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ABSTRACT. In this paper, we introduce a Durrmeyer type modification of
Meyer—Ko6nig—Zeller operators based on (p,q)-integers. The rate of conver-
gence of these operators is explored with the help of Korovkin type theorems.
We establish some direct results for proposed operators. We also obtain sta-
tistical approximation properties of operators. In the last section, we show
the rate of convergence of (p, ¢)-Meyer—-Konig—Zeller Durrmeyer operators for
some functions by means of MATLAB programming.

1. INTRODUCTION AND PRELIMINARIES

Recently, Mursaleen et al. [12] introduced (p,q)-analogue of Bernstein type
operators. After that many researchers gave the (p, g)-analogue of various well
known positive linear operators and studied their approximation properties; for
details, we refer the reader to [1, 7, 11, 16, 17]. Now, We begin by recalling certain
notation of (p, q) calculus.

Let 0 < ¢ < p < 1. The (p, q)-integer is defined as

Npg = u n=12...
[ ]qu p—q ) ) )
and the (p, ¢)-factorial is given by

]! = [Upal2lpg- - [nlpgy =1,
Pa 1, n=0.
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For integers 0 < k < n, the (p, g)-binomial coefficient is defined as

K } - B

Further, (p, ¢)-binomial function is expressed as

n—1

(@ +yp, = [P+ ).

j=0

Recently, Sharma [16] introduced the (p, ¢)-Beta function for s,t € Rt as

1
ﬁp,q(ta s) = /0 xtil(l - qx);qudp,qx

and also obtained the relation between (p, ¢)-Beta function and ¢-Beta function
as

Bp,q(tv S) _ p(s—l)(s—Q)/Q—(t—l)ﬁ (t, S),

q
P

where, 6% (t,s) is the ]%—analogue of the beta function. Using f,(,s) = %
and [n]ls = pn=2[p]l, . we can write
B, (1, 5) = plsHt=DEH=2=(E=1E-2) 2141 [t — 1lpgls = g (1.1)

[s+t—1]l,,

For p = 1, all the notations of (p, ¢)-calculus are reduced to g-calculus. Further
details on (p, ¢)-calculus can be found in [3, 13, 14].

In a recent study, Kadak et al. [10] introduced a (p,q)-analogue of Meyer—
Konig—Zeller operators, for 0 < ¢ < p < 1, on a function defined on [0, 1] as

1 = [n+k ko —k 1 P"[klpq
Myl fia) = — 20 [ ] iy — gy g (2Hea ) o)
P, » @tD) kz:; k e P.g [+ K]y

and M, ,,(f;1) = f(1) for x = 1.
Further, the moment of the operators are given in the following lemma.

Lemma 1.1 (see[10]). For all z € [0,1] and 0 < ¢ < p <1, we have

Mn7p7q(1;x) = 17
My po(tiz) =z,
2% < Mypg(t*2) < Lx +a.
[n+ 1],

In the past two decades, Studies of Durrmeyer variants of various operators re-
mained the center of attraction for the researchers, for which we refer the reader
to [2, 6, 8, 15, 9]. Motivated by these studies, now we introduce the Meyer—-Kénig—
Zeller Durrmeyer operators based on (p, ¢)-integers in the following section.
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2. CONSTRUCTION OF OPERATOR AND MOMENT ESTIMATE

For 0 < ¢ < p <1 and the function f defined on [0, 1], the (p, ¢)-Meyer—-Kénig—
Zeller Durrmeyer operators are defined as follows:

—~ n-+1 > _ 1
Mﬁww—LﬁﬁﬁlﬁﬂMMkA¢WWHWMaOﬁww
k=0

here,
(P,9) _ 1 n+k k n+1
my, . () = phntn(n1)/2 { k } (=)
p,q
(»,9) _ 1 n+ k + 1 k n
b (at) = PHe—DFn(n—1)/2 { k (g1)"(1 = qt),,
b,q

and ]/\\/[/T(Zp ,;q)( f;1) = 1. Before computing the moments of (p,q)-Meyer-Konig—
Zeller Durrmeyer operators, we prove some lemmas as follows.

Lemma 2.1. Let 0 <g<p<1andlet s=0,1,2,.... We have
' (p.q) s I+ k41l k + 8]y (pg)"* n(s+1)
by (qO)t°dp gt = :
0o [klpglln+k+s4+1pe! [n+ 1],

Proof. This lemma can be proved directly by using the definition of (p, ¢)-beta
operator and Equation (1.1). O

Lemma 2.2. Forr=1,2... and n > r, we have

r—1 . )
$>n+1 H (pnij —dq J:L‘)

io: |: n + k :| xk(l - p,q p(r,n)k . 7=0 p(n—r)(;—r+l)
k P [0+ klpg (5 ’

where [n = n]pgln —1pgln —2]pg- .- [n—7+ 1],

Lemma 2.3. The following inequality holds:
1 1
< ;
n+k+rlp = g [n+klpg

r>0.

Theorem 2.4. For allz € [0,1], n € N and 0 < ¢ < p < 1, we have

j\/[/r(ﬂq) (eo;z) = 1,
1 o i3 _ n
%O—”+)smwwm>sf+97iﬂ,
q [n]p,q q q [n]p,q
. 2 2(,n _ 0
MO (epiz) < :B_2 n (p +5q) (" —q"z)
’ q q [1]p,q
+p(p +q) (p" = q"x)(p"' —¢" ')
g8 [n]p,q[n - 1]1)41 7

where e; = t* fori=0,1,2.
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Proof. First moment can be directly computed. We use the moments obtained
for (p, q)-Meyer—Konig—Zeller operators in Lemma 1.1 to estimate moments of
proposed Durrmeyer operators. By using Lemma 2.1 for s = 1 and Lemma 2.2,
we get the lower bound of second moment as follows:

[n+k+ ”p,q![k + 1]10,(1! n
[k‘]p,q![” +k+ z]p,q!

MENera) = Y- mli ()
k=0

— n - 1 n+k k n+1 [k + 1]?#1
= P Z kn+n(n+1)/2|: k :| qw (1_x)p7q [n“rk‘i‘Q]p,q

)

= P Z kn+n(n+1) /2 |:n e :| Zgl [k h 1] [n h k]p,q
i1 P [klpg [n+k+2]p
> pn — 1 |:n + k:| k+1 ) n+1 [n +k+ 1]p,q
— p(k+1)n+n(n+1 /2 b,q [TL +k+ 3]p,q
= f .- m(P}gQ) (x) <[7’L +k+ 2]]?#1 — pn+k+1)
i " [n+k+3lpg

v
|
3
S
ol

T o (P.a) (. m+k+2pe 1
( )<[”+k+3]p,q [n]p,q>

_ ), P TEk+2py x

- n,k (x) k+3
1.2 n+k+3lpg  [nlpgq

_ T = (p,9) [n+k+3]pq —p"TFt2 x

= g2k @ N [l
=0 D,q p,q4
T o (p.q) < 1 > z

> — m, () ([ 1— —
¢ kzo * ) [n]p.q (n]p,qq

By using the inequality of Lemma 2.3, the upper bound can be obtained as
below:

— - k4 1]
Mépyq)(eh x) = " m;nq) (:C) [ P,q
ok ; F A 4+ k4 2],
oo k
n () NP + qklp.q
< p" ) m,; (x)
kz_o * [+ klpq
n X k o0 n
p (p,9) p 1 (p.q) P"[Klpg
= — m )7 + — m T)—— 77—
— wh (=) n+klpg q kZ:O ok (@) [n+ K]y
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PN n+ k] k w1 D x
= — (1l — ) ———— + —
q2 kzz: n _'_ ]‘)/2 |: p,q P [n _I_ kj]P#l q

To estimate the third moment, we use Lemma 2.1 for s = 2 and Lemma 2.2 as
follows:

[e.e]

Mipkq)(e%x) — Z (pq

[+ k+ 1!k + 2pg! on
[Elpq!ln + K+ 3]p,q!

_ on - (p,q9) [k + 2]p7q[k + 1]p,q
b Z M (7) [n+k+3,qn+k+ 2,
P~ ), 0+ QP+ (p+ 2q)qpF [kl + PR,
—= Y ml () —
[n + k]p,q[n +k 1]p,q

) [e’e) k n+1
p —kn [+ E L (1_x)pq 2k
= (p+q) ) » { } : p
q6 Z k D,q [n + k]p,q [n + k - 1]p»q

IN

—n(n—3) 00 k n+1
2 _ n+k z (1 - 1’) k
+ (p+29) ) p™" [ } " [k],
i kzzo k [0+ klpgln + k=1, e
—n(n=3) oo n
+p 2 ; Zp—kn |:n+l€:| (1 —I) o [k]Z
q3 k=0 k P,q [n + k]p,q [n + k - 1]p,q P
= L+ 1+ Is.

By using Lemma 2.3, I; can be obtained as

pp+4q) (0" —q"x) (p" —¢"'x)

I, =
q° [n]p,q[n - 1]p,q

Computations for I are as follows:

7n(n 3)

= i |+ E—1
L =" & (p+2q) Zp [ ]
k

=1

ok (1 — x)gfgl .

p
P,q [n + k; - 1]p7q

7n(n 1)+1 (o) k n+1
p kn |1 T k z (1 - x)p q k
(p+2¢)x )y p- [ } ———3 P
Z0 D,q [n + k]pﬂ
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I35 can be obtained as follows:

P i ki {n i 1} ey
. T . - s
e k—1 . n+k—1],4 m

k=1

—n(n—1) 00 k n+1
p 2 —kn {n—i—k} x (1 _ x)p,q
= Ty p ——— [k + 1],
7 ;0 k ng [n+ Klpg i

—n(n—1)

e e
7 =0 k g [n+ Klpg
—n(n—1) 00

k n+1
D 2 —kn n + k xT (1 — $) ,
+ e pr * [ k } 2Kl
k:o p,q

[+ Hlpg
- ()

By using [, I5, and I3, we get the upper bound of second moment. O

Corollary 2.5. Central moments of operators are

. n__ .n 1
MED (7)< & qx+(__1> "

Pllpe  \q
— 1 2q+1 2 (p — g
My(lpéq) (Yo;2) < a? <1 - =+ (2q+ >> + (p +5Q) (" —q x):c
’ q q [n]p,q q [n]p,q
+p(p +q) (" = q"2)(p" ' = ¢" ')
q° [n]p,q[n - 1]p,q ’

where Y;(x) = (t — z)" fori=1,2.

Proof. By the linearity of ]f\zgp ,’f) and Theorem 2.4, central moments can be ob-
tained directly. O

Remark 2.6. For 0 < g < p < 1, by simple computations lim,,_,«[n],, = 1/(p—q)-
In order to obtain results for order of convergence of the operator, we take ¢, €
(0,1) and p, € (qn, 1] such that lim, oo p, = lim, 400 g = 1, lim, o P = a

and lim, . g = b, so that lim, [n]; = 0. Such a sequence can always be

Pn,dn

constructed, for example, we can take ¢, =1 —1/2n and p,, = 1 — 1/3n, clearly

] 13 g _—1/2 . 1 _
limy, o0 P = €713, limy o0 g7 = €712 and limy, o0 pr— = 0.

3. RATE OF CONVERGENCE

We denote W2 = {g € C[0,1] : ¢/, ¢" € C[0,1]}. For 6 > 0, then K-functional
is defined as

Ka(f,0) = nf {1 — gl +dllg"[1},

where the norm ||.|| denotes the supremum norm on C[0, 1]. Following the well-
known inequality given by DeVore and Lorentz in [1], there exists an absolute
constant C' > 0 such that

KQ(f: 5) S CWQ(fv \/5)7
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where wy(f,v/9) is the second order modulus of continuity for f € C[0,1], defined
as

wy(fV0) = sup  sup [f(z+2h) = 2f(z+h) + f(=)].

0<h<+/$ z,x+h€[0,1]
We denote by w(f,d) = supg.p<s SUP, 41 nefoa | f (£+h) = f(x)], the usual modulus
of continuity for f € CI0, 1].

Theorem 3.1. Let (pn), and (q,)n be the sequences as defined in Remark 2.6.
Then for each f € C[0,1], we have Mr(fg’q”)(f; x) converges uniformly to f.

Proof. By the Korovkin theorem, it is sufficient to show that
lim M7 (™ ) — 2™ = 0

for m = 0,1,2. For m = 0, the results hold trivially. Using Theorem 2.4, we
obtain the results for m = 1,2 as follows:

lim ||]f\\4/7(lp£’q")(t;x) —z|| < lim z4 —(p; — ) x‘
n—roo ’ 00 | {n AP,
n 1 7(1"_2)
< lim Pn + lim ——q——lx
n=o0 | g2 [n]p, g, e L (1 P
= 0.
Finally,
. 1 N n 2 n__ . n
n—r00 e n—00 qTQL n—00 qg [n]Pn,Qn
i |PoPat n) (05 = dro) 0 — gi M)
n—oo a5 g [ = Upngn
= 0.
Hence the proof is completed. 0

Theorem 3.2. Let (p,)n and (g,)n be sequences as defined in Remark 2.6. Let
f € C[0,1]. Then for all n € N, there exists an absolute constant C' > 0 such
that

M (f2) = f(@)] < Ceonl(f,60() +w(f, (@),

where,

N|=

() = { AL (¢ = )% ) + M (¢ — i) |

and .
an(x) = Mff,:’q")(t —z;T).

Proof. For z € [0, 1], we consider the operators M (f;x) as

Mi(fi0) = B i) + ) - 7 (4 B2SET),

T [n]pn,qn

Using the first central moment of ]f\\/[:gp ,:’q”) and the positivity of operator, we

immediately get M (t —x;2) = 0.
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For g € W? and x € [0, 1], using Taylor’s formula,
t
() = g(a) + g @)t =)+ [ (¢ = w)g"(u)d

Therefore,
M;(g:o) — g(a) = g (@)M((t— x);0) + M ( / (t_u>g~<u>du;x)

o t
= w1 ([ - g i)
P —anT

24k n__ .n
an - qp ["‘]Pn#]n X pn qn‘r
— (— t o — u) 9" (u)du.
T dn Qn[n]Pnaqn

Finally, we have

t
M (g;2) — g(x)] < ‘MT(L%’]:’%) (/ (t — u)g"(u)du;x)‘

T CR ST PO
X

_l’_ PR
I G [n]pn7Qn

T n 2
Tr xr Pn — 4,7 "
< ||g"||M,E”"’W<<t—x)%az)+(—+—“ " —x) T4
ik Gn qu[n]pn,qn
— 2@l

Also, we have
M (fr2)] < [MI ()] + 2 £ < 3II£].
Therefore,

(MP) (frx) — f(2)] < IME(f —gi2) — (f — 9)(@)]
+|f (q—n + m) — f(@)| + M, (g; ) — g()|
IME(f — gio)| + |(f — 9)(2)]

T Ph T _ ooy
#|r (5 + B2 ) + i) - olo)

< Allf = gll +w (f, an(@)) + 05 (@) 1g"]-

Taking the infimum on the right hand side over all ¢ € W? and using the definition
of K-functional, we get

MEP9) (f12) — ()] < 4K (f, 62(x)) + w(f, an(x)).

IN
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4. STATISTICAL APPROXIMATION

In this section, by using a Bohman—Korovkin type theorem proved in [5], we
present the statistical approximation properties of purposed operator.
At this moment, we recall the concept of statistical convergence.
A sequence (z,), is said to be statistically convergent to a number L, denoted
by st —limz, = L if, for every € > 0,
n

H{neN:|z,—L| >} =0,

where
| N
5(8) =y L xsl)

is the natural density of set S C N and xg is the characteristic function of S.
Let C(D) represent the space of all continuous functions on D and bounded
on entire real line, where D is any interval on real line. It can be easily shown

that C(D) is a Banach space with the supreme norm. Also ]\7,(11’ ,;q)( f;x) are well
defined for any f € Cp([0,1]).

Theorem 4.1 (see [5]). Let (L), be a sequence of positive linear operators from
Cg(la,b]) into B([a,b]) which satisfies the following condition

st —lim||Lpe; — ;]| =0 foralli=0,1,2.

Then,
st —=lim | L,f — fll=0 forall f € Cg([a,b]).

Theorem 4.2. Let {p,}, and {q,}n be sequences such that
st — lim ¢, =1, st — lim ¢," = a,

n—oo n—oo

st — lim p, =1, st — lim p," =b.

n—o0 n—o0

Then, ]T/[/ép,;“q")(f, x) converges statistically to f. Therefore,

st—llmHM;’;W(f fHC[ —0 forallf € C[0,1].
01

Proof. By Theorem 4.1, it is sufficient to prove that
=0 foralli=0,1,2.

t — 1 HM(pny(]n) i t : — f; H
st~ |5 i) - @),

Based on Theorem 2.4, we have

t—tim || M) (132) 1| =0,
st — lm |[FE0 ) (150~ 1]

n (n—2)
X Tqn
Ph T

M () — ] < | e
* Gnlpngn G [Mpngn

— X
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and
— 2 2(,m _ N
DL (12, ) — 2| < fv_2 24 z(pn %; a)* (Py — g
’ Qn qn [n]Pn’Qn
+pn(pn + qn) (P — grx)(pp™' — i ')
q8 [n]pn,qn [n - ]']pn7‘Zn

By taking supremum over z € [0, 1] in the above inequalities, we get

~ 28 1 g

M 5 w) =l < | G b e = e =
' ay [n]pn an dn ["]pn Jn

and
2 n __ .n
|an]:’qn (t 2. L) — SL’2| < 14+ (pn ‘:%z) (pn — 2,7)
n qn [n]Pan
PP+ an) P — @) (h ' —an )
+ 6
dyn [n]pn7Qn [n - 1]pn,qn

By using facts that st — lim,, ¢, = 1 and st — lim,, p, = 1, we get
st — hm HM p”’q")(t )

Y

HC[O 1)

st — lim || NI () — _

HC[O,I]
Hence the proof is complete. |

In the next theorem, we estimate the rate of convergence by using the concepts
of modulus of continuity.

Theorem 4.3. Let {p,}, and {q,}n be sequences such that

st — lim ¢, = 1, st — lim ¢," = a,
n—00 n—00
st — lim p, =1, st — lim p," =0b.
n—oo n—0o0
Then, s
M (f5) = 1 < 20(f,/5) (4.1)

for all f € C[0,1], where 6, = Mé?;’q")((t —x)% 7).
Proof. By the linearity and monotonicity of the operator, we get
M (fre) = fI < M () = f(@)]s ),
also, by the continuity property of modulus, we have
(t — )
10 - sl < (14555 Y wtr
By using the above facts, we get

M (f50) = ] < (M“’”’% (150) + 5 M (¢ - x>2;x)) w(f.9).

So, letting 6, = Mgg’qn) ((t — z)* ) and taking § = /d,, we finally get the
result. 0J
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5. GRAPHICAL ILLUSTRATIONS

In this section, we show the approximation by (p,q)-Meyer-Konig-
ZellerKantrovich operators using MATLAB programming for functions f(x) =
(2—2/3)(x—4/5), (x—1/4)(x—2/3)(x—4/5), (x—1/3)(x—2/3)(z=3/5)(x—4/5),
and (x —1/3)(z — 2/3)(x — 3/5)(x — 4/5)(xz — 5/7) taking n = 25 and k = 150.

e ——
\ R
O\ 7 4
«\\ /7
\\\ . ol / //
\\};\ // //
e 2y
\\\\\X\ !
B e /
(a) f(z) = (z —2/3)(z —4/5) (B) f(x)=(x-1/4)(x-2/3)(x-4/5)
N\ /C;j/ —— e
a\ e
\ 7
A\ / 7
o \\\:\ i
® \\x‘\\\\ /
\\\\t:\i\:"bicL//‘ — / /

=25, k=0 N walues, =25, k=150

(€) flx) = (z —1/3)(z —2/3)(x — 3/5) (D) f(z) = (x = 1/3)(x —2/3)(z — 3/5)
(x —4/5) (x —4/5)(x —5/7)

REFERENCES

[1] T. Acar, (p, q)-Genralization of SZasz-Mirakyan operators, Math. Methods Appl. Sci. 39
(2016), no. 10, 2685-2695.

[2] A. Aral, V. Gupta, R.P. Agarwal, Applications of q-Calculus in Operator Theory, Springer-
Verlag, New York, 2013.

[3] R. Chakrabarti, R. Jagannathan, A (p, q)-oscillator realization of two parameter quantum
algebras, J. Phys. A 24 (1991) 711-718.

[4] R.A. DeVore, G.G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin-
Heidelberg, 1993.

[5] A.D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence approx-
imation, Rocky Mountain J. Math. 32 (2002) 129-138.

[6] V. Gupta, Some approzimation properties on q-Durrmeyer operators, Appl. Math. Comput.
197 (2008), no. 1, 172-178.

[7] V. Gupta, A. Aral, Bernstein Durmeyer operators based on Two Parameters, SER. Math.
Inform 31 (2001), no. 1, 79-95.

[8] V. Gupta, H. Sharma, Recurrence formula and better approximation for q-Durrmeyer op-
erators, Lobachevskii J. Math. 32 (2011), no. 2, 140-145.



124

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

H. SHARMA, C. GUPTA, R. MAURYA

V. Gupta, H. Sharma, T. Kim, S.H. Lee, Properties of q-analogue of Beta operator, Adv.
Difference Equ. 2012, no. 86, (2012) 16 pages.

U. Kadak, A. Khan, M. Mursaleen, Approzimation by Meyer Konig and Zeller operators
using (p, q)-calculus, arXiv: 1603.08539v2 [math.CA].

K. Khan, D.K. Lobiyal, Bezier curves based on Lupas (p,q) analogue of Bernstein polyno-
mials in CAGD, arXiv: 1505.01810 [cs.GR].

M. Mursaleen, K.J. Ansari, A. Khan, On (p, q)-analogue of Bernstein Operators, Appl.
Math. Comput. 266 (2015) 874-882.

P.N. Sadjang, On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor for-
mulas, arXiv: 1309.3934 [math.QA].

V. Sahai, S. Yadav, Representations of two parameter quantum algebras and (p, q)-special
functions, J. Math. Anal. Appl. 335 (2007) 268-279.

H. Sharma, Note on approzimation properties of generalized Durrmeyer operators, Math.
Sci. 6 (2012), Art. 24, 6 pages.

H. Sharma, On Durrmeyer-type generalization of (p,q)-Bernstein operators, Arabian J.
Math. 5 (2016), no. 4, 239-248.

H. Sharma, C. Gupta On (p, q)-generalization of Szisz-Mirakyan Kantorovich operators,
Boll. Unione Mat. Ital. 8 (2016), no. 3, 213-222.

! DEPARTMENT OF MATHEMATICS, GULZAR GROUP OF INSTITUTES, PUNJAB, INDIA.
E-mail address: pro.sharma.h@gmail.com

21 K G PuNJAB TECHNICAL UNIVERSITY, PUNJAB, INDIA.
E-mail address: guptacheena21@gmail.com

31 K G PuNJAB TECHNICAL UNIVERSITY, PUNJAB, INDIA;
DEPARTMENT OF MATHEMATICS, MANAV RACHNA UNIVERSITY, HARYANA, INDIA.
E-mail address: ramapatimaurya@gmail.com



	1. Introduction and Preliminaries
	2. Construction of operator and moment estimate
	3. Rate of convergence
	4. Statistical approximation
	5. Graphical illustrations
	References

