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ACCURATE NUMERICAL METHOD FOR SINGULARLY
PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS

WITH MIXED SHIFTS
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Abstract. This paper is concerned with the numerical solution of the singu-
larly perturbed differential-difference equations with small shifts called delay
and advanced parameters. A fourth order finite difference method with a fit-
ting factor is proposed for the solution of the singularly perturbed differential-
difference equations with mixed shifts. The delay and advanced shifts are man-
aged by Taylor series, and an asymptotically equivalent singularly perturbed
two-point boundary value problem is obtained. A fitting factor is introduced
in the fourth order finite difference scheme for the problem which takes care
of the small values of the perturbation parameter. This fitting factor is ob-
tained from the asymptotic solution of singular perturbations. The Thomas
algorithm is used to solve the discrete system of the difference scheme. Con-
vergence of the proposed method is analyzed. Maximum absolute errors in
comparison with the several numerical experiments are tabulated to illustrate
the proposed method.

1. Introduction

Singularly perturbed differential-difference equations (SPDDEs) arise very fre-
quently in the mathematical modeling of real life situations in science and en-
gineering (see [3, 6, 12]). Mathematically, any ordinary differential equation in
which the highest derivative is multiplied by a small positive parameter and
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containing at least one delay/advance parameter, is known as a singularly per-
turbed differential-difference equation. Lange and Miura [14, 15, 16, 17, 18] de-
veloped a series of papers to obtain an approximate solution of singularly per-
turbed differential-difference equations. Numerical analysis of SPDDE turning
point problems is initiated by Kadalbajoo and Sharma. In a series of papers,
see [7, 8, 9, 10, 11], they gave many robust numerical techniques for the solution
of such type of problems. Kadalbajoo and Sharma [8] elucidated a numerical
method to solve boundary value problems for SPDDEs. Kadalbajoo and Sharma
[9] proposed a numerical method to solve a SPDDE of a mixed type with the
case in which the solution of the problem exhibits rapid oscillations. Kadalba-
joo and Sharma [10] described a numerical approach based on finite difference
method to solve a mathematical model arising from a model of neuronal variabil-
ity. Patidar and Sharma [20] combined fitted-operator methods with Micken’s
nonstandard finite difference techniques for the numerical approximations of sin-
gularly perturbed linear delay differential equations. Kadalbajoo et al. [11] de-
rived ε-uniformly convergent fitted methods for the solution of SPDDE. Kumar
and Sharma [13] presented a numerical scheme based on B-spline collocation to
approximate the solution of boundary value problems for SPDDEs with delay as
well as advance. Amiraliyev and Cimen [1] derived a numerical method for sin-
gularly perturbed boundary value problem for a linear second order delay differ-
ential equation with a large delay in the reaction term. The authors constructed
an exponentially fitted differential scheme on a uniform mesh accomplished by
the method of integral identities with the use of exponential basis functions and
interpolation quadrature rules with weight and the remainder term in the integral
form. The paper is organized as follows:

In Section 2, the description of the problem is given. In Section 3, numerical
scheme for the solution of the problem is derived, and Section 4 deals with con-
vergence analysis of the proposed scheme. To demonstrate the efficiency of the
proposed method, numerical experiments are carried out for several test prob-
lems, and the results are given in Section 5. Finally the conclusion is given in the
last section.

2. Description of the problem

Consider a linear singularly perturbed differential-difference equation with mixed
shifts of the following form:

εy′′(x) + p(x)y′(x) + q(x)y(x− δ) + r(x)y(x) + s(x)y(x+ η) = f(x) (2.1)

on (0, 1), under the boundary conditions

y(x) = ϕ(x) on -δ ≤ x ≤ 0,
y(x) = γ(x) on 1 ≤ x ≤ 1 + η,

(2.2)

where ε is a small parameter, 0 < ε << 1, p(x), q(x), r(x), s(x), f(x), ϕ(x), and
γ(x) are smooth functions, and 0 < δ = o(ε) and 0 < η = o(ε) are, respectively,
the delay (negative shift) and the advance (positive shift) parameters. The solu-
tion of Eqs. (2.1) and (2.2) exhibits; the layer is at the left end of the interval
if p(x) − δq(x) + ηs(x) > 0 and the layer is at the right end of the interval if
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p(x) − δq(x) + ηs(x) < 0. If p(x) = 0, then the solution of the given problem
may have oscillatory solution or two layers (one at each end) depending upon the
cases whether q(x) + r(x) + s(x) is positive or negative. Since the solution y(x)
of the boundary value problem Eqs. (2.1) and (2.2) is sufficiently differentiable,
using Taylor series, the terms y(x− δ) and y(x+ η) are expanded as follows[5]:

y(x− δ) ≈ y(x)− δy′(x), (2.3)

y(x+ η) ≈ y(x) + ηy′(x). (2.4)

Using Eqs. (2.3) and (2.4) in Eq. (2.1), we get

εy′′(x) + a(x)y′(x) + b(x)y(x) = f(x) (2.5)

with boundary conditions
y(0) = ϕ(0) = ϕ0

y(1) = γ(1) = γ1.

Here
a(x) = p(x)− δq(x) + ηs(x)

b(x) = q(x) + r(x) + s(x).

Eq. (2.5) is a second order singularly perturbed two point boundary value prob-
lem.
The zeroth order approximation to the solution of (2.5) [19] is

lim
h→0

y(ih) ≈ y0(0) + (ϕ(0)− y0(0) exp{−a(0)iρ} for i = 0,1,2,. . . ,N,

where ρ = h
ε

and y0 represents the zeroth order approximate outer solution (i.e.,
the solution of the reduced problem).

3. Numerical method

Consider the uniform grid ωh={xi = ih for i = 0, 1, 2, . . . , N, h = 1/N} on
[0, 1]. At the grid point x = xi, Eq. (2.5) becomes

εy′′i + aiy
′
i + biyi = fi. (3.1)

We now consider higher order central difference formulas for y′i and y′′i as given
below

y
′′

i
∼=
yi−1 − 2yi + yi+1

h2
− h2

12
y
(4)
i +R1 (3.2)

y′i =
yi+1 − yi−1

2h
− h2

6
y′′′i +R2, (3.3)

where

R1 = −2h4y(6)(ξ)

6!

R2 = −h
4y(5)(η)

5!

for ξ, η ∈ [xi−1, xi+1]. Differentiating Eq. (2.5), we obtain y′′′i and y
(4)
i as follows:

y′′′i =

[
−ai
ε
y′′i −

(a′i + bi)

ε
y′i −

b′i
ε
y +

f ′

ε

]
(3.4)
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y
(4)
i =

[
a2i
ε2
− (2a′i + bi)

ε

]
y′′i +

[
ai (a

′
i + bi)

ε2
− (a′′i + 2b′i)

ε

]
y′i +

[
ab′i
ε2
− b′′i

ε

]
yi +

1

ε
f ′′i .

(3.5)
Using Eqs. (3.4) and (3.5) in Eqs. (3.2) and (3.3) and then substituting y′i and
y′′i in Eq. (3.1), we get

ε
[
A1(i)

(yi−1−2yi+yi+1

h2

)
+B1(i)

(yi+1−yi−1)
2h

− C1(i)yi − h2

12ε
f ′′i

]
+ai

[
A2(i)

(yi−1−2yi+yi+1

h2

)
+B2(i)

(yi+1−yi−1)
2h

+ C2(i)yi − h2f ′i
6ε

]
+ biyi = fi

Here A(i) = 1− h2ai
2

12ε2
+ h2(2a′i+bi)

12ε
, B(i) = h2(a′′i+2b′i)

12ε
− h2ai(a

′
i+bi)

12ε
,

C(i) = h2b′′i
12ε
− aib

′
ih

2

12ε2
, A2(i) = aih

2

6ε
, B2(i) = 1 + h2

6ε
(a′i + bi), and C2(i) = h2

6ε
b′i.

Now introducing a fitting factor σ in the above finite difference scheme, we get

σε
[
A1(i)

(yi−1−2yi+yi+1

h2

)
+B1(i)

(yi+1−yi−1)
2h

− C1(i)yi − h2

12ε
f ′′i

]
+ai

[
A2(i)

(yi−1−2yi+yi+1

h2

)
+B2(i)

(yi+1−yi−1)
2h

+ C2(i)yi − h2f ′i
6ε

]
+ biyi = fi

(3.6)
Multiplying the above equation by h, taking the limit as h→ 0 and using Lemma
3 in [4], we get the fitting factor as

σ =
a(0)

2

coth
(
a(0)ρ
2

)
− ρa2(0)

3(
1
ρ
− ρa2(0)

12

)
 .

The tridiagonal system Eq. (3.6) is given by

Eiyi−1 − Fiyi +Giyi+1 = Hi, i = 1, 2, . . . , N − 1, (3.7)

where

Ei = σε
h2
− σai

2

12ε
+ σ(2a′i+bi)

12
+ σai

2

6ε
− σh

24
(a′′i + 2b′i) + σhai(a

′
i+bi)

24ε

− ai
2h

(
1 + h2

6ε
(a′i + bi)

)
Fi =

2σa2i
12ε
− 2σε

h2
− 2σ(2a′i+bi)

12
− 2σa2i

6
+

σh2b′′i
12
− σh2aib

′
i

12ε
+

h2a2i b
′
i

6ε
+ bi

Gi = σε
h2
− σa2i

12ε
+

σ(2a′i+bi)

12
+

a2i
6ε

+ σh
24

(a′′i + 2b′i)−
σhai(a

′
i+bi)

24ε

+ ai
2h

(
1 + h2

6ε
(a′i + bi)

)
Hi =

σεh2

12ε
f ′′i +

aih
2

6ε
f ′i + fi.

Eq. (3.7) is solved by using the Thomas algorithm [2].
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4. Convergence analysis

The matrix-vector form of the tridiagonal system of Eq. (3.7) is

AY = C, (4.1)

where A = (mi j) , 1 ≤ i, j ≤ N -1, is a tridiagonal matrix of order N -1 with

mii+1 = σε
h2
− σa2i

12ε
+

σ(2a′i+bi)

12
+

a2i
6ε

+ σh
24

(a′′i + 2b′i)−
σhai(a

′
i+bi)

24ε
+ ai

2h

(
1 + h2

6ε
(a′i + bi)

)
,

mii =
2σa2i
12ε
− 2σε

h2
− 2σ(2a′i+bi)

12
− 2σa2i

6
+

σh2b′′i
12
− σh2aib

′
i

12ε
+

h2a2i b
′
i

6ε
+ bi,

mii−1 = σε
h2
− σa2i

12ε
+

σ(2a′i+bi)

12
+

σa2i
6ε
− σh

24
(a′′i + 2b′i) +

σhai(a
′
i+bi)

24ε

− ai
2h

(
1 + h2

6ε
(a′i + bi)

)
,

and C = (di) is a column vector with di = −fih where i = 1,2,. . . ,N -1 with local
truncation error

τi = σε{yi+1 − yi + yi−1
h2

− h2

12
y
4)
i − y′′i }+ a(x){

(
yi+1 − yi−1

2h
− h2

6
y
(3)
i

)
− y′i},

|τi| ≤ max
xi−1≤x≤xi+1

{
h4a(x)

5!

∣∣y(5)(x)
∣∣}+ max

xi−1≤x≤xi+1

{
2h4σε

6!

∣∣y(6)(x)
∣∣} ;

that is,
|τi| ≤ O

(
h4
)
. (4.2)

We have Y = (y0, y1, y2, . . . , yN)t . We also have

AȲ − T (h) = C, (4.3)

where Ȳ = (ȳ0, ȳ1, . . . , ȳN)t denotes the actual solution and
T (h) = (T0(h), T1(h), . . . , TN(h))t is the local truncation error. From Eqs. (4.1)
and (4.3), we get A

(
Ȳ − Y

)
= T (h);

Thus the error equation is
AE = T (h), (4.4)

where E = Ȳ − Y = (e0, e1, . . . , eN)t. Clearly, we have

Si =
N−1∑
j=1

mij = −σε
h2

+
σa2i
12ε
− σ(2a′i+bi)

12
− a2i

6ε
+

aih
2b′′i

12
− σh2aib

1
i

12ε
+

a2i h
2b1i

6ε
+ bi +

σha′′i
24ε

+
σhb′i
12
− σhaia

′
i

24ε
− σhaibi

24ε
+ ai

2h

(
1 + h2

6ε
(a′i + bi)

)
, for i = 1,

Si =
N−1∑
j=1

mij = bi − σh2b′′i
12
− σaib

′
ih

2

12ε
+

aih
2b′i

6ε

= bi +O(h2) = Bi0 , for i = 2, 3, . . . , N − 2,

Si =
N−1∑
j=1

mij = − σε
h2

+
σa2i
12ε
− σ(2a′i+bi)

12
− a2i

6ε
− σh(a′′i +2b′i)

24
+

σhai(a
′
i+bi)

24ε

− ai
2h

(
1 + h2

6ε
(a′i + bi)

)
+

aih
2b′′i

12
− σh2aib

1
i

12ε
+

a2i h
2b1i

6ε

+bi for i = N − 1.
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We can choose h; so that the matrix A is irreducible and monotone. It follows
that A−1 exists and its elements are non-negative. Hence, using Eq. (4.4), we get
E = A−1T (h) and

‖E‖ ≤ ‖A−1‖‖T (h)‖. (4.5)

Also from the theory of matrices, we have

N−1∑
i=1

m̄k,i Si = 1, k = 1, 2, . . . , N − 1,

where m̄k,i is (k, i) element of the matrix A−1 for some i0 between 1 and N − 1.
Therefore

N−1∑
i=1

m̄k,i ≤
1

min
1≤i≤N−1

Si
=

1

Bi0

≤ 1

|Bi0|
. (4.6)

We define ‖A−1‖ =
N−1∑
i=1

|m̄k,i| and ‖T (h)‖ =
N−1∑
i=1

|Ti(h)|. From Eqs. (4.2), (4.5),

and (4.6), we get

ej =
N−1∑
i=1

m̄k.iTi(h), j = 1, 2, . . . , N − 1,

which implies

ej ≤
O (h4)

|Bi0|
, j = 1, 2, . . . , N − 1,

where Bi0 = bi. Therefore,
‖E‖ = O

(
h4
)

;

that is, the proposed method reduces to a fourth order convergent on uniform
mesh.

5. Numerical examples

To demonstrate the method computationally, we have considered three numer-
ical examples. The numerical results are compared with the other method [10].
We have traced the graphs of the computed solution of the problem for different
values of δ and η.
The solution of the problem

εy
′′

+ p(x)y
′
+ q(x)y(x− δ) + r(x)y(x) + s(x)y(x+ η) = f(x)

under the boundary conditions

y(x) = φ(x) on − δ ≤ x ≤ 0

y(x) = γ(x) on 1 ≤ x ≤ 1 + η

is

yε(x) = c1e
m1(x) + c2e

m2(x) +
f

c
,

where

c1 =
[−f + γc+ em2(f − φc)]

(em1 − em2)c
,
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c2 =
[−f + γc+ em1(−f + φc)]

(em1 − em2)c
,

m1 =
−(p− qδ + sη) +

√
(p− qδ + sη)2 − 4εc

2ε
,

m2 =
−(p− qδ + sη)−

√
(p− qδ + sη)2 − 4εc

2ε
,

with c = (q + r + s).
Example 1. Consider the model boundary value problem of the type given by
Eqs. (2.1) and (2.2) having the boundary layer at the left-end

εy
′′

+ y
′ − 2y(x− δ)− 5y + y(x+ η) = 0

with boundary conditions y(x) = 1, −δ ≤ x ≤ 0, and y(x) = 1, 1 ≤ x ≤ 1 + η.

Table 1. The maximum absolute errors in solution of Example 1.

ε ↓ N = 8 N = 16 N = 32 N = 64 N = 128 N = 256
δ = η = 0.5 ε

10−1 0.0033038 0.0002201 1.29e− 005 7.98e− 007 4.96e− 008 3.10e− 009
10−2 0.0235839 0.0076541 0.0031533 0.0009899 5.76e− 005 3.42e− 006
10−3 0.0399002 0.0228969 0.0114511 0.0048135 0.0011596 0.0028588
10−4 0.0418088 0.0250830 0.0137409 0.0071056 0.0035127 0.0016458
10−5 0.0420041 0.0253101 0.0139842 0.0073554 0.0037635 0.0018932
10−6 0.0420237 0.0253329 0.0140087 0.0073808 0.0037892 0.0019190

Results in [10]

10−1 0.1201156 0.0711396 0.0448298 0.0269461 0.0151609 0.0077503
10−2 0.1872710 0.1069782 0.0590411 0.3079689 0.0156796 0.0079907
10−3 0.2042972 0.1191502 0.0687923 0.0365523 0.0189384 0.0096330
10−4 0.2061414 0.1204841 0.0698994 0.0372137 0.0193277 0.0098423
10−5 0.2063274 0.1206188 0.0700116 0.0372808 0.0136732 0.0098636
10−6 0.2063460 0.1206323 0.0700229 0.0372876 0.0193712 0.0098657

The maximum absolute errors are given in Tables 1 and 2 for different values
of the delay and advanced parameters with perturbation parameter. The effect
of the small parameters on the boundary layer solutions is shown in Figures 1
and 2.

Example 2. Consider the nonhomogeneous boundary value problem of the
type given by Eqs. (2.1) and (2.2) having the boundary layer at the left end

εy
′′

+ y
′ − 2y(x− δ) + y − y(x+ η) = −1

with boundary conditions y(x) = 1, −δ ≤ x ≤ 0, and y(x) = 1, 1 ≤ x ≤ 1 + η.
The maximum absolute errors are given in Table 3 for different values of the

delay and advance parameter values . The effect of the small parameters on the
boundary layer solutions is shown in Figures 3 and 4.
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Table 2. The maximum absolute errors in solution of Example 1
with ε = 0.1.

N = 8 N = 32 N = 128 N = 512
δ ↓ η = 0.5 ε
0.00 0.00265280 1.0220e− 005 3.9258e− 008 1.5344e− 010
0.05 0.00330379 1.2961e− 005 4.9696e− 008 1.9390e− 010
0.09 0.003858959 1.5323e− 005 5.8654e− 008 2.2897e− 010

η ↓ δ = 0.5 ε
0.00 0.00297213 1.1559e− 005 4.4365e− 008 1.7319e− 010
0.05 0.00330379 1.2961e− 005 4.9696e− 008 1.9390e− 010
0.09 0.00357767 1.4124e− 005 5.4113e− 008 2.1112e− 010

δ ↓ η = 0.5 ε(Results in [10])
0.00 0.09190267 0.03453494 0.01164358 0.00300463
0.05 0.10233615 0.03823132 0.01295871 0.00335137
0.09 0.11018870 0.04110846 0.01400144 0.00362925

η ↓ δ = 0.5 ε

0.00 0.09720079 0.03640446 0.01229476 0.00317786
0.05 0.10233615 0.03823132 0.01295871 0.00335137
0.09 0.10632014 0.03965833 0.01348348 0.00349050

Figure 1. figure
Numerical solution of Example 1 for different values of δ with ε=0.1 and η=0.05.

Example 3. Consider the model boundary value problem of the type given by
Eqs. (2.1) and (2.2) having the boundary layer at the right end

εy
′′ − y′ − 2y(x− δ) + y − y(x+ η) = 0
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Figure 2. Numerical solution of Example 1 for different values of
η with ε=0.1 and δ=0.05.

Table 3. The maximum absolute errors in solution of Example 2.

ε ↓ N = 8 N = 16 N = 32 N = 64 N = 128 N = 256
δ = η = 0.5ε

10−1 0.0004362 2.64e− 005 1.58e− 006 9.99e− 008 6.22e− 009 3.89e− 010
10−2 0.0059028 0.0016684 0.0030736 0.0001274 7.60e− 006 4.51e− 007
10−3 0.0075977 0.0040202 0.0019920 0.0009022 0.00030729 0.00031863
10−4 0.0007726 0.0041663 0.0021546 0.0010890 0.00054083 0.00026222
10−5 0.0007738 0.0041800 0.0021689 0.0011038 0.00055620 0.00027856
10−6 0.0077398 0.0041813 0.0021703 0.0011052 0.00055765 0.00028002

Results in [10]

10−1 0.0857969 0.0512956 0.0320213 0.0192472 0.0109835 0.0055359
10−2 0.1337650 0.0764130 0.0421722 0.0219977 0.0111997 0.0057076
10−3 0.1459266 0.0851073 0.0491373 0.0261088 0.0135274 0.0068807
10−4 0.1472439 0.0860601 0.0499281 0.0265812 0.0138055 0.0070302
10−5 0.1473767 0.0861563 0.0500083 0.0266292 0.0138338 0.0070454
10−6 0.1473900 0.0861659 0.0500163 0.0266340 0.0138366 0.0070469

with boundary conditions y(x) = 1, −δ ≤ x ≤ 0, and y(x) = −1, 1 ≤ x ≤ 1 + η.
The maximum absolute errors are given in Table 4 with ε = 0.1 for different

values of the delay and advance parameters. The effect of the small parameters
on the boundary layer solutions is shown in Figures 5 and 6.

6. Discussions and conclusions

A fourth order finite difference method with fitting factor has been presented
for solving singularly perturbed differential-difference equations with delay as well
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Figure 3. Numerical solution of Example 2 for different values of
δ with ε=0.1 and η=0.05.

Figure 4. Numerical solution of Example 2 for different values of
η with ε=0.1 and δ=0.05.

as advance parameters. A fitting factor is assigned to this scheme to control rapid
behavior in the boundary layer due to the perturbation parameter when it takes
small values. To demonstrate the method computationally, two examples with
left-end and one with right-end boundary layer have been solved for different
values of the delay, advance, and perturbation parameters. MATLAB is used for
the numerical results and graphs. Maximum absolute errors in the solution of the
problems are presented in tables. To support the method, numerical results taken
by the proposed scheme are compared with the results of Kadalbajoo and Sharma
[10]. It is observed that the present method approximates the exact solution very
well for which other classical finite difference methods fail to give good results.
The effect of the delay and advance parameters on the solutions has also been
investigated and shown in graphs. From the numerical results, we noticed that
the method gives good results even for h > ε. From the graphs, we observed



120 D. KUMARA SWAMY, K. PHANEENDRA, Y.N. REDDY

Table 4. The maximum absolute errors in solution of Example 3
with ε = 0.1.

N = 8 N = 32 N = 128 N = 512
δ ↓ η = 0.5 ε
0.00 0.002425427 8.4802e− 006 3.3166e− 008 1.2946e− 010
0.05 0.001907515 6.7239e− 006 2.6104e− 008 1.0189e− 010
0.09 0.001543162 5.4589e− 006 2.1118e− 008 8.2514e− 011

η ↓ δ = 0.5 ε
0.00 0.001458758 5.1627e− 006 1.9978e− 008 7.8025e− 011
0.05 0.001907515 6.7239e− 006 2.6104e− 008 1.0189e− 010
0.09 0.002316112 8.1139e− 006 3.1667e− 008 1.2364e− 010

δ ↓ η = 0.5 ε(Results in [10])
0.00 0.09930002 0.03685072 0.01331683 0.00342882
0.05 0.09997296 0.03218424 0.01167102 0.00299572
0.09 0.10044578 0.02850398 0.01038902 0.00266379

η ↓ δ = 0.5 ε

0.00 0.10055269 0.02759534 0.01007834 0.00258299
0.05 0.09997296 0.03218424 0.01167102 0.00299572
0.09 0.09944067 0.03591410 0.01297367 0.00334044

Figure 5. Numerical solution of Example 3 for different values of
η with ε=0.1 and η=0.05.

that, when the solution of the boundary-value problem exhibits layer behavior
on the left side, the effect of delay or advance on the solution in the boundary
layer region is negligible while in the outer region, it is considerable; that is, the
increase in the delay increases the width of outer region while the increase in the
advance decreases the width of outer region (Figures 1–4). When the solution of
the boundary-value problem exhibits layer behavior on the right side, the changes
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Figure 6. Numerical solution of Example 3 for different values of
η with ε=0.1 and δ=0.05.

in delay or advance affect the solution in boundary layer region as well as outer
region. The thickness of the layer increases as the size of the delay increases while
it decreases as the size of the advance increases (Figures 5–6).
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