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Abstract. A path in an edge-colored graph is called a rainbow path, if no
two edges of the path are colored the same. An edge-colored graph G, is
rainbow-connected if any two vertices are connected by a rainbow path. A
rainbow-connected graph is called strongly rainbow connected if for every two
distinct vertices u and v of V (G), there exists a rainbow path P from u to v
that in the length of P is equal to d(u, v). The notations rc(G) and src(G)
are the smallest number of colors that are needed in order to make G rainbow
connected and strongly rainbow connected, respectively. In this paper, we find
the exact value of rc(G), where G is a unicyclic graph. Moreover, we determine
the upper and lower bounds for src(G), where G is a unicyclic graph, and we
show that these bounds are sharp.

1. Introduction and preliminaries

Throughout this paper, all graphs are finite, undirected, and connected. We
refer the reader to the book [1] for graph-theoretical notation and terminology
not described here. A path P in an edge-colored graph G, where adjacent edges
may be colored the same, is a rainbow path if no two edges of it are colored
the same. An edge-connected graph G, whose adjacent edges may have the same
color, is rainbow-connected if every two vertices are connected by a rainbow path.
The rainbow connection number of a connected graph G, denoted rc(G), is the
smallest number of colors that are needed in order to make G rainbow connected.

For any two vertices u and v of G, a rainbow u-v geodesic in G is a rainbow
path from u to v by the length d(u, v). A graph G is strongly rainbow connected
if there exists a rainbow u-v geodesic for every pair of distinct vertices u and v
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in G. In this case, the edge coloring c : E(G) −→ {1, 2, . . . , n}, n ∈ N, is called a
strong rainbow coloring of G. Similarly we define the strong rainbow connection
number of a connected graph G, denoted by src(G), as the smallest number of
colors that are needed in order to make G strong rainbow connected. A strong
rainbow coloring of G using src(G) colors is called a minimum strong rainbow
coloring of G.

Chartrand et al. [3] found that the numbers rc(G) and src(G) are equal to the
size of the graph G if and only if G is a tree. Therefore, this relevant question
arises: What is the relation between rc(G), src(G), and the size of G, where G is
not a tree? Li and Sun [7] showed that there is no graph G with src(G) = m− 1.
Moreover, they characterized all graphs that satisfy src(G) = m− 2 in which m
is the size of graph.

Although the rainbow connection number is obtained for some specific graphs,
it is proved that for a given graphG, deciding if rc(G) = 2 is already NP-complete;
see [6]. More generally, it was shown in [6] that for any fixed k ≥ 2, deciding if
rc(G) = k is NP-complete. Therefore giving the precise value of rc(G) and src(G)
for a given arbitrary graph G is almost impossible. Nowadays, finding the upper
bound for rc(G) and describing the relation between rc(G) and other parameters
of graph, specially the k-connectivity [2, 4, 5], radius, bridge, minimum degree,
and order of graph are investigated.
In this paper, we concentrate on determining rc(Gr) and src(Gr), where Gr is a
unicyclic graph defined as follows.

Definition 1.1. Suppose that T1, T2, . . . , Tr are trees with the roots w1, . . . , wr,
respectively, and let Cn be a cycle with the vertices v1, v2, . . . , vn (n ≥ r). We
consider Gr as a unicyclic graph such that {i1, i2, . . . , ir} ⊆ {1, 2, . . . , n} and wj

is identified to vij for every 1 ≤ j ≤ r. In addition, we define αi as the number
of leaves of Ti minus one. We show the sum of all αi, 1 ≤ i ≤ r, by α.

In Section 2, we find the exact value of G1 and G2. In Section 3, we obtain the
sharp upper and lower bounds for src(Gr), where Gr has an odd cycle. Finally, in
Section 4, we look at unicyclic graphs with even cycle, and we set the sharp upper
and lower bounds for src(Gr), depending on the size of trees that are attached to
the cycle C.

2. Rainbow connection number

For finding rc(G1) and rc(G2), first we need the following two lemmas, which
show that if c is a rainbow coloring of Gr, then each color of trees is used on the
cycle at most once and the maximum number of colors of Ti that we can use on
the cycle, is αi.

Lemma 2.1. Let Gr be a unicyclic graph, and let {c1, . . . , ct} be the colors of a
rainbow coloring of Gr. Then each color of E(Ti) , 1 ≤ i ≤ r, is used at most
twice on Gr.

Proof. Let e1 = u1v1 with color c1 be an edge in E(Tj), and let e2 = u2v2 and
e3 = u3v3 be another edges of Gr with color c1. It is obvious that e2 and e3 are
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in the cycle of Gr. Now, delete the edges e2 and e3 from Gr (do not remove their
vertices). Thus, we have Gr \{e2, e3} ' H1∪H2, where H1 and H2 are connected
and wj ∈ V (H2). Without loss of generality, assume that d(wj, u1) > d(wj, v1)
on Gr. In this case, we do not have any rainbow path between u1 and vertices of
H1, which is a contradiction. �

Remark 2.2. Let c be a rainbow coloring of Gr, and let e ∈ E(Ti) be an edge that
its color is used on the cycle. If P is the path wi−v1−· · ·−vh such that v1, . . . , vh
are in V (Ti) and P includes the edge e, then none of the colors of E(P ) \ {e} are
used in the cycle.

Lemma 2.3. The maximum number of colors of Ti, which can be used in the
cycle of Gr, is equal to αi (1 ≤ i ≤ r).

Proof. Let the edges of Ti be colored by cj, 1 ≤ j ≤ mi, which corresponds to
the edges ej, respectively. Assume that the colors ci1 , . . . , cit are the maximum
number of colors of Ti that are used in the cycle of Gr. It is enough to show that
t ≤ αi.

If all edges ei1 , . . . , eit are leaves, then we have nothing to prove. Suppose that
ei1 = u1v1 is not a leaf of Ti and that d(u1, wi) ≤ d(v1, wi). Now, remove the edge
ei1 from Ti, and so we have two trees Ti1 and Ti2 such that wi ∈ V (Ti2). Therefore,
we can say that Ti1 is isomorphic to a path with root v1. Otherwise, Remark 2.2
implies that Ti1 has at least two leaves like e1 and e2 that their colors are not in
the set {ci1 , . . . , cit}. Now, remove the color ci1 from the set and add the colors
c1 and c2 to it, which is a contradiction. Thus, each edge of eij , 1 ≤ j ≤ t, is
either a leaf or corresponds to a leaf of tree, and we have t ≤ αi. �

Definition 2.4. Let k be a positive integer. Define the function Hk as follows:

Hk(s) =

{
1, k > s,
0, k ≤ s.

Theorem 2.5. Let G1 be a unicyclic graph. Then rc(G1) = m1+d
k − α1

2
eHk(α1),

where k is the length of C.

Proof. We know that m1 colors are needed for coloring the tree. By Lemma 2.3,
maximum colors of tree that we can use in the cycle, is α1; on the other hand,
each color of tree is used at most once in C. If k ≤ α1, then we can color the
edges of cycle with the color of leaves and rc(G1) = m1; otherwise if k > α1, then
we can color α1 edges of C. Thus, there are k − α1 edges without color. Since

each color is used on G1 at most twice, we need dk − α1

2
e new colors.

�

Remark 2.6. We must put the colors of leaves of T1 in the cycle C (for example, an
even cycle with length of n) in the last theorem by this method that we are going
to illustrate. At first, we denominate the edges of cycle C, starting from w1 in

the cycle clockwise by ei (1 ≤ i ≤ n

2
), and the edges of C, starting anticlockwise

from w1 in the cycle C, are denoted by e′i (1 ≤ i ≤ n

2
). Set the priority order



STRONG RAINBOW COLORING OF UNICYCLIC GRAPHS 209

of putting the color of leaves in the color of edges in the cycle C, by finding the

greater index of i (1 ≤ i ≤ n

2
) in {ei, e′i}.

Theorem 2.7. Let G2 be a unicyclic graph, and let α2 ≥ α1. Then

rc(G2) = min{m1 +m2 + s+ dk − α− 2s

2
eHk(α+ 2s),m1 +m2 + dk − α2

2
eHk(α2)},

where k is the length of cycle and s is the length of minimum path between w1

and w2.

Proof. For a rainbow coloring of G2, we need at least m1 +m2 colors for E(T1)∪
E(T2). Now, consider the following cases:
Case1. There is at least one color of each tree in E(C). Since the maximum
number of colors Ti, which we can use on C, is αi (i = 1, 2), we have at most α
colors of Ti’s in the cycle, by Lemma 2.3. Suppose that P1 and P2 are two paths
between w1 and w2 in G2 such that s = l(P1) ≤ l(P2). From the fact that, each
tree has at least one color on the cycle, the colors of leaves, which are used in the
cycle, have to be in P1 or P2. Since l(P1) ≤ l(P2), we assume that these colors are
in P2 (Note that if l(P2) < α, then we cannot use all colors of leaves). Therefore,
we need s new colors for coloring the edges of P1. It is not difficult to see that in

this case we have rc(G) ≤ m1 +m2 + s+ dk − α− 2s

2
eHk(α+ 2s). Now, we show

that the inequality is sharp. Clearly, we need m1 +m2 + s colors for the rainbow
coloring of Ti’s and P1, i = 1, 2. First assume k > α + 2s. Since each color of

leaves or the edges P1 is used twice, by Lemma 2.1, we need at least dk − α− 2s

2
e

new colors for the edges P2. Thus, rc(G) = m1 +m2 + s+ dk − α− 2s

2
e. Second,

assume that k ≤ α + 2s. In this case, we have rc(G) = m1 +m2 + s.
Case 2. The colors of one tree are used in the cycle. Since α1 ≤ α2, we use α2

colors of tree T2 on C. In this case, we have a unicyclic with one tree T2. Thus,
Theorem 2.5 implies that

rc(G2) = m1 +m2 +
k − α2

2
Hk(α2).

�

3. Unicyclic graph with odd cycle

Throughout this section, we assume that Gr is a connected unicyclic graph

with r trees and odd cycle with order 2k+ 1. Since we need
r∑

i=1

mi distinct colors

for all edges of trees, we want to know how many colors of trees we can use on C
and to find the strongly rainbow connection number.

Lemma 3.1. If c is a strongly rainbow coloring of Gr, then at most one color of
Ti is used on C.

Proof. Suppose by contradiction that c1 and c2 are, respectively, two distinct
colors of e1 = u1v1 and e2 = u2v2 of Ti, such that they are used on C. Without
loss of generality, assume that d(u1, wi) ≤ d(v1, wi). It is not difficult to see that
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there is a unique edge e = uv of C such that d(u,wi) = d(v, wi) = k. Since we
use the colors c1 and c2 on C, there is a distinct edge from e on C like e

′
= u

′
v
′

with color c1 or c2. Without loss of generality, assume that e
′

is colored by c1
and that d(u1, wi) ≤ d(v1, wi). From the fact that C has an odd length, we have
either d(u

′
, wi) < d(v

′
, wi) or d(u

′
, wi) > d(v

′
, wi). If the former case happens,

then there is no v1-v
′

geodesic path. For the latter case, consider the vertices v1
and u

′
. �

From the proof of Lemma 3.1, if we use one color of E(Ti) in the cycle of Gr,
then there is only one edge for that color, which is introduced above. Let the
edges of C be colored by each specific color of Ti’s for 1 ≤ i ≤ r. Then we can
extend C to a strongly rainbow connected graph, because, for every integers i 6= j,
if u ∈ V (Ti) and v ∈ V (Tj), then there are no repetitive colors of trees on the
shortest path between u and v. Thus, for an arbitrary graph Gr, to find src(Gr),
it is enough to consider a cycle of length 2k + 1 with r different coloring edges
that belong to colors of leaves originally, and to extend C by minimum new colors
to a strongly rainbow connected graph.

Definition 3.2. Let Hr be a cycle of length 2k + 1 with r distinguished edge
colors such that the induced subgraph on these colored edges forms a path of
length r(r > 0), and let H

′
r be a cycle of length 2k+1 with r different edge colors

such that these colors decompose edges C2k+1 to four paths P1, P2, P3, and P4

such that the induced subgraph on colored edges is P1 ∪ P2, V (P1) ∩ V (P2) = ∅,
and |l(P1)− l(P2)| ≤ 1. Similarly the induced subgraph, which edges do not have
any color, is P3 ∪ P4, V (P3) ∩ V (P4) = ∅, and |l(P3)− l(P4)| ≤ 1.

Theorem 3.3. Let H be the cycle C2k+1 with r distinct coloring edges (1 ≤ r ≤
2k + 1). Then

(i) src(H) is maximum, if H ' Hr;
(ii) src(H) is minimum, if H ' H

′
r.

Proof. First we find the maximum src(H). Since src(C2k+1) = k+1, then src(H) ≤
k. Suppose r ≤ k. In this sense, Hr has a path with length k without any color;
thus, we need k new colors for coloring the path. Thus, src(Hr) = k and the
maximum case happens. If r > k, then Hr has a path with length 2k − r + 1,
which needs 2k−r+1 new colors for its own. In this case, the graph Hr is colored
by 2k + 1 distinct colors, which is maximum.

Second, we show that H
′
r needs minimum colors. If r is even, then l(P1) =

l(P2) = r
2
. Without loss of generality, assume that l(P3) = k− r

2
and that l(P4) =

k− r
2

+1. Since l(P4) ≤ k, we need k− r
2

+1 new colors for E(P4). Locate k− r
2

+1
colors on P4, and put these colors for E(P3) such that the result is a strongly
rainbow coloring. Thus, the minimum src(H) happens and equals d2k−r+1

2
e. If r

is odd, then assume l(P1) = r−1
2

and l(P2) = r+1
2
. Hence, l(P3) = l(P4) = 2k−r+1

2
,

and similarly, src(H) = 2k−r+1
2

. �

The following corollary is an immediate result of Theorem 3.3, which shows
upper and lower bounds for a strongly rainbow connection of unicyclic graphs
with odd cycle.
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Corollary 3.4. Let Gr be an arbitrary unicyclic graph with a cycle of length
2k + 1, and let T1, . . . , Tr be r trees of it.

• If r ≤ k, then
r∑

i=1

mi + d2k − r + 1

2
e ≤ src(Gr) ≤

r∑
i=1

mi + k. (3.1)

• If k < r ≤ 2k, then
r∑

i=1

mi + d2k − r + 1

2
e ≤ src(Gr) ≤

r∑
i=1

mi + 2k − r + 1. (3.2)

4. Unicyclic graph with even cycle

Throughout this section, we assume that Gr is a connected unicyclic graph
with r trees that are attached to an even cycle C of order 2k. Let T be the set
of all trees in Gr, let A = {T1, T2, . . . , Tz} be the set of z trees from Gr that are
not paths, and let B be the set of trees that are paths. Therefore T = A ∪ B.
In this paper, the variable z denotes the number of trees that are not paths, and
Tz+1, . . . , Tr are paths.

Lemma 4.1. Let c be a strongly rainbow coloring of Gr; then at most two colors
of E(Ti) are used on c.

Proof. Since l(C) = 2k, for each 1 ≤ i ≤ r, there is a vertex u ∈ V (C) such that
d(u,wi) = k. Suppose that Ni = {uu′, uu′′}, where u′, u′′ ∈ V (C). Similar to the
argument of the proof of Lemma 3.1, the colors of E(Ti) have just two choices on
C, which are uu′ and uu′′. If Ti is a path, then we can use just one color of E(Ti).
Otherwise, we can use two colors of E(Ti). �

From the proof of Lemma 4.1, there are two fixed options on C for colors of
each tree, but depending on the position of trees on the cycle, sometimes we can
use at most one color of each tree on C.

Lemma 4.2. Let r be a positive integer, and let k ≥ 3. Then Gr cannot use
maximum colors of E(Ti) on C if and only if one of the following cases occurs:
Case 1. Ti is not a path and there is Tj (j 6= i) such that d(wi, wj) = k.
Case 2. Ti is not a path and there is Tj (j 6= i) such that Tj is not path and
d(wi, wj) = 1.

Proof. Let i be a fixed integer. Then 1 ≤ d(wi, wj) ≤ k for every 1 ≤ j ≤ r
(j 6= i). Now, Consider two cases:
Case 1. We have 2 ≤ d(wi, wj) ≤ k (j 6= i) for every j. In this case, Ni∩Nj = ∅.
If 2 ≤ d(wi, wj) ≤ k − 1, then we can select maximum colors of E(Ti) for the
edges of Ni. Moreover, if d(wi, wj) = k, then we can use just two colors of E(Ti)
∪ E(Tj) depending on the following cases:

(i) Both Ti and Tj are paths.
(ii) Both Ti and Tj are not paths.

(iii) Ti is not a path, but Tj is a path, or conversely.
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For (i), we can use one color from each tree in C. Since there are two wiwj-paths
with same length, two colors have to utilize in one of wiwj-paths to be a strongly
rainbow coloring. If (ii) happens, then it should be used two colors of one tree or
one color of each tree (The latter case is more efficient). The last item is similar
to (ii).
Case 2. We have d(wi, wj) = 1 for some j 6= i, 1 ≤ j ≤ r. Clearly, |Ni ∩Nj| = 1
and we can use maximum three colors of E(Ti) ∪ E(Tj). Thus, when both Ti and
Tj are not paths, we miss one color of the four colors.

�

For achieving src(Gr), we need
r∑

i=1

mi colors for trees. Hence, it is important

to find the position of trees, and then color the edges of C corresponding to each
tree. The maximum number of colors of trees, which we can use on C, is denoted
by λ(Gr). In this case, finding src(Gr) is equivalent to considering a cycle of length
2k with λ(Gr) colored edges corresponding to trees for 1 ≤ λ(Gr) ≤ 2r.

Lemma 4.3. Let T = A and let |A| = k, in which k is an even positive integer
and l(C) = 2k. Then λ(Gr) ≤ 2k − 1.

Proof. Since k is even, we cannot use all T1, . . . , Tk on C such that d(wi, wj) 6=
1, k (1 ≤ i, j ≤ k). Define G1

r as follows: Assign T1, . . . , Tk−1 on C such that
d(wi, wj) 6= 1, k. Now, put Tk on C such that d(wk, wi) 6= k. In this sense,
λ(Gr) = 2k − 1. �

If T = A and |A| = k, in which k is an even positive integer and l(C) = 2k,
then we denote Gr by G′k. In the following theorems, we find the maximum and
minimum of λ(Gr) for each Gr with r fixed trees, where Gr is not isomorphic to
G′k.

Lemma 4.4. Suppose that T is the set of all unicyclic graphs Gr with r trees, in
which Gr is not isomorphic to G′k. Then max

Gr∈T
(λ(Gr)) = min{z + r, 2k}.

Proof. It is straightforward to see that max
Gr∈A

(λ(Gr)) = min{z+ r, 2k} ≤ z+ r, by

Lemma 4.2. We show that the sharp case happens. Define a unicyclic graph with r
trees as follows: If z < k, then put z trees T1, T2, . . . , Tz such that d(wi, wj) 6= 1, k
for every 1 ≤ i, j ≤ m. Since z < k, it is possible. If e = uv ∈ E(C) is not colored
by the first z trees, then there exist vertices u′, v′ ∈ V (C) such that d(u, u′) =
d(v, v′) = k and at least one of u′ and v′ is distinct from wi, 1 ≤ i ≤ z. Thus,
put Tz+1 on this vertex. By following this process, we put trees on C such that
the maximum number of colors is used. If z ≥ k and k is odd, then we can put
k trees alternatively on C such that d(wi, wi+1) = 2 and we use 2k colors on the
cycle. If z ≥ k and k is even, then put k − 1 trees T1, . . . , Tk−1 on C such that
d(wi, wj) 6= 1, k. Clearly, we can utilize 2k − 2 colors of these trees on C. Since
Gr is not isomorphic to G′k, there exist Tk and Tk+1, yet. Similar to the above
argument, there are two vertices on C that if we put the two trees there, then all
edges are colored.

�
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Lemma 4.5. Let Gr be an arbitrary unicyclic graph with r trees. Then min{r+
1, 2k} ≤ λ(Gr), if T = A, and |A| is an odd number. Otherwise, min{r, 2k} ≤
λ(Gr).

Proof. If r = z and z is odd, then put z trees on C such that d(wi, wi+1) = 1,
say G. In this case, λ(G) = min{r + 1, 2k} . Obviously, we cannot use less than
r + 1 colors, because by Lemma 4.2, each tree loses at most one color, and it
happens if for each tree Ti, there is a tree Tj such that d(wi, wj) = k. Since z is
odd, it does not occur. If z is even, then define the graph H by putting trees
T1, T2, . . . , Tz on C such that d(wi, w z

2
+i) = k for 1 ≤ i ≤ z

2
. Now, assign r − z

paths Tz+1, . . . , Tr on vertices of C that are distinguished from w1, . . . , wz. Thus,
λ(H) = min{r, 2k}. Since each tree does not lose all colors on C, this number
is minimum. If r 6= z and z is odd, then define the graph H as above by the
difference that d(wi, w z+1

2
+i) = k for 1 ≤ i ≤ z+1

2
. �

The following theorem is similar to Theorem 3.3, and so we state it without
proof.

Theorem 4.6. Let H be cycle C2k with r distinct coloring edges (1 ≤ r ≤ 2k).
Then

(i) src(C2k) is maximum, if H ' Hr.
(ii) src(C2k) is minimum, if H ' H

′
r.

Definition 4.7. Suppose that some edges of the graph Gr have colors. We call
an edge of cycle C, where l(C) = 2k, as independent edge, if e = uv does not
have any color, and the edges u1u2, u2v2, and v1v2 have colors, where d(u, v2) =
d(v, u2) = k. We denote an independent edge by IE. If every edge of path P is
IE, then it is called the IE path or IE briefly.

Remark 4.8. Suppose that r edges of cycle C with length of 2k are colored by
r different colors and that another 2k − r new colors are independent edges. In
this case, we need 2k − r new colors for C to be a strongly rainbow coloring.

In the following theorems, we determine an upper bound for src(Gr), where r
is a positive integer.

Theorem 4.9. Let r be a positive integer, and let z be an even number. Then

(i) if r ≥ z ≥ k and k is even number, then

src(Gr) ≤
r∑

i=1

mi + 2k − r;

(ii) if r + 2 ≥ z ≥ k and k is an odd number, then

src(Gr) ≤
r∑

i=1

mi + 2k − r;

(iii) otherwise,

src(Gr) ≤
r∑

i=1

mi + min{k, 2k − r − 1}.
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Proof. Let H be a graph such that the trees T1, . . . , Tr are located on C consec-

utively. In this case, src(H) =
r∑

i=1

mi + 2k − r − 1. It is obvious if r < k, then

src(Gr) ≤ src(H). Suppose that r ≥ k. We show that there exists a graph H

such that src(H) =
r∑

i=1

mi + 2k − r. Theorem 4.2 and Remark 4.8 imply that H

has to satisfy in the following conditions:

(i) For each Ti ∈ A, there is Tj ∈ T , j 6= i such that d(wi, wj) = k.
(ii) After using the colors of trees on C, each uncolored edge is IE.

If we put r trees on C randomly and color the correspond edges of trees, then
uncolored edges create a path Pi, 1 ≤ i ≤ t, where t is minimum. Now we can
say the following statements:

(1) If l(Pi) = 1, then the edge of Pi is not IE.
(2) If l(Pi) = 2, then E(Pi) can be IE. Hence we have to put trees and their

colorings like Figure 1.

w1 w2

wk+2 wk+1

1 2 3 4

3 2 14

Figure 1. w1w2-path is IE.

(3) If l(Pi) ≥ 3, then none of the edges E(Pi) are IE.

Therefore, we have to locate r trees on C such that the number of Pi’s with
l(Pi) = 2 is maximum. Thus, we put trees like Figure 2.

w1 w2

wk+2 wk+1

w3

wk+3

Figure 2. Graph H with src(H) =
r∑

i=1

mi + 2k − r

Since we are looking for the minimum colors from trees for Gr, we use two
colors from one tree and no color from the opposite tree. Hence it creates 2k− r
edges without any coloring consecutively and r edges with color consecutively. It
is obvious that at most two edges of r colors could be IE. Since r − z remaining
trees are path, we put one path on C after wk+1 and one path on the opposite
side on C before w1. Therefore all of the coloring edges are IE. �

By Lemma 4.5, we have the following theorem, which we omit its proof.
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Theorem 4.10. Let T = A, and let |A| be an odd number. Then for the graph
Gr, it follows that

src(Gr) ≤
r∑

i=1

mi + min{k, 2k − r − 1}.

Now we find a lower bound for Gr, where r is a positive number.

Theorem 4.11. For a positive integer r,

(i) if T = A and |A| is an even number, then

r∑
i=1

mi + max{0, k − z + 1} ≤ src(Gr);

(ii) if T = A and |A| is an odd number, then

r∑
i=1

mi + max{0, k − z} ≤ src(Gr);

(iii) if T 6= A, then

r∑
i=1

mi + max{0, k + d−r − z
2
e} ≤ src(Gr).

Proof. First assume that r = z = k and that k is even. Now, define G1
r as

the proof of Lemma 4.3. Then we need
r∑

i=1

mi colors for edges of trees and one

new color for the cycle C. Thus, src(G1
r) =

r∑
i=1

mi + 1. If z > k, then we can

color the edges of C by colors of trees. If z < k, then we can use 2z colors
of trees on C, by Lemma 4.4. Since we cannot construct the graph H ′r and all
trees have at least two leaves, we have to define Gr as follows: Put T1, . . . , Tz
on C such that d(wi, w z

2
+i) = k − 1, d(w2, w3) = k − 1, and d(wj, wj+1) = 2 for

1 ≤ i ≤ z
2
, 1 ≤ j ≤ z, j 6= z

2
. In this case, we create a cycle with four disjoint

paths P1, P2, P3, and P4 such that P1 and P2 are colored by tree’s colors and edges
of P3 and P4 are uncolored. Clearly |l(P1) − l(P2)| = 2, and we need d2k−2z+2

2
e

new colors for the edges C. It is not difficult to see that there is no graph like Gr

such that src(Gr) = k − z.
For the second case, if z ≥ k, then we can color the edges of C by trees. If z < k,

then assign T1, . . . , Tz−1 as above and put Tz on C such that d(wz, w z−1
2

) = 2.

Hence, in this case, the strongly rainbow connection number is d2k−2z
2
e, which is

minimum.
For the last case, first put T1, T2, . . . , Tz like above. If z is an odd number, then

put Tz+1 on C such that d(wz+1, wz) = 1 and d(wz+1, wz−1) = k − 2. Put Tz+2

on C such that d(wz+2, wz+1) = k. Put Tz+3, Tz+5, . . . consecutively on C after
Tz+1 and similarly Tz+4, Tz+6, . . . after Tz+2. If z is even, then put T1, T2, . . . , Tz
as above. Now, put Tz+1 and Tz+2 continuously on C such that d(wz+1, w z

2
) = 2
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and d(wz+2, w z
2
) = 3. Thus we have two disjoint uncolored paths on the cycle C,

which have the equal length.
For other trees, put Tz+3, Tz+5, . . . consecutively after Tz+2 and Tz+4, Tz+6, . . .

such that d(w2i−1, w2i) = k for each z
2

+ 2 ≤ i. It is not difficult to see that we

need max{0, d2k−r−z
2
e} new colors for the uncolored edges of C, whether z is even

or odd.
�
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