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GENERALIZED RICCI SOLITONS
ON TRANS-SASAKIAN MANIFOLDS
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Abstract. The object of the present research is to shows that a trans-Sasakian
manifold, which also satisfies the Ricci soliton and generalized Ricci soliton
equation, satisfying some conditions, is necessarily the Einstein manifold.

1. Introduction

In 1982, Hamilton [8] introduced that the Ricci solitons move under the Ricci
flow simply by diffeomorphisms of the initial metric; that is, they are stationary
points of the Ricci flow given by

∂g

∂t
= −2Ric(g). (1.1)

A Ricci soliton (g, V, λ) on a Riemannian manifold is defined by

LV g + 2S + 2λg = 0, (1.2)

where S is the Ricci tensor, LV is the Lie derivative along the vector field V on M ,
and λ is a real scalar. Ricci soliton is said to be shrinking, steady, or expanding
according as λ < 0, λ = 0, or λ > 0, respectively.

If the vector field V is the gradient of a potential function -ψ, then g is called
a gradient Ricci soliton and equation (1.2) assumes the form Hessψ = S + λg.

On the other hand, the roots of contact geometry lie in differential equations
as in 1872 Sophus Lie introduced the notion of contact transformation as a geo-
metric tool to study systems of differential equations. This subject has manifold
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connections with the other fields of pure mathematics and substantial applica-
tions in applied areas such as mechanics, optics, phase space of dynamical system,
thermodynamics, and control theory.

The importance of Ricci soliton comes from the facts that they are correspond-
ing to self-similar solutions of the Ricci flow and at the same time they are natural
generalizations of Einstein metrics. The concept is named after Gregorio Ricci–
Curbastro. Ricci flow solutions are invariant under diffeomorphisms and scaling,
so one is led to consider solutions that evolve exactly in these ways. A metric g0
on a smooth manifold M is a Ricci soliton if there exist a function σ(t) and a
family of diffeomorphisms {η(t)} ⊂ Diff(M) such that

g(t) = σ(t)η(t)∗g0

is a solution of the Ricci flow. In this expression, η(t)∗g0 refers to the pullback
of the metric g0 by the diffeomorphism η(t). Equivalently, a metric g0 is a Ricci
soliton if and only if it satisfies equation (1.2), which is a generalization of the
Einstein condition for the metrics

Ric(g0) = λg0.

Some generalizations, like, gradient Ricci solitons [2], quasi Einstein manifolds [3],
and generalized quasi Einstein manifolds [4], play an important role in solutions
of geometric flows and describe the local structure of certain manifolds. In 2016,
Nurowski and Randall [4] introduced the notion of generalized Ricci soliton as a
class of overdetermined system of equations

LXg + 2aX] ⊗X] − 2bS − 2λg = 0, (1.3)

where LXg and X] denote, respectively, the Lie derivative of the metric g in
the directions of vector field X and the canonical one-form associated to X, and
some real constants a, b, and λ.
In 1985, Oubina [15] introduced a new class of almost contact metric manifolds
known as trans-Sasakian manifolds. This class consists of both Sasakian and
Kenmotsu structures. The above manifolds are studied by several authors, like,
Blair [1], Marrero [14], and Kenmotsu [11]. In 1925, Levy [13] obtained the nec-
essary and sufficient conditions for the existence of such tensors. later, Sharma
[18] initiated the study of Ricci solitons in almost contact Riemannian geometry.
Followed by Tripathi [21], Nagaraja et al. [16], Turan [22], and others extensively
studied Ricci solitons in almost contact metric manifold. Therefore, motivated
by these studies in the present paper, author studies the generalized Ricci soliton
in trans-Sasakian manifolds. Trans-Sasakian manifolds arose in a natural way
from the classification of almost contact metric structures, and they appear as a
natural generalization of both Sasakian and Kenmotsu manifolds. In [19] Siddiqi
also studied some properties of conformal η-Ricci solitons in δ-Lorentzian trans-
Sasakian manifolds which is closely related with this paper.
The main result of this paper is Theorem 3.1, in which we have to find the con-
ditions for an n-dimensional trans-Sasakian manifold admitting generalized Ricci
soliton will be an Einstein manifold.
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2. Preliminaries

A differentiable manifold M is said to be an almost contact metric manifold
equipped with almost contact metric structure (φ, ξ, η, g) consisting of a (1, 1)
tensor field φ, a vector field ξ, a one-form η, and an indefinite metric g such that

φ2X = −X + η(X)ξ, η(ξ) = 1, η ◦ φ = 0, φξ = 0, (2.1)

g(φX, φY ) = g(X, Y )− η(X)η(Y ), η(X) = g(X, ξ) (2.2)

for all X, Y ∈M , ξ ∈ Γ(TM) and one-form η ∈ Γ(T̄M).

In [21], Tanno classified the connected almost contact metric manifold. For such
a manifold, the sectional curvature of the plane section containing ξ is constant,
say c. He showed that they can be divided into three classes. (1) homogeneous
normal contact Riemannian manifolds with c > 0. Other two classes can be seen
in Tanno [20].

In [9], Grey and Harvella introduced the classification of almost Hermitian
manifolds; there appears a class W4 of Hermitian manifolds which is closely re-
lated to the conformal Kaehler manifolds. The class C6 ⊕ C5 (see [1], [5], [14])
coincides with the class of trans-Sasakian structure of type (α, β). In fact, the
local nature of the two subclasses, namely C6 and C5 of trans-Sasakian structures
are characterized completely.

An almost contact metric structure on M is called a trans-Sasakian (see [17],
[14]) if (M × R, J,G) belongs to the class W4, where J is the almost complex
structure on M ×R defined by

J

(
X, f

d

dt

)
=

(
φ(X)− fξ, η(X)

d

dt

)
for all vector fields X on M and smooth functions f on M × R and G is the
product metric on M ×R. This may be expressed by the condition

(∇Xφ)Y = α(g(X, Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX) (2.3)

where α and β are some scalar functions. We note that trans-Sasakian structure
of type (0, 0), (α, 0), and (0, β) are the cosymplectic, α-Sasakian, and β-Kenmotsu
manifold, respectively. In particular, if α = 1, β = 0 and α = 0, β = 1, then a
trans-Sasakian manifold reduces to a Sasakian and Kenmotsu manifolds, respec-
tively. From (1.3), it follows that

∇Xξ = −αφX + β[X − η(X)]ξ (2.4)

and

(∇Xη)Y = −αg(φX, Y ) + β[g(X, Y )− η(X)η(Y )]. (2.5)

for any vector fields X and Y on M , ∇ denotes the Levi–Civita connection with
respect to g, α and β are smooth functions on M . The existence of condition
(1.3) is ensured by the above discussion.

The Riemannian curvature tensor R with respect to Levi–Civita connections
∇ and the Ricci tensor S of a Riemannian manifold M are defined by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z, (2.6)
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S(X, Y ) =
n∑
i=1

g(R(X, ei)ei, Y ) (2.7)

for X, Y, Z ∈ Γ(TM), where ∇ is with respect to the Riemannian metric g and
{e1, e2, . . . , ei}, where 1 ≤ i ≤ n is the orthonormal frame.

Given a smooth function ψ on M , the gradient of ψ is defined by

g(gradψ,X) = X(ψ), (2.8)

and the Hessian of ψ is defined by

(Hessψ)(X, Y ) = g(∇Xgradψ, Y ), (2.9)

where X, Y ∈ Γ(TM). For X ∈ Γ(TM), we define X] ∈ Γ(T̄M) by

X](Y ) = g(X, Y ). (2.10)

The generalized Ricci soliton equation in Riemannian manifold M is defined
in [16] by

LXg = −2aX] �X] + 2bS + 2λg, (2.11)

where X ∈ Γ(TM) and LXg is the Lie-derivative of g along X given by

(LXg)(Y, Z) = g(∇YX,Z) + g(∇ZX, Y ) (2.12)

for all Y, Z ∈ Γ(TM), and a, b, λ ∈ R. Equation (2.11) is a generalization of

(1) Killing’s equation (a = b = λ = 0),
(2) equation for homotheties (a = b = 0),
(3) Ricci soliton (a = 0, b = −1),
(4) case of Einstein–Weyl (a = 1, b = −1

n−2),
(5) metric projective structures with skew-symmetric Ricci tensor in projec-

tive class (a = 1, b = −1
n−2 , λ = 0),

(6) vacuum near-horizon geometry equation (a = 1, b = 1
2
) (see [6], [10], [12]).

Equation (2.11), is also a generalization of Einstein manifolds [4]. Note that, if
X = gradψ, where ψ ∈ C∞(M), the generalized Ricci soliton equation is given
by

Hessψ = −adψ � dψ + bS + λg. (2.13)

3. Main results

In an n-dimensional trans-Sasakian manifold M , we have the following rela-
tions:

R(X, Y )ξ = (α2 − β2)[η(Y )X − η(X)Y ] + 2αβ[η(Y )φX − η(X)φY ] (3.1)

+ [(Y α)φX − (Xα)φY + (Y β)φ2X − (Xβ)φ2Y ],

S(X, ξ) = [(n− 1)(α2 − β2)− (ξβ)]η(X)− ((φX)α)− (n− 2)(Xβ), (3.2)

Qξ = (n− 1)(α2 − β2)− (ξβ))ξ + φ(gradα)− 2n(gradβ), (3.3)
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where R is curvature tensor, while Q is the Ricci operator given by S(X, Y ) =
g(QX, Y ).
Further, for a trans-Sasakian manifold, we have

φ(gradα) = 2n(gradβ), (3.4)

and

2αβ + (ξα) = 0. (3.5)

Using (3.4) and (3.5), for constants α and β, we have

R(ξ,X)Y = (α2 − β2)[g(X, Y )ξ − η(Y )X], (3.6)

R(X, Y )ξ = (α2 − β2)[η(Y )X − η(X)Y ], (3.7)

η(R(X, Y )Z) = (α2 − β2)[g(Y, Z)η(X)− g(X,Z)η(Y )], (3.8)

S(X, ξ) = [((n− 1)(α2 − β2)]η(X), (3.9)

Qξ = [(n− 1)(α2 − β2)]ξ. (3.10)

An important consequence of (2.4) is that ξ is a geodesic vector field; that is,

∇ξξ = 0. (3.11)

For an arbitrary vector field X, we have that

dη(ξ,X) = 0. (3.12)

The ξ-sectional curvature Kξ of M is the sectional curvature of the plane spanned
by ξ and a unit vector field X. From (3.7), we have

Kξ = g(R(ξ,X), ξ,X) = (α2 − β2). (3.13)

It follows from (3.13) that the ξ-sectional curvature does not depend on X.

Theorem 3.1. Let M be a trans-Sasakian manifold of dimension n and let it
satisfy the generalized Ricci soliton (2.13) with condition a[λ+(n−1)b(α2−β2)] 6=
−1; then ψ is a constant function. Furthermore, if b 6= 0, then M is an Einstein
manifold.

From Theorem 3.1, we get the following remarks.

Remark 3.2. let M be a trans-Sasakian manifold which satisfies the gradient Ricci
soliton equation Hessψ = −S + λg; then ψ is a constant function and M is an
Einstein manifold.

Remark 3.3. In a trans-Sasakian manifold M , there is no nonconstant smooth
function ψ such that Hessψ = λg for some constant λ.

For the proof of Theorem 3.1, first we need to prove the following lemmas.

Lemma 3.4. Let M be a trans-Sasakian manifold. Then we have

(Lξ(LXg))(Y, ξ) = (α2 − β2)g(X, Y ) + g(∇ξ∇ξX, Y ) + Y g(∇ξX, ξ), (3.14)

where X, Y ∈ Γ(TM) and Y is orthogonal to ξ.
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Proof. From the property of Lie-derivative, we note that

(Lξ(LXg))(Y, ξ) = ξ((LXg)(Y, ξ))− (LXg)(LξY, ξ)− (LXg)(Y,Lξξ); (3.15)

since LξY = [ξ, Y ], Lξξ = [ξ, ξ], by using (2.12) and (3.15), we have

(Lξ(LXg))(Y, ξ) = ξg(∇YX, ξ) + ξg(∇ξX, Y )− g(∇[ξ,Y ]X, ξ) (3.16)

− g(∇ξX, [ξ, Y ])

= g(∇ξ∇YX, ξ) + g(∇YX,∇ξξ) + g(∇ξ∇ξX, Y ) + g(∇ξX,∇ξY )

− g(∇ξX,∇ξY )− g(∇[ξ,Y ]X, ξ) + g(∇ξX.∇Y ξ),

From (2.4), we get ∇ξξ = φξ = 0; so that we get

(Lξ(LXg))(Y, ξ) = g(∇ξ∇YX, ξ) + g(∇ξ∇ξX, Y )− g(∇[ξ,Y ]X, ξ) (3.17)

+ Y g(∇ξX, ξ)− g(∇Y∇ξX, ξ);

using (3.6) and (3.17), we obtain

(Lξ(LXg))(Y, ξ) = g(R(ξ, Y )X, ξ) + g(∇ξ∇ξX, Y ) + Y g(∇ξX, ξ). (3.18)

Now from (3.6), with g(Y, ξ) = 0, we get

g(R(ξ, Y )X, ξ) = g(R(Y, ξ)ξ,X) = (α2 − β2)g(X, Y ). (3.19)

the lemma follows from (3.17) and (3.18).
�

Now, we have another useful lemma.

Lemma 3.5. Let M be a Riemannian manifold, and let ψ ∈ C∞(M). Then we
have

(Lξ(dψ � dψ))(Y, ξ) = Y (ξ(ψ))ξ(ψ) + Y (ψ)ξ(ξ(ψ)), (3.20)

where ξ, Y ∈ Γ(TM).

Proof. We calculate

(Lξ(dψ � dψ))(Y, ξ) = ξ(Y (ψ)ξ(ψ)− [ξ, Y ](ψ)ξ(ψ)− Y (ψ)[ξ, ξ](ψ)

= ξ(Y (ψ))ξ(ψ) + Y (ψ)ξ(ξ(ψ))− [ξ, Y ](ψ)ξ(ψ);

since [ξ, Y ](ψ) = ξ(Y (ψ))− Y (ξ(ψ)), we get

(Lξ(dψ � dψ))(Y, ξ) = [ξ, Y ](ψ)ξ(ψ) + Y (ξ(ψ))ξ(ψ)

+ Y (ψ)ξ(ξ(ψ))− [ξ, Y ](ψ)ξ(ψ)

= Y (ξ(ψ))ξ(ψ) + Y (ψ)ξ(ξ(ψ)).

�

Lemma 3.6. Let M be a trans-Sasakian manifold of dimension n, which satisfies
the generalized Ricci soliton equation (2.13). Then we have

∇ξ gradψ = [λ+ b(n− 1)(α2 − β2)]ξ − aξ(ψ)gradψ. (3.21)
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Proof. Let Y ∈ Γ(TM). From the definition of Ricci curvature S (2.7) and the
curvature condition (3.7), we have

S(ξ, Y ) = g(R(ξ, ei)ei, Y )

= g(R(ei, Y )ξ, ei)

= (α2 − β2)[η(Y )g(ei, ei)− η(ei)g(Y, ei)

= (α2 − β2)[nη(Y )− η(Y )]

= (n− 1)(α2 − β2)η(Y )

= (n− 1)(α2 − β2)g(ξ, Y ),

where {e1, e2, . . . , ei}, and 1 ≤ i ≤ n is an orthonormal frame on M implies that

λg(ξ, Y ) + bS(ξ, Y ) = λg(ξ, Y ) + b(n− 1)(α2 − β2)g(ξ, Y ) (3.22)

= [λ+ b(n− 1)(α2 − β2)]g(ξ, Y ).

From (2.13) and (3.22), we obtain

(Hessψ)(ξ, Y ) = −aξ(ψ)(Y )(ψ) + [λ+ b(n− 1)(α2 − β2)]g(ξ, Y ) (3.23)

= −aξ(ψ)g(gradψ, Y ) + [λ+ b(n− 1)(α2 − β2)]g(ξ, Y );

the lemma follows from equation (3.23) and the definition of Hessian (2.7). �

Now, with help of Lemmas 3.4, 3.5, and 3.6, we can prove Theorem 3.1.

Proof of Theorem 3.1. Let Y ∈ Γ(TM) be such that g(ξ, Y ) = 0; from Lemma
3.4, with X = grad ψ, we have

2(Lξ(Hessψ))(Y, ξ) = Y (ψ) + g(∇ξ∇ξ gradψ, Y ) + Y g(∇ξ gradψ, ξ); (3.24)

from Lemma 3.6 and equation (3.24), we get

2(Lξ(Hessψ))(Y, ξ) = Y (ψ) + [λ+ b(n− 1)(α2 − β2)]g(∇ξξ, Y )

− ag(∇ξ(ξ(ψ)grad ψ), Y )

+ [λ+ b(n− 1)(α2 − β2)]Y g(ξ, ξ)− aY (ξ(ψ)2). (3.25)

Since ∇ξξ = 0 and g(ξ, ξ) = 1, from equation (3.25), we obtain

2(Lξ(Hessψ))(Y, ξ) = Y (ψ)− aξ(ξ(ψ))Y (ψ)− aξ(ψ)g(∇ξ gradψ, Y ) (3.26)

− 2aξ(ψ)Y (ξ(ψ)).

From Lemma 3.6 and equation (3.26) and since g(ξ, Y ) = 0, we have

2(Lξ(Hessψ))(Y, ξ) = Y (ψ)− aξ(ξ(ψ))Y (ψ) + a2ξ(ψ)2Y (ψ) (3.27)

− 2aξ(ψ)Y (ξ(ψ)).

Note that, from (2.11) and (2.12), we have Lξg = 0, which is a Killing vector
field; it implies that LξS = 0; taking the Lie derivative of the generalized Ricci
soliton equation (2.13) yields

(α2 − β2)Y (ψ)− aξ(ξ(ψ))Y (ψ) + a2ξ(ψ)2Y (ψ)− 2aξ(ψ)Y (ξ(ψ)) (3.28)

= −2aY (ξ(ψ))ξ(ψ)− 2aY (ψ)ξ(ξ(ψ)),
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which is equivalent to

Y (ψ)[(α2 − β2) + aξ(ξ(ψ)) + a2ξ(ψ)2] = 0; (3.29)

according to Lemma 3.6, we have

aξ(ξ(ψ)) = aξg(ξ, grad ψ) (3.30)

= ag(ξ,∇ξ gradψ)

= a[λ+ b(n− 1)(α2 − β2)]− a2ξ(ψ)2,

by equations (3.29) and (3.30), we obtain

Y (ψ)[1 + a(λ+ b(n− 1)(α2 − β2))] = 0; (3.31)

since a[λ + b(n − 1)(α2 − β2)] 6= −1, we find that Y (ψ) = 0; that is, gradψ is
parallel to ξ. Hence grad ψ = 0 as D = kerη is not integrable any where, which
means ψ is a constant function. �

Now, for particular values of α and β, we have following cases:

• For α = 0 or (β = 1), we can state

Corollary 3.7. Let M be a β-Kenmotsu (or Kenmotsu) manifold of di-
mension n, and it satisfies the generalized Ricci soliton (2.13) with condi-
tion a[λ− (n−1)bβ2)] 6= −1; then ψ is a constant function. Furthermore,
if b 6= 0, then M is an Einstein manifold.

• For β = 0, or (α = 1) we can state

Corollary 3.8. Let M be a α-Sasakian (or Sasakian) manifold of dimen-
sion n, and it satisfies the generalized Ricci soliton (2.13) with condition
a[λ + (n − 1)bα2)] 6= −1; then ψ is a constant function. Furthermore, if
b 6= 0, then M is an Einstein manifold.
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