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ON APPROXIMATION BY (p, q)-MEYER–KÖNIG–ZELLER
DURRMEYER OPERATORS
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Abstract. In this paper, we introduce a Durrmeyer type modification of
Meyer–König–Zeller operators based on (p, q)-integers. The rate of conver-
gence of these operators is explored with the help of Korovkin type theorems.
We establish some direct results for proposed operators. We also obtain sta-
tistical approximation properties of operators. In the last section, we show
the rate of convergence of (p, q)-Meyer–König–Zeller Durrmeyer operators for
some functions by means of MATLAB programming.

1. Introduction and Preliminaries

Recently, Mursaleen et al. [12] introduced (p, q)-analogue of Bernstein type
operators. After that many researchers gave the (p, q)-analogue of various well
known positive linear operators and studied their approximation properties; for
details, we refer the reader to [1, 7, 11, 16, 17]. Now, We begin by recalling certain
notation of (p, q) calculus.

Let 0 < q < p ≤ 1. The (p, q)-integer is defined as

[n]p,q =
pn − qn

p− q
, n = 1, 2 . . . ,

and the (p, q)-factorial is given by

[n]p,q! =

{
[1]p,q[2]p,q . . . [n]p,q, n ≥ 1,

1, n=0.
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For integers 0 ≤ k ≤ n, the (p, q)-binomial coefficient is defined as[
n
k

]
p,q

=
[n]p,q!

[k]p,q![n− k]p,q!
.

Further, (p, q)-binomial function is expressed as

(x+ y)np,q =
n−1∏
j=0

(pjx+ qjy).

Recently, Sharma [16] introduced the (p, q)-Beta function for s, t ∈ <+ as

βp,q(t, s) =

∫ 1

0

xt−1(1− qx)s−1p,q dp,qx

and also obtained the relation between (p, q)-Beta function and q-Beta function
as

βp,q(t, s) = p(s−1)(s−2)/2−(t−1)β q
p
(t, s),

where, β q
p
(t, s) is the q

p
-analogue of the beta function. Using βq(t, s) = [t−1]!q [s−1]!q

[s+t−1]!q
and [n]! q

p
= p−n(n−1)/2[n]!p,q, we can write

βp,q(t, s) = p((s+t−1)(s+t−2)−(t−1)(t−2))/2−t+1 [t− 1]!p,q[s− 1]!p,q
[s+ t− 1]!p,q

. (1.1)

For p = 1, all the notations of (p, q)-calculus are reduced to q-calculus. Further
details on (p, q)-calculus can be found in [3, 13, 14].

In a recent study, Kadak et al. [10] introduced a (p, q)-analogue of Meyer–
König–Zeller operators, for 0 < q < p ≤ 1, on a function defined on [0, 1] as

Mn,p,q(f ;x) =
1

p
n(n+1)

2

∞∑
k=0

[
n+ k
k

]
p,q

xkp−kn(1− x)n+1
p,q f

(
pn[k]p,q

[n+ k]p,q

)
, x ∈ [0, 1)

and Mn,p,q(f ; 1) = f(1) for x = 1.
Further, the moment of the operators are given in the following lemma.

Lemma 1.1 (see[10]). For all x ∈ [0, 1] and 0 < q < p ≤ 1, we have

Mn,p,q(1;x) = 1,

Mn,p,q(t;x) = x,

x2 ≤Mn,p,q(t
2;x) ≤ pn

[n+ 1]p,q
x+ x2.

In the past two decades, Studies of Durrmeyer variants of various operators re-
mained the center of attraction for the researchers, for which we refer the reader
to [2, 6, 8, 15, 9]. Motivated by these studies, now we introduce the Meyer–König–
Zeller Durrmeyer operators based on (p, q)-integers in the following section.
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2. Construction of operator and moment estimate

For 0 < q < p ≤ 1 and the function f defined on [0, 1], the (p, q)-Meyer–König–
Zeller Durrmeyer operators are defined as follows:

M̃
(p,q)
n,k (f ;x) =

[n+ 1]p,q
pn

∞∑
k=0

m
(p,q)
n,k (x)(pq)−k

∫ 1

0

b
(p,q)
n,k (qt)f(t)dp,qt, 0 ≤ x < 1,

here,

m
(p,q)
n,k (x) =

1

pkn+n(n+1)/2

[
n+ k
k

]
p,q

xk(1− x)n+1
p,q ,

b
(p,q)
n,k (qt) =

1

pk(n−1)+n(n−1)/2

[
n+ k + 1

k

]
p,q

(qt)k(1− qt)np,q

and M̃
(p,q)
n,k (f ; 1) = 1. Before computing the moments of (p, q)-Meyer–König–

Zeller Durrmeyer operators, we prove some lemmas as follows.

Lemma 2.1. Let 0 < q < p ≤ 1 and let s = 0, 1, 2, . . .. We have∫ 1

0

b
(p,q)
n,k (qt)tsdp,qt =

[n+ k + 1]p,q![k + s]p,q!

[k]p,q![n+ k + s+ 1]p,q!

(pq)k

[n+ 1]p,q
pn(s+1).

Proof. This lemma can be proved directly by using the definition of (p, q)-beta
operator and Equation (1.1). �

Lemma 2.2. For r = 1, 2 . . . and n > r, we have

∞∑
k=0

[
n+ k
k

]
p,q

xk(1− x)n+1
p,q

[n+ k]rp,q
p(r−n)k =

r−1∏
j=0

(pn−j − qn−jx)

[n]rp,q
p

(n−r)(n−r+1)
2 ,

where [n]rp,q = [n]p,q[n− 1]p,q[n− 2]p,q . . . [n− r + 1]p,q.

Lemma 2.3. The following inequality holds:

1

[n+ k + r]p,q
≤ 1

qr[n+ k]p,q
, r ≥ 0.

Theorem 2.4. For all x ∈ [0, 1], n ∈ N and 0 < q < p ≤ 1, we have

M̃
(p,q)
n,k (e0;x) = 1,

x

q2

(
1− q + 1

[n]p,q

)
≤ M̃

(p,q)
n,k (e1;x) ≤ x

q
+

(pn − qnx)

q2[n]p,q
,

M̃
(p,q)
n,k (e2;x) ≤ x2

q2
+

(p+ q)2

q5
(pn − qnx)

[n]p,q
x

+
p(p+ q)

q6
(pn − qnx)(pn−1 − qn−1x)

[n]p,q[n− 1]p,q
,

where ei = ti for i = 0, 1, 2.
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Proof. First moment can be directly computed. We use the moments obtained
for (p, q)-Meyer–König–Zeller operators in Lemma 1.1 to estimate moments of
proposed Durrmeyer operators. By using Lemma 2.1 for s = 1 and Lemma 2.2,
we get the lower bound of second moment as follows:

M̃
(p,q)
n,k (e1, x) =

∞∑
k=0

m
(p,q)
n,k (x)

[n + k + 1]p,q![k + 1]p,q!

[k]p,q![n + k + 2]p,q!
pn

= pn
∞∑
k=0

1

pkn+n(n+1)/2

[
n + k
k

]
p,q

xk(1− x)n+1
p,q

[k + 1]p,q
[n + k + 2]p,q

= pn
∞∑
k=1

1

pkn+n(n+1)/2

[
n + k − 1
k − 1

]
p,q

xk(1− x)n+1
p,q

[k + 1]p,q
[k]p,q

[n + k]p,q
[n + k + 2]p,q

≥ pn
∞∑
k=0

1

p(k+1)n+n(n+1)/2

[
n + k
k

]
p,q

xk+1(1− x)n+1
p,q

[n + k + 1]p,q
[n + k + 3]p,q

=
x

q

∞∑
k=0

m
(p,q)
n,k (x)

(
[n + k + 2]p,q − pn+k+1

[n + k + 3]p,q

)

≥ x

q

∞∑
k=0

m
(p,q)
n,k (x)

(
[n + k + 2]p,q
[n + k + 3]p,q

− 1

[n]p,q

)

=
x

q

∞∑
k=0

m
(p,q)
n,k (x)

[n + k + 2]p,q
[n + k + 3]p,q

− x

[n]p,qq

=
x

q2

∞∑
k=0

m
(p,q)
n,k (x)

(
[n + k + 3]p,q − pn+k+2

[n + k + 3]p,q

)
− x

[n]p,qq

≥ x

q2

∞∑
k=0

m
(p,q)
n,k (x)

(
1− 1

[n]p,q

)
− x

[n]p,qq

=
x

q2

(
1− q + 1

[n]p,q

)
.

By using the inequality of Lemma 2.3, the upper bound can be obtained as
below:

M̃
(p,q)
n,k (e1, x) = pn

∞∑
k=0

m
(p,q)
n,k (x)

[k + 1]p,q
[n+ k + 2]p,q

≤ pn
∞∑
k=0

m
(p,q)
n,k (x)

pk + q[k]p,q
q2[n+ k]p,q

=
pn

q2

∞∑
k=0

m
(p,q)
n,k (x)

pk

[n+ k]p,q
+

1

q

∞∑
k=0

m
(p,q)
n,k (x)

pn[k]p,q
[n+ k]p,q
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=
pn

q2

∞∑
k=0

1

pkn + n(n+ 1)/2

[
n+ k
k

]
p,q

xk(1− x)n+1
p,q

pk

[n+ k]p,q
+
x

q

=
(pn − qnx)

q2[n]p,q
+
x

q
.

To estimate the third moment, we use Lemma 2.1 for s = 2 and Lemma 2.2 as
follows:

M̃
(p,q)
n,k (e2, x) =

∞∑
k=0

m
(p,q)
n,k (x)

[n+ k + 1]p,q![k + 2]p,q!

[k]p,q![n+ k + 3]p,q!
p2n

= p2n
∞∑
k=0

m
(p,q)
n,k (x)

[k + 2]p,q[k + 1]p,q
[n+ k + 3]p,q[n+ k + 2]p,q

≤ p2n

q6

∞∑
k=0

m
(p,q)
n,k (x)

(p+ q)p2k + (p+ 2q)qpk[k]p,q + q3[k]2p,q
[n+ k]p,q[n+ k − 1]p,q

=
p

−n(n−3)
2

q6
(p+ q)

∞∑
k=0

p−kn
[
n+ k
k

]
p,q

xk(1− x)n+1
p,q

[n+ k]p,q[n+ k − 1]p,q
p2k

+
p

−n(n−3)
2

q5
(p+ 2q)

∞∑
k=0

p−kn
[
n+ k
k

]
p,q

xk(1− x)n+1
p,q

[n+ k]p,q[n+ k − 1]p,q
pk[k]p,q

+
p

−n(n−3)
2

q3

∞∑
k=0

p−kn
[
n+ k
k

]
p,q

xk(1− x)n+1
p,q

[n+ k]p,q[n+ k − 1]p,q
[k]2p,q

= I1 + I2 + I3.

By using Lemma 2.3, I1 can be obtained as

I1 =
p(p+ q)

q6
(pn − qnx) (pn−1 − qn−1x)

[n]p,q[n− 1]p,q
.

Computations for I2 are as follows:

I2 =
p

−n(n−3)
2

q5
(p+ 2q)

∞∑
k=1

p−kn
[
n+ k − 1
k − 1

]
p,q

xk(1− x)n+1
p,q

[n+ k − 1]p,q
pk

=
p

−n(n−1)
2

+1

q5
(p+ 2q)x

∞∑
k=0

p−kn
[
n+ k
k

]
p,q

xk(1− x)n+1
p,q

[n+ k]p,q
pk

=
p(p+ 2q)

q5[n]p,q
(pn − qnx)x.
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I3 can be obtained as follows:

I3 =
p

−n(n−3)
2

q3

∞∑
k=1

p−kn
[
n+ k − 1
k − 1

]
p,q

xk(1− x)n+1
p,q

[n+ k − 1]p,q
[k]p,q

=
p

−n(n−1)
2

q3
x
∞∑
k=0

p−kn
[
n+ k
k

]
p,q

xk(1− x)n+1
p,q

[n+ k]p,q
[k + 1]p,q

=
p

−n(n−1)
2

q3
x

∞∑
k=0

p−kn
[
n+ k
k

]
p,q

xk(1− x)n+1
p,q

[n+ k]p,q
pk

+
p

−n(n−1)
2

q3
x
∞∑
k=0

p−kn
[
n+ k
k

]
p,q

xk(1− x)n+1
p,q

[n+ k]p,q
q[k]p,q

=
x2

q2
+

(
(pn − qnx)

q3[n]p,q

)
x.

By using I1, I2, and I3, we get the upper bound of second moment. �

Corollary 2.5. Central moments of operators are

M̃
(p,q)
n,k (ψ1;x) ≤ pn − qnx

q2[n]p,q
+

(
1

q
− 1

)
x,

M̃
(p,q)
n,k (ψ2;x) ≤ x2

(
1− 1

q2
+

2(q + 1)

q2[n]p,q

)
+

(p+ q)2

q5
(pn − qnx)

[n]p,q
x

+
p(p+ q)

q6
(pn − qnx)(pn−1 − qn−1x)

[n]p,q[n− 1]p,q
,

where ψi(x) = (t− x)i for i = 1, 2.

Proof. By the linearity of M̃
(p,q)
n,k and Theorem 2.4, central moments can be ob-

tained directly. �

Remark 2.6. For 0 < q < p ≤ 1, by simple computations limn→∞[n]p,q = 1/(p−q).
In order to obtain results for order of convergence of the operator, we take qn ∈
(0, 1) and pn ∈ (qn, 1] such that limn→∞ pn = limn→∞ qn = 1, limn→∞ p

n
n = a

and limn→∞ q
n
n = b, so that limn→∞

1
[n]pn,qn

= 0. Such a sequence can always be

constructed, for example, we can take qn = 1− 1/2n and pn = 1− 1/3n, clearly
limn→∞ p

n
n = e−1/3, limn→∞ q

n
n = e−1/2 and limn→∞

1
[n]pn,qn

= 0.

3. Rate of convergence

We denote W 2 = {g ∈ C[0, 1] : g′, g′′ ∈ C[0, 1]}. For δ > 0, then K-functional
is defined as

K2(f, δ) = inf
g∈W 2
{‖f − g‖+ δ‖g′′‖},

where the norm ||.|| denotes the supremum norm on C[0, 1]. Following the well-
known inequality given by DeVore and Lorentz in [4], there exists an absolute
constant C > 0 such that

K2(f, δ) ≤ Cω2(f,
√
δ),
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where ω2(f,
√
δ) is the second order modulus of continuity for f ∈ C[0, 1], defined

as
ω2(f,

√
δ) = sup

0<h≤
√
δ

sup
x,x+h∈[0,1]

|f(x+ 2h)− 2f(x+ h) + f(x)|.

We denote by ω(f, δ) = sup0<h≤δ supx,x+h∈[0,1] |f(x+h)−f(x)|, the usual modulus
of continuity for f ∈ C[0, 1].

Theorem 3.1. Let (pn)n and (qn)n be the sequences as defined in Remark 2.6.

Then for each f ∈ C[0, 1], we have M̃
(pn,qn)
n,k (f ;x) converges uniformly to f .

Proof. By the Korovkin theorem, it is sufficient to show that

lim
n→∞

‖M̃ (pn,qn)
n,k (tm;x)− xm‖ = 0

for m = 0, 1, 2. For m = 0, the results hold trivially. Using Theorem 2.4, we
obtain the results for m = 1, 2 as follows:

lim
n→∞

‖M̃ (pn,qn)
n,k (t;x)− x‖ ≤ lim

n→∞

∣∣∣∣ xqn +
(pnn − qnnx)

q2n[n]pn,qn
− x
∣∣∣∣

≤ lim
n→∞

∣∣∣∣ pnn
q2n[n]pn,qn

∣∣∣∣+ lim
n→∞

∣∣∣∣∣ 1

qn
− q

(n−2)
n

[n]pn,qn
− 1

∣∣∣∣∣x
= 0.

Finally,

lim
n→∞

‖M̃ (pn,qn)
n,k (t2;x)− x2‖ ≤ lim

n→∞

∣∣∣∣ 1

q2n
− 1

∣∣∣∣x2 + lim
n→∞

∣∣∣∣(pn + qn)2

q5n

(pnn − qnnx)

[n]pn,qn

∣∣∣∣x
+ lim

n→∞

∣∣∣∣pn(pn + qn)

q6n

(pnn − qnnx)(pn−1n − qn−1n x)

[n]pn,qn [n− 1]pn,qn

∣∣∣∣
= 0.

Hence the proof is completed. �

Theorem 3.2. Let (pn)n and (qn)n be sequences as defined in Remark 2.6. Let
f ∈ C[0, 1]. Then for all n ∈ N , there exists an absolute constant C > 0 such
that

|M̃ (pn,qn)
n,k (f ;x)− f(x)| ≤ Cω2(f, δn(x)) + ω(f, αn(x)),

where,

δn(x) =
{
M̃

(pn,qn)
n,k ((t− x)2;x) + M̃

(pn,qn)
n,k (t− x;x)

} 1
2

and
αn(x) = M̃

(pn,qn)
n,k (t− x;x).

Proof. For x ∈ [0, 1], we consider the operators M∗
n(f ;x) as

M∗
n(f ;x) = M̃

(pn,qn)
n,k (f ;x) + f(x)− f

(
x

qn
+
pnn − qnnx
q2n[n]pn,qn

)
.

Using the first central moment of M̃
(pn,qn)
n,k and the positivity of operator, we

immediately get M∗
n(t− x;x) = 0.
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For g ∈ W 2 and x ∈ [0, 1], using Taylor’s formula,

g(t) = g(x) + g′(x)(t− x) +

∫ t

x

(t− u)g′′(u)du.

Therefore,

M∗
n(g;x)− g(x) = g′(x)M∗

n((t− x);x) +M∗
n

(∫ t

x

(t− u)g′′(u)du;x

)
= M̃

(pn,qn)
n,k

(∫ t

x

(t− u)g′′(u)du;x

)
−
∫ x

qn
+

pnn−qnnx

q2n[n]pn,qn

x

(
x

qn
+
pnn − qnnx
q2n[n]pn,qn

− u
)
g′′(u)du.

Finally, we have

|M∗
n(g;x)− g(x)| ≤

∣∣∣∣M̃ (pn,qn)
n,k

(∫ t

x

(t− u)g′′(u)du;x

)∣∣∣∣
+

∣∣∣∣∣
∫ x

qn
+

pnn−qnnx

q2n[n]pn,qn

x

(
x

qn
+
pnn − qnnx
q2n[n]pn,qn

− u
)
g′′(u)du

∣∣∣∣∣
≤ ‖g′′‖M̃ (pn,qn)

n,k ((t− x)2;x) +

(
x

qn
+
pnn − qnnx
q2n[n]pn,qn

− x
)2

‖g′′‖

= δ2n(x)‖g′′‖.

Also, we have

|M∗
n(f ;x)| ≤ |M̃ (pn,qn)

n,k (f ;x)|+ 2‖f‖ ≤ 3‖f‖.

Therefore,

|M̃ (pn,qn)
n,k (f ;x)− f(x)| ≤ |M∗

n(f − g;x)− (f − g)(x)|

+

∣∣∣∣f ( x

qn
+
pnn − qnnx
q2n[n]pn,qn

)
− f(x)

∣∣∣∣+ |M∗
n(g;x)− g(x)|

≤ |M∗
n(f − g;x)|+ |(f − g)(x)|

+

∣∣∣∣f ( x

qn
+
pnn − qnnx
q2n[n]pn,qn

)
− f(x)

∣∣∣∣+ |M∗
n(g;x)− g(x)|

≤ 4‖f − g‖+ ω (f, αn(x)) + δ2n(x)‖g′′‖.

Taking the infimum on the right hand side over all g ∈ W 2 and using the definition
of K-functional, we get

|M̃ (pn,qn)
n,k (f ;x)− f(x)| ≤ 4K2(f, δ

2
n(x)) + ω(f, αn(x)).

�
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4. Statistical approximation

In this section, by using a Bohman–Korovkin type theorem proved in [5], we
present the statistical approximation properties of purposed operator.

At this moment, we recall the concept of statistical convergence.
A sequence (xn)n is said to be statistically convergent to a number L, denoted
by st− lim

n
xn = L if, for every ε > 0,

δ{n ∈ N : |xn − L| ≥ ε} = 0,

where

δ(S) :=
1

N

N∑
k=1

χS(j)

is the natural density of set S ⊆ N and χS is the characteristic function of S.
Let CB(D) represent the space of all continuous functions on D and bounded

on entire real line, where D is any interval on real line. It can be easily shown

that CB(D) is a Banach space with the supreme norm. Also M̃
(p,q)
n,k (f ;x) are well

defined for any f ∈ CB([0, 1]).

Theorem 4.1 (see [5]). Let (Ln)n be a sequence of positive linear operators from
CB([a, b]) into B([a, b]) which satisfies the following condition

st− lim
n
‖Lnei − ei‖ = 0 for all i = 0, 1, 2.

Then,

st− lim
n
‖Lnf − f‖ = 0 for all f ∈ CB([a, b]).

Theorem 4.2. Let {pn}n and {qn}n be sequences such that

st− lim
n→∞

qn = 1, st− lim
n→∞

qn
n = a,

st− lim
n→∞

pn = 1, st− lim
n→∞

pn
n = b.

Then, M̃
(pn,qn)
n,k (f, x) converges statistically to f . Therefore,

st− lim
n

∥∥∥M̃ (pn,qn)
n,k (f(t);x)− f

∥∥∥
C[0,1]

= 0 forallf ∈ C[0, 1].

Proof. By Theorem 4.1, it is sufficient to prove that

st− lim
n

∥∥∥M̃ (pn,qn)
n,k (fi(t);x)− fi(x)

∥∥∥
C[0,1]

= 0 for all i = 0, 1, 2.

Based on Theorem 2.4, we have

st− lim
n

∥∥∥M̃ (pn,qn)
n,k (1;x)− 1

∥∥∥
C[0,1]

= 0,

|M̃ (pn,qn)
n,k (t;x)− x| ≤

∣∣∣∣∣ pnn
q2n[n]pn,qn

+
x

qn
− xq

(n−2)
n

[n]pn,qn
− x

∣∣∣∣∣
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and

|M̃ (pn,qn)
n,k (t2;x)− x2| ≤

∣∣∣∣x2q2n − x2 +
x(pn + qn)2

q5n

(pnn − qnnx)

[n]pn,qn

+
pn(pn + qn)

q6n

(pnn − qnnx)(pn−1n − qn−1n x)

[n]pn,qn [n− 1]pn,qn

∣∣∣∣ .
By taking supremum over x ∈ [0, 1] in the above inequalities, we get

|M̃ (pn,qn)
n,k (t;x)− x| ≤

∣∣∣∣∣ pnn
q2n[n]pn,qn

+
1

qn
− q

(n−2)
n

[n]pn,qn
− 1

∣∣∣∣∣
and

|M̃ (pn,qn)
n,k (t2;x)− x2| ≤

∣∣∣∣ 1

q2n
− 1 +

(pn + qn)2

q5n

(pnn − qnnx)

[n]pn,qn

+
pn(pn + qn)

q6n

(pnn − qnn)(pn−1n − qn−1n )

[n]pn,qn [n− 1]pn,qn

∣∣∣∣ .
By using facts that st− limn qn = 1 and st− limn pn = 1, we get

st− lim
n

∥∥∥M̃ (pn,qn)
n,k (t;x)− x

∥∥∥
C[0,1]

= 0,

st− lim
n

∥∥∥M̃ (pn,qn)
n,k (t2;x)− x2

∥∥∥
C[0,1]

= 0.

Hence the proof is complete. �

In the next theorem, we estimate the rate of convergence by using the concepts
of modulus of continuity.

Theorem 4.3. Let {pn}n and {qn}n be sequences such that

st− lim
n→∞

qn = 1, st− lim
n→∞

qn
n = a,

st− lim
n→∞

pn = 1, st− lim
n→∞

pn
n = b.

Then,

|M̃ (pn,qn)
n,k (f ;x)− f | ≤ 2ω(f,

√
δn) (4.1)

for all f ∈ C[0, 1], where δn = M̃
(pn,qn)
n,k ((t− x)2;x).

Proof. By the linearity and monotonicity of the operator, we get

|M̃ (pn,qn)
n,k (f ;x)− f | ≤ M̃

(pn,qn)
n,k (|f(t)− f(x)|;x),

also, by the continuity property of modulus, we have

|f(t)− f(x)| ≤
(

1 +
(t− x)2

δ2

)
ω(f, δ).

By using the above facts, we get

|M̃ (pn,qn)
n,k (f ;x)− f | ≤

(
M̃

(pn,qn)
n,k (1;x) +

1

δ2
M̃

(pn,qn)
n,k

(
(t− x)2;x

))
ω(f, δ).

So, letting δn = M̃
(pn,qn)
n,k ((t− x)2;x) and taking δ =

√
δn, we finally get the

result. �
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5. Graphical illustrations

In this section, we show the approximation by (p, q)-Meyer-König-
ZellerKantrovich operators using MATLAB programming for functions f(x) =
(x−2/3)(x−4/5), (x−1/4)(x−2/3)(x−4/5), (x−1/3)(x−2/3)(x−3/5)(x−4/5),
and (x− 1/3)(x− 2/3)(x− 3/5)(x− 4/5)(x− 5/7) taking n = 25 and k = 150.

(a) f(x) = (x− 2/3)(x− 4/5) (b) f(x)=(x-1/4)(x-2/3)(x-4/5)

(c) f(x) = (x− 1/3)(x− 2/3)(x− 3/5)
(x− 4/5)

(d) f(x) = (x− 1/3)(x− 2/3)(x− 3/5)
(x− 4/5)(x− 5/7)
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