{n} f(z)$ in Corollary 3.10, we obtain the following corollary.
Corollary 3.11. Let $D^{n} f$ be given by (1.1) for $n \in \mathbb{Z}$. If $f \in \Sigma$ satisfies

$$
z D^{n+1} f(z) \prec \delta+(1-\delta)\left(\frac{1+(1-2 \gamma) z}{1-z}\right)^{\frac{3}{2}}
$$

then

$$
z D^{n} f(z) \prec \frac{1+(1-2(\gamma+\delta-\gamma \delta)) z}{1-z}
$$

and

$$
\operatorname{Re}\left(z D^{n} f(z)\right)>\gamma+\delta-\gamma \delta \quad(z \in \mathbb{U})
$$

where $0 \leq \gamma<1$ and $0 \leq \delta<1$.
Next, we introduce the following lemma due to Miller and Mocanu [6] (also, due to Jack [4]).

Lemma 3.12. Let w be analytic in \mathbb{U} with $w(0)=0$. If $|w(z)|$ attains its maximum value on the circle $|z|=r<1$ at a point $z_{0} \in \mathbb{U}$, then

$$
z_{0} w^{\prime}\left(z_{0}\right)=m w\left(z_{0}\right)
$$

and

$$
\operatorname{Re}\left(1+\frac{z_{0} w^{\prime \prime}\left(z_{0}\right)}{w^{\prime}\left(z_{0}\right)}\right) \geq m,
$$

where $m \geq 1$.

Theorem 3.13. Let $D^{n} f$ be given by (1.1) for $n \in \mathbb{Z}$. If $f \in \Sigma$ satisfies

$$
\begin{equation*}
z D^{n} f(z) \prec \frac{\alpha(1+z)}{\alpha+(2-\alpha) z} \tag{3.3}
\end{equation*}
$$

for some real $\alpha>1$, then

$$
\left|z D^{n} f(z)-\frac{\alpha}{2}\right|<\frac{\alpha}{2}
$$

This means that

$$
0<\operatorname{Re}\left(z D^{n} f(z)\right)<\alpha \quad(z \in \mathbb{U})
$$

Proof. We consider a function w defined by

$$
\begin{equation*}
z D^{n} f(z)=\frac{\alpha(1+w(z))}{\alpha+(2-\alpha) w(z)} \quad(z \in \mathbb{U}) \tag{3.4}
\end{equation*}
$$

Then w is analytic in \mathbb{U} with $w(0)=0$ and $|w(z)|<1$ by (3.3). It follows from (3.4) that

$$
|w(z)|=\left|\frac{\alpha\left(z D^{n} f(z)-1\right)}{\alpha-(2-\alpha) z D^{n} f(z)}\right|<1 \quad(z \in \mathbb{U})
$$

This gives us that

$$
2\left|z D^{n} f(z)\right|^{2}-\alpha\left(z D^{n} f(z)+\overline{z D^{n} f(z)}\right)<0 \quad(z \in \mathbb{U})
$$

and that

$$
\left|z D^{n} f(z)-\frac{\alpha}{2}\right|<\frac{\alpha}{2} \quad(z \in \mathbb{U})
$$

Taking $n=0$ in Theorem 3.13, we have the following result.
Corollary 3.14. If $f \in \Sigma$ satisfies

$$
z f(z) \prec \frac{\alpha(1+z)}{\alpha+(2-\alpha) z}
$$

for some real $\alpha>1$, then

$$
\left|z f(z)-\frac{\alpha}{2}\right|<\frac{\alpha}{2} .
$$

Theorem 3.15. Let $D^{n} f$ be given by (1.1) for $n \in \mathbb{Z}$. If $f \in \Sigma$ satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{D^{n+1} f(z)}{D^{n} f(z)}\right)<1+\frac{\alpha-1}{2 \delta} \quad(z \in \mathbb{U}) \tag{3.5}
\end{equation*}
$$

for some real $\alpha(1<\alpha \leq 2)$ or

$$
\begin{equation*}
\operatorname{Re}\left(\frac{D^{n+1} f(z)}{D^{n} f(z)}\right)<1+\frac{1}{2 \delta(\alpha-1)} \quad(z \in \mathbb{U}) \tag{3.6}
\end{equation*}
$$

for some real $\alpha(\alpha>2)$, then

$$
\begin{equation*}
\left|\left(z D^{n} f(z)\right)^{\delta}-\frac{\alpha}{2}\right|<\frac{\alpha}{2} \quad(z \in \mathbb{U}) \tag{3.7}
\end{equation*}
$$

where $0<\delta \leq 1$.

Proof. Let us consider a function w by

$$
\begin{equation*}
\left(z D^{n} f(z)\right)^{\delta}=\frac{\alpha(1+w(z))}{\alpha+(2-\alpha) w(z)} \quad(z \in \mathbb{U}) \tag{3.8}
\end{equation*}
$$

for some $0<\delta \leq 1$. Then we see that w is analytic in \mathbb{U} and $w(0)=0$. It follows from (3.8) that

$$
\frac{D^{n+1} f(z)}{D^{n} f(z)}-1=\frac{z w^{\prime}(z)}{\delta w(z)}\left(\frac{w(z)}{1+w(z)}-\frac{(2-\alpha) w(z)}{\alpha+(2-\alpha) w(z)}\right) .
$$

We suppose that there exists a point $z_{0} \in \mathbb{U}$ such that

$$
\max _{|z| \leq\left|z_{0}\right|}|w(z)|=\mid w\left(z_{0} \mid=1\right.
$$

Then, using Lemma 3.12, we say that

$$
z_{0} w^{\prime}\left(z_{0}\right)=m w\left(z_{0}\right) \quad(m \geq 1)
$$

and $w\left(z_{0}\right)=e^{i \theta}(0 \leq \theta<2 \pi)$. This implies that

$$
\begin{aligned}
\operatorname{Re}\left(\frac{D^{n+1} f\left(z_{0}\right)}{D^{n} f\left(z_{0}\right)}\right) & =1+\frac{m}{\delta}\left(\frac{e^{i \theta}}{1+e^{i \theta}}-\frac{(2-\alpha) e^{i \theta}}{\alpha+(2-\alpha) e^{i \theta}}\right) \\
& =1+\frac{m}{\delta}\left(\frac{1}{2}+\frac{(\alpha-2)(2-\alpha+\alpha \cos \theta)}{\alpha^{2}+(2-\alpha)^{2}+2 \alpha(2-\alpha) \cos \theta}\right)
\end{aligned}
$$

Let a function g be defined by

$$
g(t)=\frac{2-\alpha+\alpha t}{\alpha^{2}+(2-\alpha)^{2}+2 \alpha(2-\alpha) t} \quad(t=\cos \theta) .
$$

Then we have

$$
g^{\prime}(t)=\frac{4 \alpha(\alpha-1)}{\left(\alpha^{2}+(2-\alpha)^{2}+2 \alpha(2-\alpha) t\right)^{2}}>0
$$

for $\alpha>1$. Thus we obtain that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{D^{n+1} f\left(z_{0}\right)}{D^{n} f\left(z_{0}\right)}\right) \geq 1+\frac{m}{\delta}\left(\frac{1}{2}+\frac{\alpha-2}{2}\right) \geq 1+\frac{\alpha-1}{2 \delta} \tag{3.9}
\end{equation*}
$$

for $1<\alpha \leq 2$ and that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{D^{n+1} f\left(z_{0}\right)}{D^{n} f\left(z_{0}\right)}\right) \geq 1+\frac{m}{\delta}\left(\frac{1}{2}-\frac{\alpha-2}{2(\alpha-1)}\right) \geq 1+\frac{1}{2 \delta(\alpha-1)} \tag{3.10}
\end{equation*}
$$

for $\alpha>2$. The inequalities (3.9) and (3.10) contradict our conditions (3.5) and (3.6). Therefore there is no w such that $w(0)=0$ and $\left|w\left(z_{0}\right)\right|=1$ for $z_{0} \in \mathbb{U}$. This means that $|w(z)|<1$ for all $z \in \mathbb{U}$ and that

$$
|w(z)|=\left|\frac{\alpha\left(\left(z D^{n} f(z)\right)^{\delta}-1\right)}{\alpha-(2-\alpha)\left(z D^{n} f(z)\right)^{\delta}}\right|<1 \quad(z \in \mathbb{U})
$$

This gives that the inequality (3.7) is satisfied for $f \in \Sigma$.
Making $\delta=1$ in Theorem 3.15, we obtain the following corollary.

Corollary 3.16. Let $D^{n} f$ be given by (1.1) for $n \in \mathbb{Z}$. If $f \in \Sigma$ satisfies

$$
\operatorname{Re}\left(\frac{D^{n+1} f(z)}{D^{n} f(z)}\right)<\frac{\alpha+1}{2} \quad(z \in \mathbb{U})
$$

for some real $\alpha(1<\alpha \leq 2)$ or

$$
\operatorname{Re}\left(\frac{D^{n+1} f(z)}{D^{n} f(z)}\right)<\frac{2 \alpha-1}{2(\alpha-1)} \quad(z \in \mathbb{U})
$$

for some real $\alpha(\alpha>2)$, then

$$
\left|z D^{n} f(z)-\frac{\alpha}{2}\right|<\frac{\alpha}{2} \quad(z \in \mathbb{U})
$$

Letting $\delta=\frac{1}{2}$ in Theorem 3.15, we obtain the following corollary.
Corollary 3.17. Let $D^{n} f$ be given by (1.1) for $n \in \mathbb{Z}$. If $f \in \Sigma$ satisfies

$$
\operatorname{Re}\left(\frac{D^{n+1} f(z)}{D^{n} f(z)}\right)<\alpha \quad(z \in \mathbb{U})
$$

for some real $\alpha(1<\alpha \leq 2)$ or

$$
\operatorname{Re}\left(\frac{D^{n+1} f(z)}{D^{n} f(z)}\right)<\frac{\alpha}{\alpha-1} \quad(z \in \mathbb{U})
$$

for some real $\alpha(\alpha>2)$, then

$$
\left|\sqrt{z D^{n} f(z)}-\frac{\alpha}{2}\right|<\frac{\alpha}{2} \quad(z \in \mathbb{U}) .
$$

4. Argument problems

In this section, we consider argument problems for $f \in \Sigma$.
Theorem 4.1. Let $D^{n} f$ be given by (1.1) for $n \in \mathbb{Z}$. If $f \in \Sigma$ satisfies

$$
\left|\frac{D^{n+1} f(z)}{D^{n} f(z)}-1\right|<\frac{\alpha}{2} \operatorname{Re}\left(\frac{1+\beta z}{1-z}\right) \quad(z \in \mathbb{U})
$$

for some real $\alpha(0 \leq \alpha<1)$ and for some real $\beta(\beta \neq-1)$, then

$$
\left|\arg \left(z D^{n} f(z)\right)\right|<\frac{\alpha}{2} \quad(z \in \mathbb{U})
$$

Proof. Let us define a function p by $p(z)=z D^{n} f(z)$. Then p is analytic in \mathbb{U} with $p(0)=1$ and satisfies

$$
\frac{z p^{\prime}(z)}{p(z)}=\frac{D^{n+1} f(z)}{D^{n} f(z)}-1 .
$$

For such p, we have

$$
\begin{aligned}
|\arg p(z)| & =|\operatorname{Im}(\log p(z))| \\
& =\left|\operatorname{Im} \int_{0}^{z} \frac{p^{\prime}(t)}{p(t)} d t\right|=\left|\operatorname{Im} \int_{0}^{r} \frac{p^{\prime}\left(\rho e^{i \theta}\right)}{p\left(\rho e^{i \theta}\right)} e^{i \theta} d \rho\right| \\
& \leq \int_{0}^{r}\left|\operatorname{Im}\left(\frac{p^{\prime}\left(\rho e^{i \theta}\right)}{p\left(\rho e^{i \theta}\right)} e^{i \theta}\right)\right| d \rho \leq \int_{-r}^{r}\left|\frac{p^{\prime}\left(\rho e^{i \theta}\right)}{p\left(\rho e^{i \theta}\right)}\right| d \rho \\
& \leq \frac{r}{2} \int_{0}^{2 \pi}\left|\frac{p^{\prime}\left(r e^{i \theta}\right)}{p\left(r e^{i \theta}\right)}\right| d \theta=\frac{1}{2} \int_{0}^{2 \pi}\left|\frac{r e^{i \theta} p^{\prime}\left(r e^{i \theta}\right)}{p\left(r e^{i \theta}\right)}\right| d \theta \\
& =\frac{1}{2} \int_{0}^{2 \pi}\left|\frac{D^{n+1} f\left(r e^{i \theta}\right)}{D^{n} f\left(r e^{i \theta}\right)}-1\right| d \theta<\frac{\alpha}{4} \int_{0}^{2 \pi} \operatorname{Re}\left(\frac{1+\beta r e^{i \theta}}{1-r e^{i \theta}}\right) d \theta \\
& =\frac{\alpha}{4} \int_{0}^{2 \pi}\left\{\frac{1-\beta}{2}+\left(\frac{1+\beta}{2}\right) \frac{1-r^{2}}{1+r^{2}-2 r \cos \theta}\right\} d \theta=\frac{\alpha}{2}
\end{aligned}
$$

using Poisson integral given by

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1-r^{2}}{1+r^{2}-2 r \cos \theta} d \theta=1
$$

Therefore, we have

$$
|\arg p(z)|=\left|\arg \left(z D^{n} f(z)\right)\right|<\frac{\alpha}{2} \quad(z \in \mathbb{U})
$$

Example 4.2. We consider a function $f \in \Sigma$ given by

$$
z D^{n} f(z)=\left(\frac{2}{2-z}\right)^{3 \alpha} \quad(z \in \mathbb{U})
$$

for $0 \leq \alpha<1$. Note that

$$
w(z)=\frac{2}{2-z}
$$

satisfies

$$
\left|w(z)-\frac{4}{3}\right|<\frac{2}{3} \quad(z \in \mathbb{U})
$$

and

$$
|\arg w(z)|<\frac{\pi}{6} \quad(z \in \mathbb{U})
$$

Then we have

$$
\left|\frac{D^{n+1} f(z)}{D^{n} f(z)}-1\right|=3 \alpha\left|\frac{z}{2-z}\right|<3 \alpha \quad(z \in \mathbb{U})
$$

Therefore, considering β such that $\beta \leq-11$, we see that

$$
\left|\frac{D^{n+1} f(z)}{D^{n} f(z)}-1\right|<3 \alpha \leq \frac{\alpha(1-\beta)}{4}<\frac{\alpha}{2} \operatorname{Re}\left(\frac{1+\beta z}{1-z}\right) \quad(z \in \mathbb{U})
$$

Taking $n=0$ in Theorem 4.1, we have the following corollary.

Corollary 4.3. If $f \in \Sigma$ satisfies

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<\frac{\alpha}{2} R e\left(\frac{1+\beta z}{1-z}\right) \quad(z \in \mathbb{U})
$$

for some real $\alpha(0 \leq \alpha<1)$ and for some real $\beta(\beta \neq-1)$, then

$$
|\arg (z f(z))|<\frac{\alpha}{2} \quad(z \in \mathbb{U})
$$

Now, we derive the following theorem.
Theorem 4.4. Let $D^{n} f$ be given by (1.1) for $n \in \mathbb{Z}$. If $f \in \Sigma$ satisfies

$$
\left|\frac{D^{n+2} f(z)}{D^{n+1} f(z)}-\frac{D^{n+1} f(z)}{D^{n} f(z)}\right|<\frac{\alpha}{2} \operatorname{Re}\left(\frac{1+\beta z}{1-z}\right) \quad(z \in \mathbb{U})
$$

for some real $\alpha(0 \leq \alpha<1)$ and for some real $\beta(\beta \neq-1)$, then

$$
\left|\arg \left(\frac{D^{n+1} f(z)}{D^{n} f(z)}\right)\right|<\frac{\alpha}{2} \quad(z \in \mathbb{U})
$$

Proof. We consider a function p by

$$
\begin{equation*}
p(z)=\frac{D^{n+1} f(z)}{D^{n} f(z)} \tag{4.1}
\end{equation*}
$$

Then p is analytic in \mathbb{U} with $p(0)=1$. It follows from (4.1) that

$$
\begin{aligned}
\frac{z p^{\prime}(z)}{p(z)} & =\frac{z\left(D^{n+1} f(z)\right)^{\prime}}{D^{n+1} f(z)}-\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)} \\
& =\frac{D^{n+2} f(z)}{D^{n+1} f(z)}-\frac{D^{n+1} f(z)}{D^{n} f(z)}
\end{aligned}
$$

For such p, we have

$$
\begin{aligned}
|\arg p(z)| & =|\operatorname{Im}(\log p(z))| \\
& \leq\left|\operatorname{Im} \int_{0}^{r} \frac{p^{\prime}\left(\rho e^{i \theta}\right)}{p\left(\rho e^{i \theta}\right)} e^{i \theta} d \rho\right| \leq \int_{-r}^{r}\left|\frac{p^{\prime}\left(\rho e^{i \theta}\right)}{p\left(\rho e^{i \theta}\right)}\right| d \rho \\
& \leq \frac{r}{2} \int_{0}^{2 \pi}\left|\frac{p^{\prime}\left(r e^{i \theta}\right)}{p\left(r e^{i \theta}\right)}\right| d \theta \leq \frac{1}{2} \int_{0}^{2 \pi}\left|\frac{r e^{i \theta} p^{\prime}\left(r e^{i \theta}\right)}{p\left(r e^{i \theta}\right)}\right| d \theta \\
& =\frac{1}{2} \int_{0}^{2 \pi}\left|\frac{D^{n+2} f\left(r e^{i \theta}\right)}{D^{n+1} f\left(r e^{i \theta}\right)}-\frac{D^{n+1} f\left(r e^{i \theta}\right)}{D^{n} f\left(r e^{i \theta}\right)}\right| d \theta \\
& <\frac{\alpha}{4} \int_{0}^{2 \pi} \operatorname{Re}\left(\frac{1+\beta r e^{i \theta}}{1-r e^{i \theta}}\right) d \theta=\frac{\pi}{2} \alpha .
\end{aligned}
$$

This shows us that

$$
|\arg p(z)|=\left|\arg \left(\frac{D^{n+1} f(z)}{D^{n} f(z)}\right)\right|<\frac{\alpha}{2} \quad(z \in \mathbb{U})
$$

Example 4.5. We consider a function $f \in \Sigma$ given by

$$
\frac{D^{n+1} f(z)}{D^{n} f(z)}=\left(\frac{2}{2-z}\right)^{3 \alpha} \quad(z \in \mathbb{U})
$$

for $0 \leq \alpha<1$. Since

$$
\left|\arg \left(\frac{2}{2-z}\right)\right|<\frac{\pi}{6} \quad(z \in \mathbb{U})
$$

we have

$$
\left|\arg \left(\frac{D^{n+1} f(z)}{D^{n} f(z)}\right)\right|<\frac{\pi}{2} \alpha \quad(z \in \mathbb{U})
$$

Also, we see that

$$
\begin{aligned}
\left|\frac{D^{n+2} f(z)}{D^{n+1} f(z)}-\frac{D^{n+1} f(z)}{D^{n} f(z)}\right| & =3 \alpha\left|\frac{z}{2-z}\right| \\
& <3 \alpha \leq \frac{\alpha(1-\beta)}{4}<\frac{\alpha}{2} \operatorname{Re}\left(\frac{1+\beta z}{1-z}\right) \quad(z \in \mathbb{U})
\end{aligned}
$$

for $\beta \leq-11$.

5. Conflicts of interest

The authors declare that they have no conflict of interest.

References

1. H.Ö. Güney, D. Breaz and S. Owa, A new operator for meromorphic functions, Mathematics 10 (2022), no. 12, 1985.
2. H. Ö. Güney, D. Breaz and S. Owa, Some properties for subordinations of analytic functions, Axioms 12 (2023), no. 2, 131.
3. D.J. Hallenbeck and S. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc. 52 (1975) 191-195.
4. I.S. Jack, Functions starlike and convex of order α, J. Lond. Math. Soc. (2) 3 (1971) 469-474.
5. S.S. Miller and P.T. Mocanu, Marx-Strohhäcker differential subordination systems, Proc. Amer. Math. Soc. 99 (1987), no. 3, 527-534.
6. S.S. Miller and P.T. Mocanu, Differential Subordinations: Theory and Applications, Marcel Dekker Inc. New York-Basel, 2000.
7. C. Pommerenke, Univalent Functions: with a chapter on Quadratic Differentials by Gerd Jensen, Studia Mathematica 25, Vandenhoeck \& Ruprecht, Göttingen, 1975.
8. T.J. Suffridge, Some remarks on convex maps of the unit disk, Duke Math. J. 37 (1970) 775-777.
${ }^{1}$ Department of Mathematics, Faculty of Science, Dicle University, Diyarbakir, Türkiye.

Email address: ozlemg@dicle.edu.tr
${ }^{2}$ Honorary Professor, "1 Decembrie 1918" University of Alba Iulia, 510009 Alba Iulia, Romania.

Email address: shige21@ican.zaq.ne.jp

[^0]: Date: Received: 14 April 2023; Revised: 25 June 2023; Accepted: 27 June 2023.

 * Corresponding author.

 2020 Mathematics Subject Classification. 30C45.
 Key words and phrases. Meromorphic function, analytic function, differential subordination, argument problem.

