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Abstract. The commuting graph of a finite non-abelian group G with center
Z(G), denoted by ΓG, is a simple undirected graph whose vertex set is G\Z(G),
and two distinct vertices x and y are adjacent if and only if xy = yx. A
finite non-abelian group G is called super integral if the spectrum, Laplacian
spectrum and signless Laplacian spectrum of its commuting graph contain
only integers. In this paper, we first compute Laplacian spectrum and signless
Laplacian spectrum of several families of finite non-abelian groups and conclude
that those groups are super integral. As an application of our results we obtain
some positive rational numbers r such that G is super integral if commutativity
degree of G is r. In the last section, we show that G is super integral if G is not
isomorphic to S4 and its commuting graph is planar. We conclude the paper
showing that G is super integral if its commuting graph is toroidal.

1. Introduction

Let A(G) and D(G) denote the adjacency matrix and degree matrix of a graph
G respectively. Then the Laplacian matrix and signless Laplacian matrix of G
are given by L(G) = D(G) − A(G) and Q(G) = D(G) + A(G) respectively. We
write Spec(G), L-spec(G) and Q-spec(G) to denote the spectrum, Laplacian spec-
trum and Signless Laplacian spectrum of G. Also, Spec(G) = {αa1

1 , α
a2
2 , . . . , α

al
l },

L-spec(G) = {βb1
1 , β

b2
2 , . . . , β

bm
m } and Q-spec(G) = {γc11 , γc22 , . . . , γcnn } where α1, α2,

. . . , αn are the eigenvalues of A(G) with multiplicities a1, a2, . . . , al; β1, β2, . . . , βm
are the eigenvalues of L(G) with multiplicities b1, b2, . . . , bm and γ1, γ2, . . . , γn are
the eigenvalues of Q(G) with multiplicities c1, c2, . . . , cn respectively. A graph G
is called integral or L-integral or Q-integral according as Spec(G) or L-spec(G)
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or Q-spec(G) contains only integers. G is called super integral if it is integral,
L-integral and Q-integral. The notion of integral graph was introduced by Harary
and Schwenk [16] in the year 1974. A very impressive survey on integral graphs
can be found in [6]. Ahmadi et al. noted that integral graphs have some in-
terests for designing the network topology of perfect state transfer networks, see
[4] and the references there in. L-integral graphs are also studied extensively
over the years while Q-integral graphs are not studied much. One may conf.
[2, 8, 18, 20, 28] and some of the references in [18] for several interesting results
of these graphs.

Let G be a finite non-abelian group with center Z(G). The commuting graph of
G, denoted by ΓG, is a simple undirected graph whose vertex set is G\Z(G), and
two distinct vertices x and y are adjacent if and only if xy = yx. Various aspects
of commuting graphs of finite groups can be found in [5, 11, 12, 17, 21, 25]. A
finite non-abelian group G is called integral or L-integral or Q-integral according
as ΓG is integral or L-integral or Q-integral. One may ask the following questions.
Question 1. Which finite non-abelian groups are integral?
Question 2. Which finite non-abelian groups are L-integral?
Question 3. Which finite non-abelian groups are Q-integral?
A finite non-abelian group G is called super integral if ΓG is integral, L-integral
and Q-integral. Therefore, in the line of above questions, we can also ask the
following question.
Question 4. Which finite non-abelian groups are super integral?

In [11, 12], we have computed the spectrum of ΓG for several families of finite
non-abelian groups and determined several finite non-abelian integral groups. In
[24], we have computed Laplacian spectrum and signless Laplacian spectrum of
n-centralizer finite groups for n = 4, 5 and showed that those groups are super
integral. In this paper, we compute Laplacian spectrum and signless Laplacian
spectrum of commuting graphs of finite groups whose central quotient is isomor-
phic to Sz(2) (the Suzuki group of order 20) or Zp×Zp (for any prime p) or D2m

(the dihedral group of order 2m). We also consider the quasidihedral groups,
generalized quaternion groups, general linear groups, some projective special lin-
ear groups, the groups constructed by Hanaki in [15] etc. Our computations in
Section 2 reveal that all the above mentioned groups are super integral. Further,
we shall show that all finite AC-groups are super integral. The rest part of this
paper is devoted to some applications of the results obtained in Section 2.

The commutativity degree of G denoted by Pr(G) is the probability that a
randomly chosen pair of elements of G commute. Clearly, Pr(G) = 1 if and only
if G is abelian. For a non-abelian group, it was shown in [14] that Pr(G) ≤ 5/8.
Since then many mathematicians have studied this notion. The readers may conf.
[7, 22] for various results on Pr(G). A survey of recent works on Pr(G) can be
found in [9]. Using our results, in Section 3, we shall show that G is super integral
if Pr(G) ∈ { 5

14
, 2
5
, 11
27
, 1
2
, 5
8
}.

Recall that genus of a graph is the smallest non-negative integer n such that
the graph can be embedded on the surface obtained by attaching n handles to
a sphere. A graph is said to be planar or toroidal if the genus of the graph is
zero or one respectively. It is worth mentioning that Afkhami et al. [3] and Das
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et al. [10] have classified all finite non-abelian groups whose commuting graphs
are planar or toroidal recently. In the last section, we shall show that a finite
non-abelian group G is super integral if it is not isomorphic to S4, the symmetric
group of degree 4, and the commuting graph of G is planar. We also show that
a finite non-abelian group is super integral if its commuting graph is toroidal.

2. Laplacian and signless Laplacian spectrum

It is well-known that L-spec(Kn) = {01, nn−1} and Q-spec(Kn) = {(2n −
2)1, (n − 2)n−1} where Kn denotes the complete graph on n vertices. Further,
we have the following theorem.

Theorem 2.1. If G = l1Km1 t l2Km2 t · · · t lkKmk
, where liKmi

denotes the
disjoint union of li copies of Kmi

for 1 ≤ i ≤ k, then

L-spec(G) =
{

0
∑k

i=1 li ,m
l1(m1−1)
1 ,m

l2(m2−1)
2 , . . . ,m

lk(mk−1)
k

}
and

Q-spec(G) = {(2m1 − 2)l1 , (m1 − 2)l1(m1−1), (2m2 − 2)l2 , (m2 − 2)l2(m2−1),

. . . , (2mk − 2)lk , (mk − 2)lk(mk−1)}.
Now we compute the Laplacian spectrum and signless Laplacian spectrum of

the commuting graphs of some families of finite non-abelian groups. We begin
with some families of groups whose central factors are some well-known groups.

Theorem 2.2. Let G be a finite group and G
Z(G)

∼= Sz(2), where Sz(2) is the

Suzuki group presented by 〈a, b : a5 = b4 = 1, b−1ab = a2〉. Then

L-spec(ΓG) = {06, (4|Z(G)|)4|Z(G)|−1, (3|Z(G)|)15|Z(G)|−5} and

Q-spec(ΓG) = {(8|Z(G)| − 2)1,(4|Z(G)| − 2)4|Z(G)|−1,

(6|Z(G)| − 2)5, (3|Z(G)| − 2)15|Z(G)|−5}.

Proof. It was shown in [11, Theorem 2.2] that ΓG = K4|Z(G)| t 5K3|Z(G)|. There-
fore, by Theorem 2.1, the result follows. �

Theorem 2.3. Let G be a finite group such that G
Z(G)

∼= Zp × Zp, where p is a

prime integer. Then

L-spec(ΓG) ={0p+1, ((p− 1)|Z(G)|)(p2−1)|Z(G)|−p−1} and

Q-spec(ΓG) ={(2(p− 1)|Z(G)| − 2)p+1, ((p− 1)|Z(G)| − 2)(p
2−1)|Z(G)|−p−1}.

Proof. It was shown in [12, Theorem 2.1] that ΓG = (p + 1)K(p−1)|Z(G)|. Hence
the result follows from Theorem 2.1. �

As a corollary we have the following result.

Corollary 2.4. Let G be a non-abelian group of order p3, for any prime p, then

L-spec(ΓG) ={0p+1, (p2 − p)p3−2p−1} and

Q-spec(ΓG) ={(2p2 − 2p− 2)p+1, (p2 − p− 2)p
3−2p−1}.
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Proof. Note that |Z(G)| = p and G
Z(G)

∼= Zp × Zp. Hence the result follows from

Theorem 2.3. �

Theorem 2.5. Let G be a finite group such that G
Z(G)

∼= D2m, for m ≥ 2. Then

L-spec(ΓG) ={0m+1, ((m− 1)|Z(G)|)(m−1)|Z(G)|−1, (|Z(G)|)m(|Z(G)|−1)} and

Q-spec(ΓG) ={(2(m− 1)|Z(G)| − 2)1, ((m− 1)|Z(G)| − 2)(m−1)|Z(G)|−1,

(2|Z(G)| − 2)m, (|Z(G)| − 2)m(|Z(G)|−1)}.

Proof. It was shown in [12, Theorem 2.5] that ΓG = K(m−1)|Z(G)| t mK|Z(G)|.
Hence the result follows from Theorem 2.1. �

Using Theorem 2.5, we now compute the Laplacian and signless Laplacian spec-
trum of the commuting graphs of the groups M2mn, D2m and Q4n respectively.

Corollary 2.6. Let M2mn = 〈a, b : am = b2n = 1, bab−1 = a−1〉 be a metacyclic
group, where m > 2. Then

L-spec(ΓM2mn) =

{
{0m+1, (mn− n)mn−n−1, nmn−m} if m is odd

{0m
2
+1, (mn− 2n)mn−2n−1, (2n)mn−m

2 } if m is even

and

Q-spec(ΓM2mn) =


{(2mn− 2n− 2)1, (mn− n− 2)mn−n−1,

(2n− 2)m, (n− 2)mn−m} if m is odd

{(2mn− 4n− 2)1, (mn− 2n− 2)mn−2n−1,

(4n− 2)
m
2 , (2n− 2)mn−m

2 } if m is even.

Proof. Observe that Z(M2mn) = 〈b2〉 or 〈b2〉 ∪ am
2 〈b2〉 according as m is odd or

even. Also, it is easy to see that M2mn

Z(M2mn)
∼= D2m or Dm according as m is odd or

even. Hence, the result follows from Theorem 2.5. �

As a corollary to the above result we have the following results.

Corollary 2.7. Let D2m = 〈a, b : am = b2 = 1, bab−1 = a−1〉 be the dihedral group
of order 2m, where m > 2. Then

L-spec(ΓD2m) =

{
{0m+1, (m− 1)m−2} if m is odd

{0m
2
+1, (m− 2)m−3, 2

m
2 } if m is even

and

Q-spec(ΓD2m) =

{
{(2m− 4)1, (m− 3)m−2, (2n− 2)m, 0m} if m is odd

{(2m− 6)1, (m− 4)m−3, 2
m
2 , 0

m
2 } if m is even.

Corollary 2.8. Let Q4n = 〈x, y : y2n = 1, x2 = yn, xyx−1 = y−1〉, where n ≥ 2,
be the generalized quaternion group of order 4n. Then

L-spec(ΓQ4n) = {0n+1, (2n− 2)2n−3, 2n} and

Q-spec(ΓQ4n) = {(4n− 6)1, (2n− 4)2n−3, 2n, 0n}.
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Proof. The result follows from Theorem 2.5 noting that Z(Q4n) = {1, an} and
Q4n

Z(Q4n)
∼= D2n. �

Now we compute the Laplacian spectrum and signless Laplacian spectrum of
the commuting graphs of some well-known families of finite non-abelian groups.

Proposition 2.9. Let G be a non-abelian group of order pq, where p and q are
primes with p | (q − 1). Then

L-spec(ΓG) ={0q+1, (q − 1)q−2, (p− 1)pq−2q} and

Q-spec(ΓG) ={(2q − 4)1, (q − 3)q−2, (2p− 4)q, (p− 3)pq−2q}.

Proof. It was shown in [11, Lemma 3.2] that ΓG = Kq−1 t qKp−1. Hence, the
result follows from Theorem 2.1. �

Proposition 2.10. Let QD2n denote the quasidihedral group 〈a, b : a2
n−1

= b2 =

1, bab−1 = a2
n−2−1〉, where n ≥ 4. Then

L-spec(ΓQD2n
) ={02n−2+1, (2n−1 − 2)2

n−1−3, 22n−2} and

Q-spec(ΓQD2n
) ={(2n − 6)1, (2n−1 − 4)2

n−1−3, 22n−2

, 02n−2}.

Proof. It was shown in [11, Proposition 2.1] that ΓQD2n
= K2n−1−2 t 2n−2K2.

Hence, the result follows from Theorem 2.1. �

Proposition 2.11. The Laplacian spectrum and signless Laplacian spectrum of
the commuting graph of the projective special linear group PSL(2, 2k), where k ≥
2, are given by

{022k+2k+1, (2k − 1)2
2k−2k−2, (2k − 2)2

k−1(22k−2k+1−3), (2k)2
k−1(22k−2k+1+1)} and

{(2k+1−4)2
k+1, (2k − 3)2

2k−2k−2, (2k+1 − 6)2
k−1(2k+1),

(2k − 4)2
k−1(22k−2k+1−3), (2k+1 − 2)2

k−1(2k−1), (2k − 2)2
k−1(22k−2k+1+1)}

respectively.

Proof. It was shown in [11, Proposition 2.2] that

ΓPSL(2,2k) = (2k + 1)K2k−1 t 2k−1(2k + 1)K2k−2 t 2k−1(2k − 1)K2k .

Hence, the result follows from Theorem 2.1. �

Proposition 2.12. The Laplacian spectrum and signless Laplacian spectrum of
the commuting graph of the general linear group GL(2, q), where q = pn > 2 and
p is a prime integer, are given by

{0q2+q+1, (q2−3q+2)
q(q+1)(q2−3q+1)

2 , (q2−q)
q(q−1)(q2−q−1)

2 , (q2−2q+1)q(q+1)(q−2)} and

{(2q2 − 6q − 2)
q(q+1)

2 , (q2 − 3q)
q(q+1)(q2−3q+1)

2 , (2q2 − 2q − 2)
q(q−1)

2 ,

(q2 − q − 2)
q(q−1)(q2−q−1)

2 , (2q2 − 4q)q+1, (q2 + 2q − 1)q(q+1)(q−2)}
respectively.
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Proof. It was shown in [11, Proposition 2.3] that

ΓGL(2,q) =
q(q + 1)

2
Kq2−3q+2 t

q(q − 1)

2
Kq2−q t (q + 1)Kq2−2q+1.

Hence, the result follows from Theorem 2.1. �

Proposition 2.13. Let F = GF (2n), n ≥ 2 and ϑ be the Frobenius automorphism
of F , i. e., ϑ(x) = x2 for all x ∈ F . Let A(n, ϑ) denote the groupU(a, b) =

1 0 0
a 1 0
b ϑ(a) 1

 : a, b ∈ F


under matrix multiplication given by U(a, b)U(a′, b′) = U(a+ a′, b+ b′ + a′ϑ(a)).
Then

L-spec(ΓA(n,ϑ)) ={02n−1, (2n)2
2n−2n+1+1} and

Q-spec(ΓA(n,ϑ)) ={(2n+1 − 2)2
n−1, (2n − 2)2

2n−2n+1+1}.

Proof. It was shown in [11, Proposition 2.4] that ΓA(n,ϑ) = (2n − 1)K2n . Hence
the result follows from Theorem 2.1. �

Proposition 2.14. Let F = GF (pn) where p is a prime. Let A(n, p) denote the
group V (a, b, c) =

1 0 0
a 1 0
b c 1

 : a, b, c ∈ F


under matrix multiplication V (a, b, c)V (a′, b′, c′) = V (a + a′, b + b′ + ca′, c + c′).
Then

L-spec(ΓA(n,p)) ={0pn+1, (p2n − pn)p
3n−2pn−1} and

Q-spec(ΓA(n,p)) ={(2p2n − 2pn − 2)p
n+1, (p2n − pn − 2)p

3n−2pn−1}.

Proof. It was shown in [11, Proposition 2.5] that ΓA(n,p) = (pn +1)Kp2n−pn . Hence
the result follows from Theorem 2.1. �

Our computations reveal that all the groups considered above are both L-
integral and Q-integral. Also, it was shown in [11, 12] that theses groups are
integral. Hence, all these groups are super integral.

A group G is called an AC-group if CG(x) is abelian for all x ∈ G\Z(G), where
CG(x) is the centralizer of x given by the set {y ∈ G : xy = yx}. Various aspects
of AC-groups can be found in [1, 10, 26]. In [11], the authors have shown that
finite AC-groups are integral. In the following two results we shall show that if G
is an AC-group or G is isomorphic to H×A, where H is a finite non-abelian AC-
group and A is any finite abelian group then G is L-integral as well as Q-integral.
Hence, G is super integral.

Theorem 2.15. Let G be a finite non-abelian AC-group. Then

L-spec(ΓG) = {0n, (|X1| − |Z(G)|)|X1|−|Z(G)|−1, . . . , (|Xn| − |Z(G)|)|Xn|−|Z(G)|−1}
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and

Q-spec(ΓG) = {(2(|X1| − |Z(G)|)− 2)1, (|X1| − |Z(G)| − 2)|X1|−|Z(G)|−1, . . . ,

(2(|Xn| − |Z(G)|)− 2)1, (|Xn| − |Z(G)| − 2)|Xn|−|Z(G)|−1},
where X1, . . . , Xn are the distinct centralizers of non-central elements of G.

Proof. By [11, Lemma 2.1], we have ΓG =
n
t
i=1
K|Xi|−|Z(G)|. Therefore, the result

follows from Theorem 2.1. �

Corollary 2.16. Let G ∼= H ×A where H is a finite non-abelian AC-group and
A is any finite abelian group. Then

L-spec(ΓG) = {0n, (|A|(|X1|−|Z(H)|))|A|(|X1|−|Z(H)|)−1, . . . ,

(|A|(|Xn| − |Z(H)|))|A|(|Xn|−|Z(H)|)−1}

and Q-spec(ΓG) is given by

{(2|A|(|X1| − |Z(H)|)− 2)1, (|A|(|X1| − |Z(H)|)− 2)|A|(|X1|−|Z(H)|)−1, . . . ,

(2|A|(|Xn| − |Z(H)|)− 2)1, (|A|(|Xn| − |Z(H)|)− 2)|A|(|Xn|−|Z(H)|)−1},
where X1, . . . , Xn are the distinct centralizers of non-central elements of H.

Proof. It is easy to see that Z(H×A) = Z(H)×A and X1×A,X2×A, . . . , Xn×A
are the distinct centralizers of non-central elements of H × A. Therefore, if H
is an AC-group then H × A is also an AC-group. Hence, the result follows from
Theorem 2.15. �

3. Commutativity degree and super integral group

Let G be a finite group. The commutativity degree of G is given by the ratio

Pr(G) =
|{(x, y) ∈ G×G : xy = yx}|

|G|2
.

The origin of the commutativity degree of a finite group lies in a paper of Erdös
and Turán (see [13]). Readers may conf. [7, 9, 22] for various results on Pr(G).
In this section, we ask the following question.
Question 5. Can we determine all the positive rational numbers r such that any
group G with Pr(G) = r is super integral?

The following theorems give some rational numbers r such that G is super
integral if Pr(G) = r.

Theorem 3.1. If Pr(G) ∈ { 5
14
, 2
5
, 11
27
, 1
2
, 5
8
} then G is super integral.

Proof. If Pr(G) ∈ { 5
14
, 2
5
, 11
27
, 1
2
, 5
8
} then as shown in [27, pp. 246] and [23, pp. 451],

we have G
Z(G)

is isomorphic to one of the groups in {D14, D10, D8, D6,Z2 × Z2}.
If G

Z(G)
is isomorphic to D14, D10, D8 or D6 then by [12, Theorem 2.5], we have

G is integral and by Theorem 2.5, we have G is both L-integral and Q-integral.
Hence, in this case G is super integral. If G

Z(G)
is isomorphic to Z2 × Z2 then by

[11, Theorem 3.1], it follows that G is integral. Also, by Theorem 2.3 we have G
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is both L-integral and Q-integral. Hence, G is super integral. This completes the
proof. �

Theorem 3.2. Let G be a finite group and p the smallest prime divisor of |G|.
If Pr(G) = p2+p−1

p3
then G is super integral.

Proof. If Pr(G) = p2+p−1
p3

then by [19, Theorem 3] we have G
Z(G)

is isomorphic

to Zp × Zp. Now, by [12, Theorem 2.1], we have that G is integral. Again, by
Theorem 2.3, it follows that G is L-integral as well as Q-integral. Hence, G is
super integral. �

We conclude this section by the following result.

Theorem 3.3. If G is a finite non-solvable group with Pr(G) = 1
12

then G is
super integral.

Proof. By [7, Proposition 3.3.7] we have that G is isomorphic to A5×B for some
abelian group B. Therefore G is an AC-group and hence super integral. �

4. More Applications

In this section, we show that a finite non-abelian group G not isomorphic to S4

is super integral if its commuting graph is planar. We also show that G is super
integral if its commuting graph is toroidal. We begin with the following useful
lemma.

Lemma 4.1. Let G be a group isomorphic to any of the following groups

(1) Z2 ×D8

(2) Z2 ×Q8

(3) M16 = 〈a, b : a8 = b2 = 1, bab = a5〉
(4) Z4 o Z4 = 〈a, b : a4 = b4 = 1, bab−1 = a−1〉
(5) D8 ∗ Z4 = 〈a, b, c : a4 = b2 = c2 = 1, ab = ba, ac = ca, bc = a2cb〉
(6) SG(16, 3) = 〈a, b : a4 = b4 = 1, ab = b−1a−1, ab−1 = ba−1〉.

Then L-spec(ΓG) = {03, 49} and Q-spec(ΓG) = {63, 29}.

Proof. If G is isomorphic to any of the above listed groups, then |G| = 16 and
|Z(G)| = 4. Therefore, G

Z(G)
∼= Z2×Z2. Thus the result follows from Theorem 2.3.

�

Now we state and proof the main results of this section.

Theorem 4.2. Let ΓG be the commuting graph of a finite non-abelian group G.
If G is not isomorphic to S4 and ΓG is planar then G is super integral.

Proof. It was shown in [11, Theorem 3.2] that G is an integral group if it is not
isomorphic to S4 and ΓG is planar.

By [3, Theorem 2.2], we have that ΓG is planar if and only if G is isomor-
phic to either D6, D8, D10, D12, Q8, Q12,Z2 × D8,Z2 × Q8,M16,Z4 o Z4, D8 ∗
Z4, SG(16, 3), A4, A5, S4, SL(2, 3) or Sz(2).

If G ∼= D6, D8, D10 or D12 then by Corollary 2.7, one may conclude that ΓG is
both L-integral and Q-integral. Hence, G is both L-integral and Q-integral. If
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G ∼= Q8 or Q12 then G is both L-integral and Q-integral, by Corollary 2.8. If
G ∼= Z2×D8,Z2×Q8,M16,Z4 oZ4, D8 ∗Z4 or SG(16, 3) then, by Lemma 4.1, G
is L-integral as well as Q-integral.

If G ∼= A4 = 〈a, b : a2 = b3 = (ab)3 = 1〉 then the distinct centralizers of non-
central elements of G are CG(a) = {1, a, bab2, b2ab}, CG(b) = {1, b, b2}, CG(ab) =
{1, ab, b2a}, CG(ba) = {1, ba, ab2} and CG(aba) = {1, aba, bab}. Note that these
centralizers are abelian subgroups of G. Therefore, ΓG = K3 t 4K2. Using
Theorem 2.1, we have L-spec(ΓG) = {05, 32, 24} and Q-spec(ΓG) = {41, 12, 24, 04}.
Hence, G is both L-integral and Q-integral.

If G ∼= Sz(2) then by Theorem 2.2, we have L-spec(ΓG) = {06, 43, 310} and
Q-spec(ΓG) = {61, 23, 45, 110}. Hence, G is both L-integral and Q-integral.

If G is isomorphic to SL(2, 3) then it was shown in the proof of [11, Theorem
3.2] that ΓG = 3K2 t 4K4. Therefore, by Theorem 2.1, we have L-spec(ΓG) =
{07, 23, 412} and Q-spec(ΓG) = {03, 215, 64}. Hence, G is both L-integral and
Q-integral.

If G ∼= A5 then by Proposition 2.11, we have

L-spec(ΓG) = {021, 310, 210, 418} and Q-spec(ΓG) = {45, 110, 210, 010, 66, 218},
noting that PSL(2, 4) ∼= A5. Hence, G is both L-integral and Q-integral.

Finally, if G ∼= S4 then it can be seen that the characteristic polynomial of
L(ΓG) is x5(x− 1)3(x− 2)4(x− 3)6(x− 5)(x2 − 8x+ 3)2 and so

L-spec(ΓG) =
{

05, 13, 24, 36, 51(4 +
√

13)2, (4−
√

13)2
}
.

Also, the characteristic polynomial of Q(ΓG) is x4(x − 1)6(x − 2)4(x − 3)3(x2 −
11x+ 20)(x2 − 8x+ 11)2 and so Q-spec(ΓG) is given by04, 16, 24, 33, 51(4 +

√
5)2, (4−

√
5)2,

(
11 +

√
41

2

)1

,

(
11−

√
41

2

)1
 .

This shows that if G ∼= S4 then it is neither L-integral nor Q-integral. This
completes the proof. �

Theorem 4.3. Let ΓG be the commuting graph of a finite non-abelian group G.
Then G is super integral if ΓG is toroidal.

Proof. By [10, Theorem 6.6], we have ΓG is toroidal if and only if G is isomorphic
to either D14, D16, Q16, QD16, D6 × Z3, A4 × Z2 or Z7 o Z3.

If G ∼= D14 or D16 then, by Corollary 2.7, one may conclude that G is both
L-integral and Q-integral. If G ∼= Q16 then, by Corollary 2.8, G becomes both
L-integral and Q-integral. If G ∼= QD16 then, by Proposition 2.10, G becomes
both L-integral and Q-integral. If G ∼= Z7 o Z3 then G is both L-integral and
Q-integral, by Proposition 2.9. If G is isomorphic to D6 × Z3 or A4 × Z2 then G
becomes both L-integral and Q-integral by Corollary 2.16, since D6 and A4 are
AC-groups. Further, it was shown in [11, Theorem 3.4] that G is integral if ΓG

is toroidal. Hence, G is super integral if ΓG is toroidal. �

We conclude the paper with the following result.
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Proposition 4.4. Let ΓG be the commuting graph of a finite non-abelian group
G. Then ΓG is super integral if the complement of ΓG is planar.

Proof. If the complement of ΓG is planar then, by [1, Proposition 2.3], we have
G is isomorphic to either D6, D8 or Q8. If G ∼= D6 or D8 then, by Corollary 2.7
and [11, Proposition 3.1 ], we have that G is super integral. If G ∼= Q8 then, by
Corollary 2.8 and [11, Proposition 3.2 ], it follows that G is super integral. This
completes the proof. �
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