Khayyam J. Math. 6 (2020), no. 2, 174–179 DOI:10.22034/kjm.2020.109814

n-ABSORBING *I*-IDEALS

ISMAEL AKRAY^{1*} AND MEDIYA B. MRAKHAN²

Communicated by S. Sather-Wagstaff

ABSTRACT. Let R be a commutative ring with identity, let I be a proper ideal of R, and let $n \ge 1$ be a positive integer. In this paper, we introduce a class of ideals that is closely related to the class of I-prime ideals. A proper ideal P of R is called an n-absorbing I-ideal if $a_1, a_2, \ldots, a_{n+1} \in R$ with $a_1a_2 \ldots a_{n+1} \in$ P - IP, then $a_1a_2 \ldots a_{i-1}a_{i+1} \ldots a_{n+1} \in P$ for some $i \in \{1, 2, \ldots, n+1\}$. Among many results, we show that every proper ideal of a ring R is an nabsorbing I-ideal if and only if every quotient of R is a product of (n+1)-fields.

1. INTRODUCTION

Throughout this article, R denotes a commutative ring with identity and Max(R) denotes the set of all maximal ideals of R. The notion of *prime* ideal plays a main role in the theory of commutative algebra and it has been widely studied and recently many generalizations were introduced by many authors. Recall from [4] that a *prime* ideal of R is a proper ideal P with the property that for $a, b \in R$, $ab \in P$ implies $a \in P$ or $b \in P$. The concept of *I*-prime ideals was defined and investigated in [1]. For a fixed ideal I of R, a proper ideal P of R is *I*-prime if $a, b \in R$ with $ab \in P - IP$ implies either $a \in P$ or $b \in P$. The concept of 2-absorbing ideals was introduced and studied in [5]. Let n be a positive integer. A proper ideal P of a ring R is called an *n*-absorbing ideal if whenever $x_1 \dots x_{n+1} \in P$ for $x_1, \dots, x_{n+1} \in R$, then there are n of the x_i 's whose product is in P. Equivalently, a proper ideal P of R is an *n*-absorbing ideal if and only if whenever $x_1 \dots x_m \in P$ for $x_1, \dots, x_m \in R$ with m > n, then there are n of the x_i 's whose product is in P; see [3].

Date: Received: 10 April 2019; Revised: 9 October 2019; Accepted: 6 December 2019. * Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 13A15; Secondary 13C99; 13G05.

Key words and phrases. 2-absorbing ideal; n-absorbing ideal; I-prime ideal; Prime ideal; n-absorbing I-ideal.

Let $n \ge 2$ and let $\phi : S(R) \to S(R) \cup \{\phi\}$ be a map, where S(R) is the set of ideals of R. A proper ideal P of R is called (n-1,n)- ϕ -prime if whenever $a_1, a_2, \ldots, a_n \in R$ with $a_1a_2 \ldots a_n \in P - \phi(P)$, then the product of n-1 of the a_i 's is in P (see [6]).

In this article, we introduce a class of ideals that is closely related to the class of *I-Prime* ideals. Let *I* be a proper ideal of *R* and let $n \ge 1$. A proper ideal *P* of *R* is called an *n-absorbing I-prime* ideal of *R* if $a_1, a_2, \ldots, a_{n+1} \in R$ with $a_1a_2 \ldots a_{n+1} \in P - IP$, then $a_1a_2 \ldots a_{i-1}a_{i+1} \ldots a_{n+1} \in P$ for some $i \in$ $\{1, 2, \ldots, n+1\}$. Thus a *1-absorbing I-ideal* is just an *I-prime* ideal. If we set $\phi(P) = IP$ for every *P* in *S*(*R*), then the ideas of this paper are a special case of the paper [6]. Some properties of the *n-absorbing I-prime* ideals are discussed and studied.

2. Main results

Let I be a fixed ideal of a ring R and let $n \ge 1$ be a positive integer. A proper ideal P of R is called an *n*-absorbing *I*-ideal if $a_1, a_2, \ldots, a_{n+1} \in$ R with $a_1 \ldots a_{n+1} \in P - IP$, then $a_1 \ldots a_{i-1}a_{i+1} \ldots a_{n+1} \in P$ for some $i \in$ $\{1, 2, \ldots, n+1\}$. It is clear that a proper ideal P is an *n*-absorbing *I*-ideal of R if and only if whenever the product of (n + 1)-elements of R/P is 0, then the product of some n of these elements is 0 in R/P. Not all *n*-absorbing *I*-ideals are (n-1)-absorbing *I*-ideal. The following example illustrates this fact.

Example 2.1. Consider the ring $R = \frac{k[[x, y]]}{\langle x^n, y^n, x^{2n} - y^{2n}, x^{2n+1}y^{2n+1} \rangle}$, where k is a field and $n \geq 1$ is a positive integer. Put the fixed ideal I to be zero ideal of R. Then the proper ideal $P = \langle \bar{x}^n, \bar{y}^n, \bar{x}^{2n} - \bar{y}^{2n}, \bar{x}^{2n+1}\bar{y}^{2n+1} \rangle$ of R is a (2n + 1)-absorbing I-ideal but not a 2n-absorbing I-ideal, since $\bar{x}^{2n} \in P$ and $\bar{x}^{2n-1} \notin P$.

The proof of the following lemma comes directly from the definition so it is omitted.

Lemma 2.2. A proper ideal P of a ring R is an n-absorbing I-ideal if and only if $\frac{P}{IP}$ is an n-absorbing 0-ideal.

Proposition 2.3. Let P be an n-absorbing I-ideal of a ring R and let $S \subseteq R$ be a multiplicative closed set of R such that $P \cap S = \phi$. Then $S^{-1}P$ is an n-absorbing $S^{-1}I$ -ideal of $S^{-1}R$.

 $\begin{array}{l} \textit{Proof. Suppose } \underline{a_1}_{s_1}, \dots, \underline{a_{n+1}}_{s_{n+1}} \in S^{-1}R \text{ with } \underline{a_1a_2...a_{n+1}}_{s_1s_2...s_{n+1}} \in S^{-1}P - S^{-1}IS^{-1}P = \\ S^{-1}(P - IP). \text{ Then } ua_1a_2...a_{n+1} \in P_IP \text{ for some } u \in S. \text{ By taking } ua_1 \\ \text{as one element, either } a_2...a_{n+1} \in P \text{ or } ua_1 \cdots a_{i-1}a_{i+1} \cdots a_{n+1} \in P \text{ for } i = \\ 2, 3, \dots, n + 1. \text{ Hence } \underline{a_2...a_{n+1}}_{s_2...s_{n+1}} = \underline{a_2}_{s_2} \cdots \underline{a_{n+1}}_{s_{n+1}} \in S^{-1}P \text{ or } \underline{ua_1...a_{i-1}a_{i+1}...a_{n+1}}_{us_1...s_{i-1}s_{i+1}...s_n} = \\ \underline{a_1}_{s_1} \cdots \underline{a_{i-1}}_{s_{i-1}} \underline{a_{i+1}}_{s_{i+1}} \cdots \underline{a_{n+1}}_{s_{n+1}} \in S^{-1}P, \text{ which means that } S^{-1}P \text{ is an } n\text{-absorbing } S^{-1}I\text{-} \\ ideal \text{ of } S^{-1}R. \end{array}$

Theorem 2.4. Let P be a proper ideal of a commutative ring R. If P is an n-absorbing I-ideal that is not an n-absorbing ideal, then $P^{n+1} \subseteq IP$.

Proof. Assume that $P^n \not\subseteq IP$. We have to show that P is an *n*-absorbing ideal. Let $x_1x_2\ldots x_{n+1} \in P$ for $x_1, x_2, \ldots, x_{n+1} \in R$. If $x_1x_2\ldots x_{n+1} \notin IP$, then the *n*-absorbing *I*-ideal P gives that P is an *n*-absorbing ideal. Now, for the case $x_1x_2\ldots x_{n+1} \in IP$, we have $x_1x_2\ldots x_{n+1-k}P^k \subseteq IP$ for $k = 1, 2, \ldots, n$, since otherwise, we obtain $x_1x_2\ldots x_{n+1-k}p_1p_2\ldots p_k \notin IP$ for $p_1, p_2, \ldots, p_k \in P$ and so $x_1x_2\ldots x_{n+1-k}(x_{n+2-k}+p_1)\ldots (x_{n+1}+p_k) \in P-IP$. As P is an *n*-absorbing *I*-ideal, $x_1x_2\ldots x_{i-1}x_{i+1}\ldots x_{n+1} \in P$, for some $i = \{1, 2, \ldots, n+1\}$. Similarly, we can assume that for all $i_1, i_2, \ldots, i_{n+1-k} \subseteq \{1, 2, \ldots, n+1\}$, $a_{i_1}\ldots a_{i_{n+1-k}}P^k \subseteq IP$ with $1 \leq k \leq n+1$. Since $P^{n+1} \notin IP$, there exist $r_1, r_2, \ldots, r_{n+1} \in P$ with $r_1r_2\ldots r_{n+1} \notin IP$. Then $(x_1+r_1)(x_2+r_2)\ldots (x_{n+1}+r_{n+1}) \in P-IP$. Thus being P *n*-absorbing *I*-ideal gives us $x_1x_2\ldots x_{i-1}x_{i+1}\ldots x_{n+1} \in P$ for some $i \in \{1, 2, \ldots, n+1\}$. Therefore P is an *n*-absorbing ideal.

We conclude from Theorem 2.4 that an *n*-absorbing *I*-ideal *P* with $P^{n+1} \not\subseteq IP$ is an *n*-absorbing ideal.

Corollary 2.5. Let R be a ring and let P be a proper ideal of R. If P is an n-absorbing 0-ideal that is not an n-absorbing ideal, then $P^{n+1} = 0$.

Corollary 2.6. Let P be an n-absorbing I-ideal with $(IP) \subseteq P^{n+2}$. Then P is an n-absorbing $\bigcap_{i=1}^{\infty} P^i - ideal \ (n \ge 1)$.

Proof. If P is an n-absorbing ideal, then P is an n-absorbing I-ideal and so is an n-absorbing $\bigcap_{i=1}^{\infty} P^i$ -ideal. Suppose that P is not an n-absorbing ideal, then Theorem 2.4 gives us $P^{n+1} \subseteq IP \subseteq P^{n+2}$. Hence $IP = P^k$ for each $k \ge n+1$ and hence $\bigcap_{i=1}^{\infty} P^i = IP$. Thus P is an n-absorbing $\bigcap_{i=1}^{\infty} P^i$ -ideal. \Box

Let R and S be two rings. If P is an *n*-absorbing 0-ideal of R. Then $P \times S$ need not be an *n*-absorbing 0-ideal of $R \times S$. For a particularly case see [2, Theorem 7]. However, $P \times S$ is an *n*-absorbing *I*-ideal for each I with $\bigcap_{i=1}^{\infty} (P \times S)^i \subseteq I(P \times S) \subseteq P \times S$.

- **Theorem 2.7.** (1) Let R and S be two rings and let P be an n-absorbing 0-ideal of R. Then $J = P \times S$ is an n-absorbing I-ideal of $R \times S$, for each I with $\bigcap_{i=1}^{\infty} (P \times S)^i \subseteq I(P \times S) \subseteq P \times S$.
- (2) Let R be a commutative ring and let J be a finitely generated proper ideal of R. Suppose that J is an n-absorbing I-ideal, where $IP \subseteq J^{n+2}$. Then either J is an n-absorbing 0-ideal or $J^{n+1} \neq 0$ is idempotent and R decomposes as $T \times S$, where $S = J^{n+1}$ and $J = P \times S$, where P is an n-absorbing 0-ideal. Hence J is an n-absorbing I-ideal for each I with $\bigcap_{i=1}^{\infty} J^i \subseteq IJ \subseteq J$.

Proof. (1) Let R and S be two rings and let P be an *n*-absorbing 0-ideal of R. Then $P \times S$ need not be an *n*-absorbing 0-ideal of $R \times S$. In fact, $P \times S$ is an *n*-absorbing 0-ideal if and only if $P \times S$ is a prime ideal. However, $P \times S$ is an *n*-absorbing I-ideal for each I with $\bigcap_{i=1}^{\infty} (P \times S)^i \subseteq I(P \times S)$. If P is an *n*-absorbing ideal, then $P \times S$ is an *n*-absorbing ideal and thus is an *n*-absorbing I-ideal. Assume that P is not an *n*-absorbing ideal. Then $P^{n+1} = 0$ and $(P \times S)^{n+1} = 0 \times S$. Hence $\bigcap_{i=1}^{\infty} (P \times S)^i = \bigcap_{i=1}^{\infty} P^i \times S = 0 \times S$. Thus $P \times S - \bigcap_{i=1}^{\infty} (P \times S)^i =$ $P \times S - 0 \times S = (P - 0) \times S$. Since P is an n-absorbing 0-ideal, $P \times S$ is an n-absorbing $\bigcap_{i=1}^{\infty} (P \times S)^i$ -ideal and as $\bigcap_{i=1}^{\infty} (P \times S)^i \subseteq I(P \times S)$, $P \times S$ is an n-absorbing I-ideal.

(2) If J is an n-absorbing ideal, then J is an n-absorbing 0-ideal. So, we can assume that J is not an n-absorbing ideal. Then $J^{n+1} \subseteq IP$ and hence $J^{n+1} \subseteq IP \subseteq J^{n+2}$, so $J^{n+1} = J^{n+2}$. Hence J^{n+1} is idempotent. Since J^{n+1} is finitely generated, $J^{n+1} = (e)$ for some idempotent $e \in R$. Suppose $J^{n+1} = 0$. Then IP = 0, and hence J is an n-absorbing 0-ideal. Assume that $J^{n+1} \neq 0$, and put $S = J^{n+1} = Re$ and T = R(1-e), so R decomposes $T \times S$. Let P = J(1-e); so $J = P \times S$, where $P^{n+1} = (J(1-e))^{n+1} = J^{n+1}(1-e)^{n+1} = (e)(1-e) = 0$. We claim that P is an n-absorbing 0-ideal. Let $x_1, x_2, \ldots, x_{n+1} \in R$ and let $0 \neq x_1x_2 \ldots x_{n+1} \in P$. Then $(x_1, 0)(x_2, 0) \ldots (x_{n+1}, 0) = (x_1x_2 \ldots x_{n+1}, 0) \in$ $P \times S - (P \times S)^{n+1} = P \times S - 0 \times S \subseteq P - IP$, since $IP \subseteq J^{n+2}$, which implies that $IP \subseteq J^{n+2} = (P \times S)^{n+2} = 0 \times S$. Hence $J - J^{n+1} \subseteq J - IP$. As J is an n-absorbing I-ideal, $(x_1x_2 \ldots x_{i-1}x_{i+1} \ldots x_{n+1}, 0) \in P \times S = J$, for some $i = \{1, 2, \ldots, n+1\}$. Thus $x_1x_2 \ldots x_{i-1}x_{i+1} \ldots x_{n+1} \in P$. Hence P is an n-absorbing 0-ideal.

Corollary 2.8. Let R be an indecomposable ring and let P be a finitely generated n-absorbing I-ideal of R, where $IP \subseteq P^{n+2}$. Then P is an n-absorbing 0-ideal. Furthermore, if R is an integral domain, then P is actually an n-absorbing ideal.

Corollary 2.9. A proper ideal P of a Noetherian integral domain R is an nabsorbing ideal if and only if P is an n-absorbing P^{n+1} -ideal for $(n \ge 2)$.

In what follows, we characterize an *n*-absorbing *I*-ideals.

Theorem 2.10. Let P be a proper ideal of a ring R. Then the following conditions are equivalent.

- (1) P is an n-absorbing I-ideal.
- (2) For $x_1, x_2, \ldots, x_n \in R P$:

$$(P: x_1x_2...x_n) = \bigcup_{i=1}^n (P: x_1x_2...x_{i-1}x_{i+1}...x_n) \cup (IP: x_1x_2...x_n).$$

Proof. (1) \Rightarrow (2) Suppose $x_1, x_2, \ldots, x_n \in R - P$ and $y \in (P : x_1 x_2 \ldots x_n)$. Then $x_1 x_2 \ldots x_n y \in P$. If $x_1 x_2 \ldots x_n y \notin IP$, then $x_1 x_2 \ldots x_{i-1} x_{i+1} \ldots x_n y \in P$, for some $i \in \{1, 2, \ldots, n\}$, and so $y \in (P : x_1 x_2 \ldots x_{i-1} x_{i+1} \ldots x_n)$. If $x_1 x_2 \ldots x_n y \in IP$, then $y \in (IP : x_1 x_2 \ldots x_n)$. Hence

$$(P: x_1x_2...x_n) \subseteq \bigcup_{i=1}^n (P: x_1x_2...x_{i-1}x_{i+1}...x_n) \cup (IP: x_1x_2...x_n).$$

The other containment always holds.

 $(2) \Rightarrow (1)$ Suppose $x_1 x_2 \dots x_{n+1} \in P - IP$. If $x_1 x_2 \dots x_n \in P$, then there is nothing to prove. Assume that $x_1 x_2 \dots x_n \notin P$. Thus

$$(P: x_1x_2...x_n) = \bigcup_{i=1}^n (P: x_1x_2...x_{i-1}x_{i+1}...x_n) \cup (IP: x_1x_2...x_n).$$

Since $x_1x_2...x_{n+1} \in P$, $x_{n+1} \in (P: x_1x_2...x_n)$ and the fact $x_1x_2...x_{n+1} \notin IP$ gives us $x_{n+1} \notin (IP: x_1x_2...x_n)$. Hence $x_{n+1} \in (P: x_1x_2...x_{i-1}x_{i+1}...x_n)$, for some $i \in \{1, 2, ..., n\}$, that is, $x_1x_2...x_{i-1}x_{i+1}...x_{n+1} \in P$. Thus P is an *n*-absorbing I-ideal. It was shown by Anderson and Smith [2, Theorem 8] that every proper ideal of R is weakly *prime* if and only if R is a direct product of two fields or (R, m) is quasi-local with $M^2 = 0$. Next we generalize this result to an *n*-absorbing *I*-ideals but first we need the following lemma.

Lemma 2.11. Let $R = R_1 \times R_2 \times \cdots \times R_{n+1}$, where R_i is a ring, for $i \in \{1, 2, \ldots, n+1\}$. If P is an n-absorbing I-ideal of R, then either P = IP or $P = P_1 \times P_2 \times \cdots \times P_{i-1} \times R_i \times P_{i+1} \times \cdots \times P_{n+1}$ for some $i \in \{1, 2, \ldots, n+1\}$ and if $P_j \neq R_i$ for $j \neq j$, then P_j is an n-absorbing ideal in R_j .

Proof. Let $P = P_1 \times P_2 \times \cdots \times P_{n+1}$ be an *n*-absorbing *I*-ideal of *R*. Then there exists $(x_1, x_2, \ldots, x_{n+1}) \in P - IP$, and so

$$(x_1, 1, \dots, 1)(1, x_2, 1, \dots, 1) \dots (1, 1, \dots, x_{n+1}) = (x_1, x_2, \dots, x_{n+1}) \in P.$$

As P is an n-absorbing I-ideal, we have $(x_1, x_2, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n+1}) \in P$ for some $i \in \{1, 2, \ldots, n+1\}$. Thus $(0, 0, \ldots, 0, 1, 0, \ldots, 0) \in P$ and hence $P = P_1 \times P_2 \times \cdots \times P_{i-1} \times R_i \times P_{i+1} \times \cdots \times P_{n+1}$. If $P_j \neq R_j$ for $j \neq i$, then we have to prove P_j is an n-absorbing ideal in R_j . Let i < j and let $y_1y_2 \ldots y_{n+1} \in P_j$. Then

$$(0, 0, \dots, 0, 1, 0, \dots, 0, y_1 y_2 \dots y_n, 0, \dots, 0)$$

= $(0, 0, \dots, 1, 0, \dots, y_1, \dots, 0)(0, 0, \dots, 1, 0, \dots, y_2, \dots, 0)$
 $\dots (0, 0, \dots, 1, 0, \dots, y_{n+1}, \dots, 0) \in P - IP$

and the *n*-absorbing I-ideal P give that

$$(0, 0, \dots, 0, 1, 0, \dots, 0, y_1 y_2 \dots y_{k-1} y_{k+1} \dots y_{n+1}, 0, \dots, 0) \in P$$

for some $k \in \{1, 2, ..., n+1\}$. Thus $y_1 y_2 ... y_{k-1} y_{k+1} ... y_{n+1} \in P_j$ and hence P_j is an *n*-absorbing ideal in R_j . We can do the same arguments for the case j < i. \Box

Theorem 2.12. Let R be a ring and let $|Max(R)| \ge n + 1 \ge 2$. Every proper ideal of R is an n-absorbing I-ideal if and only if every quotient of R is a product of (n + 1)-fields.

Proof. (\Leftarrow): Let *P* be a proper ideal of *R*. Then $\frac{R}{IP} \cong F_1 \times F_2 \times \cdots \times F_{n+1}$ and $\frac{P}{IP} \cong P_1 \times P_2 \times \cdots \times P_{n+1}$, where P_i is an ideal of F_i , $i = 1, 2, \ldots, n+1$. If P = IP, then there is nothing to prove, otherwise we have $P_j = 0$ for at least one $j \in \{1, 2, \ldots, n+1\}$, since $\frac{P}{IP}$ is proper. Therefore $\frac{P}{IP}$ is an *n*-absorbing 0-ideal of $\frac{R}{IP}$ and *P* is an *n*-absorbing *I*-ideal of *R*.

 (\Rightarrow) : Let $m_1, m_2, \ldots, m_{n+1}$ be distinct maximal ideals of R. Then $m = m_1 m_2 \ldots m_{n+1}$ is an *n*-absorbing *I*-ideal of R. We want to show that m is not an *n*-absorbing ideal. First to show that $m_i \nsubseteq \bigcup_{j \neq i} m_j$ for all $i \in \{1, 2, \ldots, n+1\}$, we suppose the contrary that $m_i \subseteq \bigcup_{j \neq i} m_j$. Then there exists m_j with $m_i \subseteq m_j$ by prime avoidance lemma, which contradicts the fact that $m_i, i = 1, 2, \ldots, n+1$ are distinct maximal ideals. Hence there exists $x_i \in m_i - \bigcup_{i \neq j=1}^{n+1} m_j$ and so $x_1, x_2, \ldots, x_{n+1} \in m$. If there exists $j \in \{1, 2, \ldots, n+1\}$ with

 $x_1x_2\ldots x_{j-1}x_{j+1}\ldots x_{n+1} \in m \subseteq m_j$, then $x_i \in m_j$, for some $i \neq j$, a contradiction. Hence m is not an *n*-absorbing ideal and so $m^{n+1} = Im$. Thus by the

Chinese remainder theorem, $\frac{R}{Im} \cong \frac{R}{m_1^{n+1}} \times \frac{R}{m_2^{n+1}} \times \cdots \times \frac{R}{m_{n+1}^{n+1}}$. Put $F_i = \frac{R}{m_i^{n+1}}$. If F_i is not field, then it has a nonzero proper ideal K and so $0 \times 0 \times \cdots \times 0 \times K \times 0 \times \cdots \times 0$ is an *n*-absorbing 0-ideal of $\frac{R}{Im}$. Thus by Lemma 2.11, we have $K = F_i$ or K = 0, which is impossible. Hence F_i is a field. \Box

Corollary 2.13. Let R be a ring and let $|Max(R)| \ge n + 1 \ge 2$. Every proper ideal of R is an n-absorbing 0-ideal if and only if $R \cong F_1 \times F_2 \times \cdots \times F_{n+1}$, where $F_1, F_2, \ldots, F_{n+1}$ are fields.

In what follows, we characterize rings with the property that every proper ideal is an n-absorbing 0-ideal.

Corollary 2.14. Let P be an n-absorbing I-ideal of a ring R, where $IP \subseteq P^{n+2}$. Then P is an n-absorbing $\bigcap_{i=1}^{\infty} P^i$ -ideal $(n \geq 2)$.

Proof. If P be an n-absorbing ideal, then P is an n-absorbing I-ideal and so is an n-absorbing $\bigcap_{i=1}^{\infty} P^i$ -ideal. Suppose that P is not an n-absorbing ideal. Then Theorem 2.4 gives us $P^{n+1} \subseteq IP \subseteq P^{n+2}$. Hence $IP = P^k$ for each $k \ge n+1$ and hence $\bigcap_{i=1}^{\infty} P^i = IP$. Thus P is an n-absorbing $\bigcap_{i=1}^{\infty} P^i$ -ideal.

Acknowledgement. The authors gratefully acknowledge the constructive comments on this paper offered by the anonymous referee. We express our sincere gratitude for his/her review, which has helped to improve the quality of the paper significantly.

References

- 1. I. Akray. I-prime ideals, J. Algebra Relat. Topics 4 (2016), no. 2, 41-47.
- 2. D.D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003) 831–840.
- D.F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011) 1646 – 1672.
- M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co. Reading, MA, 1969.
- A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007) 417 - 429.
- M. Ebrahimpour and R. Nikooei, On generalizations of prime ideals, Comm. Algebra 40 (2012) 1268 – 1279.

¹ Department of Mathematics, University of Soran, Erbil City, Kurdistan Region, Iraq.

Email address: ismael.akray@soran.edu.iq ; ismaeelhmd@yahoo.com

 2 Department of Mathematics, University of Garmian, Kalar City, Kurdistan Region, Iraq.

Email address: medya.bawaxan@garmian.edu.krd