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Abstract. Let R be a commutative ring with identity, let I be a proper ideal
of R, and let n ≥ 1 be a positive integer. In this paper, we introduce a class of
ideals that is closely related to the class of I-prime ideals. A proper ideal P of
R is called an n-absorbing I-ideal if a1, a2, . . . , an+1 ∈ R with a1a2 . . . an+1 ∈
P − IP , then a1a2 . . . ai−1ai+1 . . . an+1 ∈ P for some i ∈ {1, 2, . . . , n + 1}.
Among many results, we show that every proper ideal of a ring R is an n-
absorbing I-ideal if and only if every quotient of R is a product of (n+1)-fields.

1. Introduction

Throughout this article, R denotes a commutative ring with identity and
Max(R) denotes the set of all maximal ideals of R. The notion of prime ideal
plays a main role in the theory of commutative algebra and it has been widely
studied and recently many generalizations were introduced by many authors. Re-
call from [4] that a prime ideal of R is a proper ideal P with the property that
for a, b ∈ R, ab ∈ P implies a ∈ P or b ∈ P . The concept of I-prime ideals
was defined and investigated in [1]. For a fixed ideal I of R, a proper ideal P
of R is I-prime if a, b ∈ R with ab ∈ P − IP implies either a ∈ P or b ∈ P .
The concept of 2-absorbing ideals was introduced and studied in [5]. Let n be a
positive integer. A proper ideal P of a ring R is called an n-absorbing ideal if
whenever x1 . . . xn+1 ∈ P for x1, . . . , xn+1 ∈ R, then there are n of the xi’s whose
product is in P . Equivalently, a proper ideal P of R is an n-absorbing ideal if
and only if whenever x1 · · ·xm ∈ P for x1, . . . , xm ∈ R with m > n, then there
are n of the xi’s whose product is in P ; see [3].
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Let n ≥ 2 and let φ : S(R) → S(R) ∪ {φ} be a map, where S(R) is the set
of ideals of R. A proper ideal P of R is called (n − 1, n)-φ-prime if whenever
a1, a2, . . . , an ∈ R with a1a2 . . . an ∈ P −φ(P ), then the product of n− 1 of the
ai’s is in P (see [6]).

In this article, we introduce a class of ideals that is closely related to the class
of I-Prime ideals. Let I be a proper ideal of R and let n ≥ 1. A proper ideal
P of R is called an n-absorbing I-prime ideal of R if a1, a2, . . . , an+1 ∈ R
with a1a2 . . . an+1 ∈ P − IP , then a1a2 . . . ai−1ai+1 . . . an+1 ∈ P for some i ∈
{1, 2, . . . , n+ 1}. Thus a 1-absorbing I-ideal is just an I-prime ideal. If we set
φ(P ) = IP for every P in S(R), then the ideas of this paper are a special case
of the paper [6]. Some properties of the n-absorbing I-prime ideals are discussed
and studied.

2. Main results

Let I be a fixed ideal of a ring R and let n ≥ 1 be a positive integer. A
proper ideal P of R is called an n-absorbing I-ideal if a1, a2, . . . , an+1 ∈
R with a1 . . . an+1 ∈ P − IP , then a1 . . . ai−1ai+1 . . . an+1 ∈ P for some i ∈
{1, 2, . . . , n+ 1}. It is clear that a proper ideal P is an n-absorbing I-ideal
of R if and only if whenever the product of (n + 1)-elements of R/P is 0, then
the product of some n of these elements is 0 in R/P . Not all n-absorbing I-ideals
are (n− 1)-absorbing I-ideal. The following example illustrates this fact.

Example 2.1. Consider the ring R =
k[[x, y]]

〈xn, yn, x2n − y2n, x2n+1y2n++1〉
, where k

is a field and n ≥ 1 is a positive integer. Put the fixed ideal I to be zero ideal of
R. Then the proper ideal P = 〈x̄n, ȳn, x̄2n − ȳ2n, x̄2n+1ȳ2n+1〉 of R is a (2n + 1)-
absorbing I-ideal but not a 2n-absorbing I-ideal, since x̄2n ∈ P and x̄2n−1 /∈ P .

The proof of the following lemma comes directly from the definition so it is
omitted.

Lemma 2.2. A proper ideal P of a ring R is an n-absorbing I-ideal if and only

if
P

IP
is an n-absorbing 0-ideal.

Proposition 2.3. Let P be an n-absorbing I-ideal of a ring R and let S ⊆ R be a
multiplicative closed set of R such that P ∩S = φ. Then S−1P is an n-absorbing
S−1I-ideal of S−1R.

Proof. Suppose a1
s1
, . . . , an+1

sn+1
∈ S−1R with a1a2...an+1

s1s2...sn+1
∈ S−1P − S−1IS−1P =

S−1(P − IP ). Then ua1a2 . . . an+1 ∈ PIP for some u ∈ S. By taking ua1
as one element, either a2 . . . an+1 ∈ P or ua1 · · · ai−1ai+1 · · · an+1 ∈ P for i =
2, 3, . . . , n + 1. Hence a2...an+1

s2...sn+1
= a2

s2
· · · an+1

sn+1
∈ S−1P or ua1...ai−1ai+1...an+1

us1...si−1si+1...sn
=

a1
s1
· · · ai−1

si−1

ai+1

si+1
· · · an+1

sn+1
∈ S−1P , which means that S−1P is an n-absorbing S−1I-

ideal of S−1R. �

Theorem 2.4. Let P be a proper ideal of a commutative ring R. If P is an
n-absorbing I-ideal that is not an n-absorbing ideal, then P n+1 ⊆ IP.
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Proof. Assume that P n * IP . We have to show that P is an n-absorbing ideal.
Let x1x2 . . . xn+1 ∈ P for x1, x2, . . . , xn+1 ∈ R. If x1x2 . . . xn+1 /∈ IP , then
the n-absorbing I-ideal P gives that P is an n-absorbing ideal. Now, for the case
x1x2 . . . xn+1 ∈ IP , we have x1x2 . . . xn+1−kP

k ⊆ IP for k = 1, 2, . . . , n, since
otherwise, we obtain x1x2 . . . xn+1−kp1p2 . . . pk /∈ IP for p1, p2, . . . , pk ∈ P and so
x1x2 . . . xn+1−k (xn+2−k + p1) . . . (xn+1 + pk) ∈ P − IP . As P is an n-absorbing I-
ideal, x1x2 . . . xi−1xi+1 . . . xn+1 ∈ P , for some i = {1, 2, . . . , n+1}. Similarly, we
can assume that for all i1, i2, . . . , in+1−k ⊆ {1, 2, . . . , n+ 1}, ai1 . . . ain+1−k

P k ⊆
IP with 1 ≤ k ≤ n + 1. Since P n+1 * IP , there exist r1, r2, . . . , rn+1 ∈ P
with r1r2 . . . rn+1 /∈ IP . Then (x1 + r1)(x2 + r2) . . . (xn+1 + rn+1) ∈ P − IP .
Thus being P n-absorbing I-ideal gives us x1x2 . . . xi−1xi+1 . . . xn+1 ∈ P for some
i ∈ {1, 2, . . . , n+ 1} . Therefore P is an n-absorbing ideal.

�

We conclude from Theorem 2.4 that an n-absorbing I-ideal P with P n+1 * IP
is an n-absorbing ideal.

Corollary 2.5. Let R be a ring and let P be a proper ideal of R. If P is an
n-absorbing 0-ideal that is not an n-absorbing ideal, then P n+1 = 0.

Corollary 2.6. Let P be an n-absorbing I-ideal with (IP ) ⊆ P n+2. Then P is
an n-absorbing ∩∞i=1P

i−ideal (n ≥ 1).

Proof. If P is an n-absorbing ideal, then P is an n-absorbing I-ideal and so is
an n-absorbing ∩∞i=1P

i-ideal. Suppose that P is not an n-absorbing ideal, then
Theorem 2.4 gives us P n+1 ⊆ IP ⊆ P n+2. Hence IP = P k for each k ≥ n + 1
and hence ∩∞i=1P

i = IP . Thus P is an n-absorbing ∩∞i=1P
i-ideal. �

Let R and S be two rings. If P is an n-absorbing 0-ideal of R. Then P×S need
not be an n-absorbing 0-ideal of R × S. For a particularly case see [2, Theorem

7]. However, P × S is an n-absorbing I-ideal for each I with ∩∞i=1(P × S)i ⊆
I(P × S) ⊆ P × S.

Theorem 2.7. (1) Let R and S be two rings and let P be an n-absorbing 0-ideal
of R. Then J = P × S is an n-absorbing I-ideal of R × S, for each I with
∩∞i=1(P × S)i ⊆ I(P × S) ⊆ P × S.

(2) Let R be a commutative ring and let J be a finitely generated proper ideal of
R. Suppose that J is an n-absorbing I-ideal, where IP ⊆ Jn+2. Then either
J is an n-absorbing 0-ideal or Jn+1 6= 0 is idempotent and R decomposes
as T ×S, where S = Jn+1 and J = P ×S, where P is an n-absorbing 0-ideal.
Hence J is an n-absorbing I-ideal for each I with ∩∞i=1J

i ⊆ IJ ⊆ J .

Proof. (1) Let R and S be two rings and let P be an n-absorbing 0-ideal of R.
Then P × S need not be an n-absorbing 0-ideal of R × S. In fact, P × S is an
n-absorbing 0-ideal if and only if P ×S is a prime ideal. However, P ×S is an n-
absorbing I-ideal for each I with ∩∞i=1(P × S)i ⊆ I(P ×S). If P is an n-absorbing
ideal, then P × S is an n-absorbing ideal and thus is an n-absorbing I-ideal.
Assume that P is not an n-absorbing ideal. Then P n+1 = 0 and (P × S)n+1 =

0× S. Hence ∩∞i=1(P × S)i = ∩∞i=1P
i× S = 0× S. Thus P × S −∩∞i=1(P × S)i =
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P × S − 0 × S = (P − 0) × S. Since P is an n-absorbing 0-ideal, P × S is an

n-absorbing ∩∞i=1(P × S)i-ideal and as ∩∞i=1(P × S)i ⊆ I(P × S), P × S is an
n-absorbing I-ideal.

(2) If J is an n-absorbing ideal, then J is an n-absorbing 0-ideal. So, we can
assume that J is not an n-absorbing ideal. Then Jn+1 ⊆ IP and hence Jn+1 ⊆
IP ⊆ Jn+2, so Jn+1 = Jn+2. Hence Jn+1 is idempotent. Since Jn+1 is finitely
generated, Jn+1 = (e) for some idempotent e ∈ R. Suppose Jn+1 = 0. Then
IP = 0, and hence J is an n-absorbing 0-ideal. Assume that Jn+1 6= 0, and put
S = Jn+1 = Re and T = R (1− e), so R decomposes T × S. Let P = J (1− e);
so J = P × S, where P n+1 = (J (1− e))n+1 = Jn+1(1− e)n+1 = (e) (1− e) = 0.
We claim that P is an n-absorbing 0-ideal. Let x1, x2, . . . , xn+1 ∈ R and let
0 6= x1x2 . . . xn+1 ∈ P . Then (x1, 0) (x2, 0) . . . (xn+1, 0) = (x1x2 . . . xn+1, 0) ∈
P × S − (P × S)n+1 = P × S − 0 × S ⊆ P − IP , since IP ⊆ Jn+2, which
implies that IP ⊆ Jn+2 = (P × S)n+2 = 0 × S. Hence J − Jn+1 ⊆ J − IP .
As J is an n-absorbing I-ideal, (x1x2 . . . xi−1xi+1 . . . xn+1, 0) ∈ P × S = J , for
some i = {1, 2, . . . , n + 1}. Thus x1x2 . . . xi−1xi+1 . . . xn+1 ∈ P. Hence P is an
n-absorbing 0-ideal. �

Corollary 2.8. Let R be an indecomposable ring and let P be a finitely generated
n-absorbing I-ideal of R, where IP ⊆ P n+2. Then P is an n-absorbing 0-ideal.
Furthermore, if R is an integral domain, then P is actually an n-absorbing ideal.

Corollary 2.9. A proper ideal P of a Noetherian integral domain R is an n-
absorbing ideal if and only if P is an n-absorbing P n+1-ideal for (n ≥ 2).

In what follows, we characterize an n-absorbing I-ideals.

Theorem 2.10. Let P be a proper ideal of a ring R. Then the following condi-
tions are equivalent.

(1) P is an n-absorbing I-ideal.
(2) For x1, x2, . . . , xn ∈ R− P :

(P : x1x2 . . . xn) = ∪ni=1(P : x1x2 . . . xi−1xi+1 . . . xn) ∪ (IP : x1x2 . . . xn).

Proof. (1) ⇒ (2) Suppose x1, x2, . . . , xn ∈ R − P and y ∈ (P : x1x2 . . . xn).
Then x1x2 . . . xny ∈ P . If x1x2 . . . xny /∈ IP , then x1x2 . . . xi−1xi+1 . . . xny ∈
P , for some i ∈ {1, 2, . . . , n}, and so y ∈ (P : x1x2 . . . xi−1xi+1 . . . xn). If
x1x2 . . . xny ∈ IP , then y ∈ (IP : x1x2 . . . xn). Hence

(P : x1x2 . . . xn) ⊆ ∪ni=1(P : x1x2 . . . xi−1xi+1 . . . xn) ∪ (IP : x1x2 . . . xn) .

The other containment always holds.
(2) ⇒ (1) Suppose x1x2 . . . xn+1 ∈ P − IP . If x1x2 . . . xn ∈ P , then there is

nothing to prove. Assume that x1x2 . . . xn /∈ P . Thus

(P : x1x2 . . . xn) = ∪ni=1(P : x1x2 . . . xi−1xi+1 . . . xn) ∪ (IP : x1x2 . . . xn) .

Since x1x2 . . . xn+1 ∈ P , xn+1 ∈ ( P : x1x2 . . . xn) and the fact x1x2 . . . xn+1 /∈ IP
gives us xn+1 /∈ ( IP : x1x2 . . . xn). Hence xn+1 ∈ (P : x1x2 . . . xi−1xi+1 . . . xn),
for some i ∈ {1, 2, . . . , n}, that is, x1x2 . . . xi−1xi+1 . . . xn+1 ∈ P . Thus P is an
n-absorbing I-ideal. �
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It was shown by Anderson and Smith [2, Theorem 8] that every proper ideal
of R is weakly prime if and only if R is a direct product of two fields or (R,m) is
quasi-local with M2 = 0. Next we generalize this result to an n-absorbing I-ideals
but first we need the following lemma.

Lemma 2.11. Let R = R1 × R2 × · · · × Rn+1, where Ri is a ring, for i ∈
{1, 2, . . . , n + 1}. If P is an n-absorbing I-ideal of R, then either P = IP or
P = P1 × P2 × · · · × Pi−1 ×Ri × Pi+1 × · · · × Pn+1 for some i ∈ {1, 2, . . . , n+ 1}
and if Pj 6= Ri for j 6= j, then Pj is an n-absorbing ideal in Rj.

Proof. Let P = P1 × P2 × · · · × Pn+1 be an n-absorbing I-ideal of R. Then there
exists (x1, x2, . . . , xn+1) ∈ P − IP , and so

(x1, 1, . . . , 1)(1, x2, 1, . . . , 1) . . . (1, 1, . . . , xn+1) = (x1, x2, . . . , xn+1) ∈ P.

As P is an n-absorbing I-ideal, we have (x1, x2, . . . , xi−1, 1, xi+1, . . . , xn+1) ∈ P
for some i ∈ {1, 2, . . . , n + 1}. Thus (0, 0, . . . , 0, 1, 0, . . . , 0) ∈ P and hence P =
P1 × P2 × · · · × Pi−1 ×Ri × Pi+1 × · · · × Pn+1. If Pj 6= Rj for j 6= i, then we have
to prove Pj is an n-absorbing ideal in Rj. Let i < j and let y1y2 . . . yn+1 ∈ Pj.
Then

(0, 0, . . . , 0, 1, 0, . . . , 0, y1y2 . . . yn, 0, . . . , 0)

= (0, 0, . . . , 1, 0, . . . , y1, . . . , 0)(0, 0, . . . , 1, 0, . . . , y2, . . . , 0)

. . . (0, 0, . . . , 1, 0, . . . , yn+1, . . . , 0) ∈ P − IP

and the n-absorbing I-ideal P give that

(0, 0, . . . , 0, 1, 0, . . . , 0, y1y2 . . . yk−1yk+1 . . . yn+1, 0, . . . , 0) ∈ P

for some k ∈ {1, 2, . . . , n+1}. Thus y1y2 . . . yk−1yk+1 . . . yn+1 ∈ Pj and hence Pj is
an n-absorbing ideal in Rj. We can do the same arguments for the case j < i. �

Theorem 2.12. Let R be a ring and let |Max(R)| ≥ n + 1 ≥ 2. Every proper
ideal of R is an n-absorbing I-ideal if and only if every quotient of R is a product
of (n+ 1)-fields.

Proof. (⇐): Let P be a proper ideal of R. Then R
IP
∼= F1 × F2 × · · · × Fn+1 and

P
IP
∼= P1 × P2 × · · · × Pn+1, where Pi is an ideal of Fi, i = 1, 2, . . . , n + 1. If

P = IP , then there is nothing to prove, otherwise we have Pj = 0 for at least one
j ∈ {1, 2, . . . , n + 1}, since P

IP
is proper. Therefore P

IP
is an n-absorbing 0-ideal

of R
IP

and P is an n-absorbing I-ideal of R.
(⇒): Let m1,m2, . . . ,mn+1 be distinct maximal ideals of R. Then m =

m1m2 . . . mn+1 is an n-absorbing I-ideal of R. We want to show that m is not an
n-absorbing ideal. First to show that mi * ∪j 6=imj for all i ∈ {1, 2, . . . , n + 1},
we suppose the contrary that mi ⊆ ∪j 6=imj. Then there exists mj with mi ⊆ mj

by prime avoidance lemma, which contradicts the fact that mi, i = 1, 2, . . . , n+ 1
are distinct maximal ideals. Hence there exists xi ∈ mi − ∪n+1

i 6=j=1mj and so
x1, x2, . . . , xn+1 ∈ m. If there exists j ∈ {1, 2, . . . , n+ 1} with
x1x2 . . . xj−1xj+1 . . . xn+1 ∈ m ⊆ mj, then xi ∈ mj, for some i 6= j, a contra-
diction. Hence m is not an n-absorbing ideal and so mn+1 = Im. Thus by the
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Chinese remainder theorem, R
Im
∼= R

mn+1
1

× R
mn+1

2

×· · ·× R
mn+1

n+1

. Put Fi = R
mn+1

i

. If Fi

is not field, then it has a nonzero proper idealK and so 0×0×· · ·×0×K×0×· · ·×0
is an n-absorbing 0-ideal of R

Im
. Thus by Lemma 2.11, we have K = Fi or K = 0,

which is impossible. Hence Fi is a field. �

Corollary 2.13. Let R be a ring and let |Max(R)| ≥ n + 1 ≥ 2. Every proper
ideal of R is an n-absorbing 0-ideal if and only if R ∼= F1×F2×· · ·×Fn+1, where
F1, F2, . . . , Fn+1 are fields.

In what follows, we characterize rings with the property that every proper ideal
is an n-absorbing 0-ideal.

Corollary 2.14. Let P be an n-absorbing I-ideal of a ring R, where IP ⊆ P n+2.
Then P is an n-absorbing ∩∞i=1P

i-ideal (n ≥ 2).

Proof. If P be an n-absorbing ideal, then P is an n-absorbing I-ideal and so is
an n-absorbing ∩∞i=1P

i-ideal. Suppose that P is not an n-absorbing ideal. Then
Theorem 2.4 gives us P n+1 ⊆ IP ⊆ P n+2. Hence IP = P k for each k ≥ n + 1
and hence ∩∞i=1P

i = IP . Thus P is an n-absorbing ∩∞i=1P
i-ideal. �
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