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ABSTRACT. Our interest in this paper is to analyze the asymptotic behavior
of a Bresse system together with three boundary controls, with delay terms
in the first, second, and third equations. By using the semigroup method, we
prove the global well-posedness of solutions. Assuming the weights of the delay
are small, we establish the exponential decay of energy to the system by using
an appropriate Lyapunov functional.

1. INTRODUCTION

Let 0 < T' < o0 and let L > 0. We denote by ¢ = ¢(z,t) : (0,L) x (0,T) —
IR, Y = ¢(x,t) : (0,L) x (0,T) — IR, and w = w(z,t) : (0,L) x (0,T) — IR,
the longitudinal, vertical, and shear angle displacements of the cross section at
x € (0,L) and at time t € (0,1), respectively. The original Bresse system is given
by the following equations (see [1]):

prpn = Qi +IN+ I,
P = M, —Q + Fy,
piwyg = Ny —1Q + I3,

where we use N,(Q, and M to denote the axial force, the shear force, and the
bending moment, respectively. These forces are stress-strain relations for elastic
behavior and given by

N =Ko(w: —lp), Q=K(p,+?¢+1lw), and M =biy,,
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where K, K, and b are positive constants. Here p; = pA, po = pl, Ky = FA,
K = K'GA, b = EI, and | = R™!. Coefficients aforementioned, all assumed
positive, represent as follows:

- p the density, - E the modulus of elasticity,

- GG the shear modulus, - K’ the shear factor,

- A the cross-sectional area, - I the second moment of area of the cross section,
- R the radius of curvature, - the curvature [ = 1/R.

Finally, by the terms F;, we denote external forces. Therefore, the evolutive
problem can be written as

prpw — K(pe + ¢+ lw)y — Kol(w, —lp) =0 in (0, L 0,7

po — bibee + K (pp + 10 +lw) =0 in (0,L) x (0,7T), (1.1)
prwy — Ko(we — @), + Kl(p, +¥ +1lw) =0 in (0, L 0,T

when the external forces are null.

It is well known that system (1.1) for I = 0 is the standard Timoshenko system
when w = 0:

{Pl%t — K(pz+ 1) =0,
pathy — by + K (@, + 1) = 0.

Till now, there are so many works concerning the Timoshenko system in the
literature, most of those results recover the global well-posedness, stability, and
long-time dynamics by adding some kinds of damping. Generally speaking, if we
add the damping term in one of the equations, then the system decays exponen-
tially under the so-called equal wave speeds assumption:

1 K

p2 b’
Indeed, if the damping terms are added in the two equations, the system is expo-
nentially stable without the “equal wave speeds” assumption. See, for example,
the literature [1-9, 13-15].
In this paper, we investigate the well-posedness and the boundary stabilization
of the following linear Bresse system in bounded interval (0, L).

P1Pt — K(pr + @D + lw)x - K()l(wa: - ZSO) + algpt(l‘7t - 7_) = 07
pgwtt—bwa:x‘{’K(ng‘{‘w‘i‘lCU)+ag¢t($,t—’l') :O, (12)
P1We — K0<wx - l(P):E + Kl((px + w + lw) + a3wt(x>t - 7-) =0.

System (1.2) is subjected to the following boundary conditions:

K(pz + 9+ 1lw)(L,t) = —agpi(L, t),

wa<L7t> = _th(L>t)a (1 3)
K()(wx - l(p)(L,t) = _’th(Lat)a '
@(Ovt) = ¢(07t) = ("J(Ov t) =0,

where (z,t) € (0,L) x (0,400), L > 0, and the parameters ay, as, as, a, y, and
~ are positive constants. The system is completed with the following initial
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conditions:

g0($,0) = 900($)’ ‘;Dt(:l:’ ) 1(:17) ¢($’O) = 77Z}0($)a
wt@j?O) = wl( ) (.73, ) 0( )7 wt(az,O) = wl(x)> LS (07 L)a

ol t —7) = fl(x t—7) in (0,L) x [0,7], (1.4)
iz, t — 1) = folx,t —7) in (0,L) x [0, 7],
wi(z,t —71) = f3(x,t —7) in (0,L) x [0, 7],

where 7 > 0 is the time delay. The initial data (g, p1, %0, Y1, wo, w1, f1, f2, f3)
belong to a suitable Sobolev space. By w, 1, and ¢ we denote the longitudinal,
vertical, and shear angle displacements.

In recent years, one very active area of mathematical control theory has been
the investigation of the delay effect in the stabilization of hyperbolic systems, and
many authors have shown that an arbitrary small delay may destabilize a system,
which is asymptotically stable in the absence of delay (see [7] and [0, Example
3.5]).

The delay effects often appear in many practical problems, for instance, chem-
ical, physical, thermal, and economic phenomena, and may turn a well-behaved
system into a wild one. The time delay term can be regarded as a source of
instability. If the coefficient of delay is very small, the system may stabilize when
additional control terms have been added. We first recall two classes of second-
order evolution equations with time delay. Nicaise and Pignotti [12] studied
abstract evolution equations with constant time delay of the following form:

U,(t) = AU(t) + F(U(t)) + KBU(t — 7),
{U(O) =Uo,  BU{t—71)=f(1),

where B is a bounded operator. They proved that the operator associated to the
part without delay generates a strongly continuous semigroup, which is exponen-
tially stable. In addition, under a smallness condition on the time delay feedback,
they obtained that the model with delay is also exponentially stable. Nicaise and
Pignotti [1 1] considered the following second-order evolution equations with time
delay:

u + Au+ By Biug(t) + BoBiuy(t —7) =0, t >0,
u(0) = uyg, u(0) = uy,
Bgut(t) = fo(t)a S (_77 0)7

where the bounded operator B, is the delay feedback operator. For a system that
is exponentially stable in absence of time delay, that is, for By = 0, they proved
that the exponential stability is preserved if || Bj|| is sufficiently small.

Recently, Ammari, Nicaise, and Pignotti (see [2]) treated the N-dimensional
wave equation

ug(x,t) — Au(z,t) + au(z,t —7) =0, z€Q, t>0,

( t) =0, r el t>0,
Gu —Kut(x t), rely, t>0, (1.5)
(.T 0) = uO( )7 ut(x70) = UI(I)7 x €,

w(z,t) = g(x,t), reQ, te(—r0),
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where €2 is an open bounded domain of IR, N > 2 with boundary 902 = I'o U Ty
and 'y NI’y = (). Under the usual geometric condition on the domain €, they
showed an exponential stability result, provided that the delay coefficient a is
sufficiently small. When both the damping and the delay in (1.5) are acting in
the boundary, that is, if in (1.5), the third equation is replaced by

ou

v
Nicaise and Pignotti [10] investigated this problem and showed an exponential
decay rate of the total energy under the assumption

a < k. (1.7)

= —Ku(z,t) — aug(x,t — 7), xely, t>0, (1.6)

On the contrary, if (1.7) does not hold, then they found a sequence of delays for
which the corresponding solution of (1.5) will be unstable. The analysis in [10] is
based on an observability inequality obtained with a Carleman estimate.

We also would like to mention the contribution of Said-Houari and Soufyane [14]
in which the authors studied a Timoshenko system with delay and boundary
feedback. The authors proved the global well-posedness and exponential decay
of energy by assuming the weights of the delay are small enough. For more
results, concerning Timoshenko system with delay, one can refer to the previous
studies [3-9] and so on.

Comparing our result with the work of Feng [8], for laminated Timoshenko
beams with time delays and boundary feedbacks, he proved the global well-
posedness and exponential decay of energy by assuming the weights of the delay
are small enough.

The main objectives of the present work are to establish the global well-
posedness and exponential stability of problem (1.2)-(1.4).

Our purpose in this paper is to give a global solvability in Sobolev spaces and
energy decay estimates of the solutions to problem (1.2)—(1.4) for linear damping
and delay terms. To obtain global solutions to problem (1.2)—(1.4), we use the
argument combining the semigroup theory (see [10] and [5]) with the energy
estimate method. To prove decay estimates, we use a multiplier method.

2. WELL-POSEDNESS OF THE PROBLEM

In this section, we prove the global existence and the uniqueness of the solution
of system (1.2)—(1.4). For this purpose, we adopt the technique of [10] (see
also [13]) to prove that the operator A defined in (2.3) generates a contraction
semigroup on the Hilbert space H given by (2.4).

Let us introduce the following new variables:

Zl(x7p7t) = ()Ot(xvt - 7-10)7 LS (O7L>7 pe (07]-
zo(z,p,t) = Yz, t —71p), x€(0,L), pe(0,1),t>0,
Z3(I7P7 t) = wt(xvt - Tp)a ZAAS (07L)7 p e (Oa 1

Then, it is easy to check that

Tzit (2, pt) + zip(x, p,t) =0 in (0,L) x (0,1) x (0,400) fori=1,2,3.
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Therefore, our problem (1.2)—(1.4) is equivalent to

(p1ou(z,t) — K(pp + 0 + lw) (2, 1) — Kol(wy — lp)(x,t) + arz1(z, 1,t) =0,
Tz, p,t) + z1,(x, p, t) =0,

Pl (,t) — bibye(x,t) + K (e + 0 + lw)(x, t) + agze(z,1,t) = 0,

Tozot(z, p,t) + 22p(x, p, t) = 0,

prwg(z,t) — Ko(wy — @) (z,t) + Kl(py + ¥ + lw)(x, t) + azzs(z, 1,t) = 0,
\TSZBt(xa P t) + ZSp(l’a Py t) =0.

(2.1)

Now, we present a short discussion of the well-posedness and semigroup for-

mulation of the initial boundary value problem (2.1), (1.3), and (1.4). For this
purpose, let U = (¢, s, 21,10, Uy, 22, w,wy, 23)7. Then U satisfies the problem

U = AU, (2.2)
U(O) - (9007 @1, fl(‘, _'7—)’ 77Z}07 ¢17 f2(‘7 _‘T)a Wo, W1, f3('7 _‘T))Ta ’
where the operator A is defined by
U
K LK,
= U+ o + 2w — 1p) — 21(,1)
1 P1 P1
%2 1
U —;le
Z1 v
(0 b
Z9 1
W T2
o w
K K
/| 20w~ lp)e — (s + 9+ W) — (., 1)
P1 P1 1 P1
— 23,
with domain
(90711’7 217¢707227W7@7z3>T € H7
D(A) = u=z(.,0),v = 2(.,0),0 = z3(.,0), in (0, L),
K(pz + v +1lw)(L) = —au(L), b, (L) = —pv(L), ’

Ko(ws = lp)(L) = —yw(L)
where
H = (H*(0,L) " H}(0,L) x L*(0,1, H'(0, L)))?
and
H.(0,L) = {f € H'(0,L): f(0) = 0}.
Now, the energy space H is defined as follows:

H = (HL(0,L) x L*(0,L) x L*((0, L) x (0,1)))3. (2.4)
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For U = (p,u,21,9,v, 22,w,®,23)",U = (p,u,21,%,0,Z2,0,,23)" and for positive
constants &;, we define the inner product in H as follows:

L
WO = [ (o + pavt+ 1B + 03,0+ Klpa + 0+ 1), + 5+ 1)
0

+Ko(we — 1) (@, — 19) +Z@/ i(z, )2, p) dp) d

The existence and uniqueness result reads as follows.

Theorem 2.1. For any Uy € H, there exists a wunique solution U(x,t) €
C([0,4+00),H) of problem (2.2). Moreover, if Uy € D(A), then

U € C([0,+00); D(A)) N CL([0, +00); H).

Proof. In order to prove the result stated in Theorem 2.1, we will use the semigroup
approach. That is, we will show that the operator A generates a Cy-semigroup in H.
In this step, we concern ourselves to prove that the operator A is dissipative. Indeed,
for U = (o, u, 21,1,v, 20,w, @, z3)T, we have

L
(AU, Uy = — au*(L) — m*(L) — y&*(L) — al/ 21(z, udx
0
L L
—ay / zo(x, )vdx — ag/ z3(x, 1)@ dzdx
0 0
et
- Z / / zi(x, p)zip(x, p) dp da. (2.5)
i=1 T J0 Jo

Looking now at the last two terms of the right-hand side of (2.5), we have

Z&/ / zi(x, p)zip(x, p dpdx-ZfZ/ / ,72 (x,p)dpdz
=Z% / [2(e,1) = 22(2,0)} dz.  (2.6)
i=1 =70
Consequently, (2.6) becomes
L
(AU, Uy = — au*(L) — m*(L) — y&*(L) — al/ 21(z, udx
0
L L
—ag/ zo(x, 1)vdw—a3/ z3(x, 1)w dedx
0 0

3 L
- é 22(x,1) — 22 (x i
ZIQT/O {:2(x,1) — 22(@,0)} do )
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By using Young’s inequality, we obtain from (2.7), that

L
(AU, Uy < —an(L) — (L) — 1@(L) + (~ &) /0 2(2,1) da

»Jk‘m
3=

~

2
aiT

L
HE + 5 fo uldo + ()

/ 22(x,1) dx

0
a7 L 2 L

+(§T+%) OLUQdJ:—I—(—g’_)/O Z%(l‘,l)dﬂ?—}-(w—}—gs)/o o2 dx

53 2T
2 2 2
< max(}- (G0 + 5), 5 (F + 52), g (87 + §9))(U U
= Cl<Ua U>'H

Consequently, the operator A — c11 is dissipative. To show that .4 is maximal mono-
tone, it is sufficient to show that the operator Al — A is surjective for fixed A > 0. Indeed,
given (hl, ho, hs, hq, hs, hg, h7, hg, hg)T € H, we seek U = ((p, u, 21, Y, 0, 22, W, W, Zg)T S
D(A) solution of the following system of equations:

Ap —u = hy,
K LK
A — (0 + 1+ 1w)y — 2wy — 1) + 221(, 1) = ho,
p1 p1 p1
Az + —F1p = hs,
A — v = ha,
b K a9
)"U_ix:r‘*'* x+ +lw + —z .,1 :h,
pf¢ p (2 + 9 + lw) o 2(., 1) = hs (2.8)
Az + —22p = he,
Aw — @ = h7,
K K
A — =2 (wy — 19)s + — (00 + 0 + lw) + 225, 1) = hs,
2! 1 P1
Az3 + ;ng = hg.

Suppose that we have found (¢, 1, w) with the appropriate regularity. Then
U= Ap — hq,
v =\ — ha, (2.9)

(:):)\w—h7.

It is clear that u € H}(0,L),v € H}(0,L), and w € HL(0,L). Furthermore, by (2.8),
we can find z;(i = 1,2, 3) as

z1(z,0) = u(x), z2(x,0) = v(z), z3(x,0) =w(z) forx e (0,L).

Following the same approach as in [10], by using equations for z; in (2.8), we obtain

p
zi(x,p) = u(a:)e_’\”’—i—ﬁe_)‘”’/ hs(x, s)e*s ds,

b
zo(x,p) = v(ﬂs)e—’\Tp+Te_>‘T/’/ he(x, s)e** ds,
0

p
z3(x,p) = o?(x)e)‘Tp—i—Te)‘Tp/ ho(x, s)e** ds.
0
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From (2.9), we obtain

z(z,p) = Ap(a)e P — hiem NP 4 7 ATP /Op ha(x,s)e’™ ds,
2a(z,p) = Mp(2)e P — hae TP+ mpem AT /Op he(x, 8)e ™ ds,
z3(z,p) = dw(z)e VP — hye P 4 e AP /p ho(z, s)e ™ ds.

By using (2.8) and (2.9), the functions ¢, 1, and w satisfyothe following system:

K LK
A2 — = (g + 1+ 1w)e — —2(wy — 1) + 21 (., 1) = hy + Ay,
P1 L1 L1

b K
N — gy + (g + 0+ ) + 2 29(., 1) = hs + Mha, (2.10)
P2 P2 P2

Nw — —O(wx —lp)y + —
P1 P1
Using the following
( 1
21(x,1) = u(@)e M +71e ™ | ha(x,s)e ds,
0

(0 + 9 + lw) + %23(., 1) = hs + M.
1

= Ape M+ 29(2)

2(z,1) = wv(z)Te ™ + 1M 1 he(x, s)e*S ds,
= MNpe M + 29(z) "

23(z,1) = &(x)e™ 4 T1e M /01 ho(x, s)e ™ ds

= dwe ™ +29(z).

where for z € (0, L),

1
Ax) = —h(x)e ™ +7e N [ hy(z,s)e 5 ds,
1
x) = —ha(z)e ™ +1e ™ [ he(x,s)er ds,
1
2z) = —hp(x)e ™™ + 1A ; ho(x, s)e*S ds,

S—S—3—

the problem (2.10) can be reformulated as

L

K K
/ <)\290 — —(pz + V¥ + lw), — —O(wx —1lp) + al)«pe‘”) w1 dz
0 o1 P1 o1

L
= / <h2 + Ahq — alz?(x)) widx for all wy € Hi((), L),
0 P1

L 2 b K as A
/ ()\ Y — — g + —(pz + ¥+ lw) + —Npe” T) wo dx
0 P2 P2 P2 (2.11)
L .

= / <h5 + Ahyg — ?zQ(w)) wodz for all wy € HL(0, L),
0 2

L

K IK

/ <)\2w — 2wy = 19)e + — (00 + U + lw) + ag)we”) w3 dx
0 P1 P1 P1

L
= / <hg + Ahy — ?zé}(w)) wsdz for all wy € HL(0, L).
0 1
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Integrating the first equation in (2.11) by parts, we obtain

L
K LK
/ QAQSO - p*(%; + Y+ lw), — b} (wy — o) + Zl)\tpe_’\7> w1 dx
0 1

P1
K [t LK
:/ >\2g0w1dx—|—/ (pz + 9+ lw)(w1)e dx—o/ (wz — lp)wy dx
0 P1 Jo K p1 Jo
—l—% e Mopwy da — p—(g@x + 9 + lw)(L)wi (L)
1 Jo 1
Loy K [(F 1Ko
= Nowrde +— [ (or+ ¢+ lw)(w), de — — ( we — lp)wrdr  (2.12)
0 P1 Jo P Jo
+4 e Mow dr + gu(L)wl (L)
P1Jo P1

L ) aj _)\ L K
:/ ()\ + —Xe T)gowl dm—i—/ —(pz + ¥ + lw)(wy)z dx
0 P1 0 P

1K, [
20 / (we — I@)wr dz + S Ap(L)wr (L) — ki (L)w: (L).
P1 Jo P1 P1

Integrating the second equation in (2.11) by parts, we obtain

v 2 b K a2 A
/ g)\ Y — —Ppe + —(pr + ¥ + lw) + —=Ape™ T> wa dx
0 P2 P2 P2

a9 b L
= / </\2—|—)\e“>ww2dx+ / Vo (w2) d
0 I P2 P2 Jo

_1_5 ((pm + w + l(.U)LUQ dx — ﬁl/}m(L)wQ(L)
p2 Jo p2

L as b L
= / <>\2 + Ae‘”) Ywo dr + — / Uy (w2)y dz
0 I P2 P2 Jo

K
| (et o+ ﬁv(L)wg(L)
2 J0 P2

L
:/0 <)\2 p2 _AT>1,Z)w2dm+/ Ve (w2)s dx—i—/ (pz + ¥ + lw)ws dx
+ENG(L)wa(L) = Eha(L)ws(L).
P2 P2

(2.13)
Integrating the third equation in (2.11) by parts, we obtain

L K, IK
/ <)\2w — —0( —1lp)s + 7(3% + Y +lw) + )\we_’\T> ws dx
0

P1
L as
:/ ()\2—1—)\ )wwgdx—l—/ —lp)(ws)y dz
0 1
IK [*
+ — (90z+¢+ZW)W3d55_7( —lp)(L)ws(L)
P1 Jo P1
L L
K
— / <)\2 + a?’)\e_)‘T) wws dx + / —O(wx —lp)(w3)y dzx
0 P1 0 P1
L

UK
+ = [ (o + ¥+ lw)wsdz + pld)(L)wg(L)
0 1
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L as A L Ko
= / <)\2 + —Xe” T) wws dr + / — (wz = lp)(w3)g dx
0 P1 0o P1

K[ g g
+— | (pz+ ¢+ Ilwwsdr + —Aw(L)ws(L) — —h7(L)ws(L). (2.14)
PL Jo P1 P1

Using (2.12), (2.13), and (2.14), the problem (2.11) is equivalent to the problem

¢((907¢7w)7(w17w27w3)) :I(wlvw2vw3)7 (2'15)

where the bilinear form ¢ : [H}(0, L) x H}(0, L) x H}(0, L)]* — IR and the linear form
T:HL0,L)x H}0,L) x H}(0,L) — IR are defined by

o((p, 1, w), (w1, w2, w3))
L L
= /0 <)\2 + Z)\G)\T) pwy dz + /0 f(gox + 9+ lw)(w)y da

o / (v = tphon do + Xl L (L)

/ QAQ ) —*T wwzdx+/ Yo (w2)g

g ¢x+w+lw)w2dx+pfw L)ws (L)

L L KO
+/ ()\2 + )\e_’\7>ww3 dx + / — (wy — lp)(w3)y dx
0 P1 0 P1
IK [F v
+— | (pz+ ¢+ lw)wsdr + —Iw(L)ws(L),
p1 Jo P

and

L L
T (w1, wo,ws) = / (ha + Ahy — %z?(aﬁ)).wl dx —|—/ (hs + Ahy — p—2zg( x)).we dx
0 1 0 2

L
+/ (hs + Mz — 2229(2))ws dz
0 Pl

+ L h(L)wi (L) + L hy(D)ws(L) + L hr(L)ws(L).
P1 P2 P1
It is easy to verify that ¢ is continuous and coercive and that Z is continuous. Hence
applying the Lax-Milgram theorem, we deduce that for all (w1, ws,w3) € HX(0,L) x
H}(0,L) x HL(0, L), problem (2.15) admits a unique solution (p,,w) € H(0,L) x
H(0,L)xH}(0, L). Tt follows from (2.12), (2.13), and (2.14) that (¢, %, w) € (H?(0,L)N
H0,L)) x (H%(0,L) N H}(0,L)) x (H?(0,L) N H(0,L)). Therefore, the operator
Al — A. A is surjective for any A > 0. Hence, the well-posedness result follows from
the Hille-Yosida theorem. O
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3. ASYMPTOTIC STABILITY

In this section, we investigate the asymptotic behavior of system (1.2)—(1.4). For
any regular solution of (1.2)—(1.4), we define the energy as

1 L
Et) = 2/ <p1|<pt|2+p2\¢t\2+p1\wtl2+b!wx!2+K\sox+w+lw2
0 {1 t L
+K0wx—l<p|2> dw+2/ / O (x,5) dx ds (3.1)
t—71 J0

&L Mot &Mt
—|—/ / V2 (z,s) dzds + / / wi(z, s) dz ds,
2 t—71 JO 2 t—71 JO

where &1, &2, and &3 are strictly positive numbers that will be chosen later. The main

result of this paper is the following.

AK(1+1%)L2

2

Theorem 3.1. Let (p,9,w) be a reqular solution of (1.2)—(1.4). Assume that
<b, that 41{‘;# < b, and that there exist small enough positive constants a3,i =1,2,3
satisfying 0 < a; < a; 1 =1,2,3. Then,

E(t) < Ce™! for all t >0, (3.2)

while C' and w are positive constants, independent of the initial data.
The proof of Theorem 3.1 will be done through some Lemmas.

Lemma 3.2. For any regular solution of (1.2)—(1.4), the following estimate holds:
—dfg’) < —ap?(L,t) + (L;&) fOL<p (z,t) dx + (“1 €1) OL o (z,t —7)dx
(L) + (252 fUL ety do+ (252 [ et —r)de (33)
—yw?(L,t) + <a3+53> 0 Wi 2(z,t)dx + (a3 53) OLUJ?( ,t—7)dx.

Proof. Differentiating (3.1), we get

L
%&gt) = / (Pl@t@tt + Pt + prwwit + betbe + Koz + 9 + lw)(pz + 9 + lw)y
0

+Ko(wz — lp)(wz — lp)y )(t x) dx

51/ cpt(x t)dw—gl/ gpf(m,t—T)da:

0,
62/%9615

52/ V2 (x,t — ) da
53 2
2/0 w(z, t)dx—2/0 wi (z,t — 1) dx.

Now, using the equations in (1.2) and exploiting the boundary conditions in (1.3), we

obtain
d&(t)

L
3 =7 agi(L,t) — al/ pi(@,t — 1)z, t) do
0
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L
- /“/’g(L, t) — a2/ Yi(x, t — 1)y (2, t) do
0

L
_ ”yth(La t) — 03/ or(x, t — 7)pi(z,t) do
0

51/ got(a: t)dm—gl/ cp?(x,t—r)d:c

52/ R, 1) d 5;/0Lw?<xt

L
+ & / wi(x,t) do — & / wi(z,t — 1) dx. (3.4)
2 Jo 2 Jo
By applying Young’s inequality to the first three terms in (3.4), then (3.3) holds
true. 0

Next, we define the following functional:

L
F(t) := / {prahy + pexpror + prawiwy }(z, t)de. (3.5)
0
Then we have the following estimate:

Lemma 3.3. Let (¢,%,w) be the solution of (1.2)—(1.4). Then, for any €1, €2, €3, 61,
62; 537617/62753 > 07 we have

dF(t L ¢ "
dF(t) ) < — / ﬁgp? + @df + ﬂwf dr + (a1Ler + — + d1c0 / 03 (z,t) do
dt 0 2 45 0

<a2L€2+ 5 +5202—>/ Lb ZCt

L
+ G3L63+ +5302>/ wg(x,t) dx
0

L
+ <B2K2 + B3 K21 — K) / (z + 9 + lw)?(2,t) da
2 0

L 2 21212
L ~*L  A212L
+ K212 — e — 1) () do + [ P2 + 2(t

L L  o2L 22 21212
+<p2+)wt(L £) + <p2 1 + + 2 >@?(L,t)

2 2b 2 2K 469 404
L asL [*
+ e @?(m, T)dx + - / wt T)dr + — wtz(x, t—7)dx,
4eq 4es

(3.6)
where ¢* = L?/7? is the Poincaré constant.

Proof. Differentiating the functional F with respect to t and using (1.2), we find
dF(t)

L
dt :/ {Kiﬂ(% + 1+ w)aps + Kola(we — 19)pe + b2¢eaths
0

— Kz(z + 9 + lw) e + Koz (we — lp)owe — Klz(pe + ¢ + lw)wx}(fc, t) dx

L 2 2 2
x dp; x dip; z dw;
—— —— —— t)d
—I-/O {'012dac trg - trg (x,t)dx
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L L
—ay / oz (z, t)or(x, t — 1) dr — ag / 2y (z, )Y (x, t — 7) dx
0 0
L
- ag/ xwy(z, t)wy(z,t — 7) do.
0

Remark that

L
/ Kolx(wy — l@)ps dv =Kol L(w, — L) (L, t)p(L, t)
0
L
—/ Kol(wy — lp)pdx
0L
—/ Kolz(wy — lp)p dx,
0
L
—/ Ka(pp + ¢+ lw)pyde = — KL(¢y + ¢ + lw) (L, ) (L, t)
" L
+/ K(pe + 9+ lw) da
0
L
+ / Kz(py + ¢ + lw) ¢ dz,
0
L
- / Klz(ps + ¢ + lw)w, de = — KIL(py + 9 + lw) (L, t)w(L, t)
" L
+ / Kl(pz + ¢ + lw)w dx
0

L
+/ Klz(ps + ¢ + lw)pw dz.
0

Inserting (3.8), (3.9), and (3.10) into (3.7), we obtain

AF@t)  [F (K dlge+1+1w)? b dp?: Ky d(ws —lp)?
_ kel Z z . 20 d
dt /0{29” dz MR R R — v

L
b Kol L(ws — 19)(L, ) (L, 1) — / Kol(ws — 19)p da
0
L
K L(gs + 0+ 1) (L, (L, t) + / K (@ + 0 + )i do
0

L
— KIL(pz + ¢ + lw) (L, t)w(L, t) + / Kl(pg + ¢ + lw)wdx
0

L 2 2 2
d d d
+/ {p1$%+p2x%+plx%}($’t)d$
0 x x x

L L
—a /0 xoz(x,t)pr(x,t — 7) de — ag/o 2y (x, ) (z,t — 7) do

L
— a3/ 2wy (z, )wy(x, t — 7) dx.
0

229

(3.9)

(3.10)
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Using integration by parts, we obtain

d};tt):_/ {p1%+p2¢t+ }dx
0

2 2
L
—/ { W2+ K(som+z/z+lw) I;O(wx—l@)Q}dw
0
FLY2(L, 1) + EL (o + ¢ + 1w)2(L, ) + K9L (w, — 1p)2(L, t)

2507 (Lo t) + PBEUR(Lot) + %LwE(L t)

+KolL(ws — 1) (L, (L, 1) / Kol(ws — 10)p da (3.11)
—KL(pg + 9+ lw)(L, t)y(L,t) / K(pz + ¢+ lw)y d

—KIL(pg + 9 + lw)(L, t)w(L, t) +/0 Kl(pz + ¢ + lw)wdx

—aq fOL oz (z, t)pr(x, t — 7)dr — a9 fOL 2y (z, ) (x, t — 7) dx

—as fOL rwy(z, t)wy(z,t — 7) d.

Consequently, using the boundary conditions (1.3), we write

P
9 wx(Lvt) - 2 wt (L>t)' (312)
Similarly, we get
== (o + ¥+ w)2(L,t) = SZ0H(L, ), (3.13)
KoL 5 v2L
—— (g — 1 L, L,t 14
5 (wr = 1) (L, 1) = g wf (L), (3.14)

By the embedding of W11(0, L) in L>(0, L), we have

(L, t)* < 01f v* +¢3) da,
WL, P <1 fo 1/12 +¢3) de,
lw(L,t)|? < 1 fo w? 4+ w?) dz.

This implies by Poincaré’s inequality that

[o(L,t)? < e fo v dz,
[W(L,1)* < e fo z/zx dz, (3.15)
lw(L,t)|? < e fo w2 dx,

where ¢; and co are two positive constants.

Equation (1.3), Young’s inequality, and (3.15) imply for all 61, d2, d3 > 0 that

KolL(wy — L) (L, t)p(L,t) = —ylLwi (L, t)p(L,t)
212172 2
< diep fy o2 da + LA,
—KL(ps + ¢ + lw)(L, 1) (L, t) = aLe(L, t)Y (L, 1)
L 9 a?L%p?(L,t) (316)
< 6202 fo ¢x dr + T 48y
—KIL(py + ¢ + lw) (L, t)w(L,t) = al Ly (L, t)w(L, t)

L 0212122 (Lt
< 5362 fO w:% dx + Tit()
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Once again, Young’s inequality and Poincaré’s inequality, for any S, 82, 83 > 0 give

L L
/ Kol(wy, — lp) gpdm<ﬁ1K0l2/ (wWy —lcp) / goidm

Q 461
/ Kgox+¢+lw)1/1dx<ﬂ2K2/ (o + 9 + w)? dw+452/ Y2 dr, (3.17)
0

L c* L
/ KI( gpm+w+lw)wdx<63K2l2/ (02 + 1h + lw)? dac—i—w/ w?dz,
0 0 3

where ¢* = L?/n? is the Poincaré constant.

On the other hand, for all €1,€e3,e3 > 0, by using Young’s inequalit, the last two
terms in the right-hand side of (3.11) can be estimated as follows:

L
ay f()L Tpe (@, t)pe(x,t — 7) dr| < ar1Lle /0 (’Oi(x’ t)dz (3.18)
a L L
—i-ﬁf o Pzt —7)dz,
. L
ag fO x¢x(x7t)¢t($vt_7) dz| < a2L62/ w (l’ t)d (319)
+2 Jo Vit t =) de,
and
. L
a3 [y wwe(x, t)wy(z,t — 1) da| < a3L63/0 wi(x,t) dz (3.20)
—1—‘23;3 OL wi(x,t — 1) d.
Inserting (3.12)—(3.20) into (3.11), we get (3.6). O

Next, let us introduce

// St(,pf:nsdsdx Fo(t // Stwtxsdsdx
t—7 t—7 (3.21)

and Fs(t / / e Wiz, s) ds da.
t—7

Then, the following estimates hold.
Lemma 3.4. Let (¢, 9, w) be the solution of (1.2)—(1.4). Then

L
d]':ilt(t) g/ 07 (z,1) dx—eT/O 2zt —7)dr — e~ / /t ©?(x,s)dsdr, (3.22)

d./—'z _ —_ e T 3.23
/1/Jtmt dr — e~ /wt dr —e /0 t_szt(a:,s)dsdx,( )

and

L L t
P / wi (z,t) dx — e‘T/ wi (2, t —7)dz — e‘T/ / w2z, s)dsde.  (3.24)
0 0 0 t—T

Proof. Taking the derivative of F; with respect to ¢, we obtain

L
d]idlt(t) :/0 gof(x,t)da:—e_T/O dx—/ /t e ol (x, 5) ds du.

Then, (3.22) easily holds, and similarly (3.23) and (3.24). O
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Proof. Proof of Theorem 3.1. We define the Lyapunov functional L£(t) as follows:
L(t) :=E(t) + NF(t) + N1Fi(t) + NoFa(t) + N3Fs(t), (3.25)

where N, N1, No, and N3 are positive real numbers that be chosen later. Now, from
(3.3), (3.6), (3.22), (3.23), and (3.24) and using inequalities, we obtain
L L L
/ wi(z,t)dz < 2/ (we — lp)*(x,t) dx + 2l20*/ 2 (z,t) dz,
oL 0L 0 L
/ @2 (z,t) dz < 2/ (pr + 0+ lw)?(z,t) dz + 4c* [ ¢2(x,t)dx
0 0 0

L
+412%c* / wi(z,t) dx.
0

We get
dL(t
LD b L) + A (L1 (3.26)
N
+A3w§(L,t)+{ ‘“+§1> 1_01}/ o2 (x,t) dz
2 2 0
N L
+ a2 & Ny — pz V2 (z,t) dx
2 2 0
N L
+{(a3+§3>+N3_,01}/ 2(x,t) da
2 2 [ Jo
— L L
+{(a1 §1>+Na1 — Nqe T}/ o (z,t —71)de
2 461 0
— L L
+{<a2 §2>+N02 ~ Nye T}/ W2 (a,t — 1) d
2 462 0
— & L L
+{ <a3 53) +NE — Nze T}/ wi(z,t — 1) dx
2 463 0
4c*a1Ley 20+ 4c* 109 812¢*asLes3
+N( + + +
( 1 — 84 2B1(1 — 8l4c*?) —8l4c** +agLes 1 — 8l4c*?
2l2c*2 8[2 *(5302
dac - t)d
+63(1—8l4c*2)+ ~slic = T 22-1- >/ V2 (x,
N N<4l20*a3L623 N 2c¥* 4 lzc*53022 2a1Leq 2 c* i
1 —8l%e* Bs(1—8l4c") 1 -84 1—8l4¢*  261(1 —8l4c¢*")
26 K\ [*
b b oK+ R - ) [ (et o P et do
1-— 8l4c* 2 0
N( 2a3L63 + c* 2(5362 812c*a1L61
1—84c**  2B3(1 —8l4c¢*?) 1 —8l4c** 1 —8l4c*?
202+ 812¢* 612

K L
K§? — =7 / v — 1) (z, 1) d

L oyt L gt
— Nie 7 / / ©?(x,s)dsdr — Noe™ ™ / Y2 (x,s)ds dx
0 t—7 0

t—T

Lt
— N3e™ 7 / / wi(z, s) ds de, (3.27)
0 t—1
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where

_ p2L a?L o?L? o?1212
A = ‘H’N< s T ok T, s )

2
Ay =—p+N PgL+’gbL>,

L 2L 21212
Ay= v+ N (8 + 5+ 5.

At this point, we have to choose our constants in (3.27) very carefully.

First, it is clear that for any a > 0, > 0, and v > 0, and for sufficiently small N,
we get A; <0, i=1,2,3.

Second, we may choose (31, B2, and (3 such that

Ko Ko
K22 -2 <2
61 0 9 = 4 )
K K
BoK? + B3 KPIP — — < ——,
2 4
c* b b
— <= 3.28
4B, 2 = 4’ ( )
c* b b
— - < -
48, 2 4
c* b b
- — S .,
48; 2~ 4
Of course, in order to get (3.28), we have to assume that
4K (1+1?)L2
4K (1 +1*)c" = (—2) <b,
T
AK o> L?
ARl = =02 <b
T
For any fixed d1, d3 > 0, we pick 62, €1,e2 > 0 and €3 > 0 so small such that
2 2
4c*aiLey 2c* 4c*d1co 81%c*asLes 212 c* 81%2c*85¢a b
1—siic? T 281 (1—814c*?) + 1-811c*? taz Ley —siic? T Bs(1—814c*?) t gt T0202 < g,
4126*0,3[463 lzc* 4l2c*5302 2a1L61 C* 251(;2 K
osiac? T B3(1—8l4c*?) T s T igic? T 251(1781‘25*2) T g S5
2a3Les c* 253¢co 8l1%c*a1 Leg 21%c* 81%¢c*51co Ko
T_siic? T 283 (1—8l4c*?) T e T sgiae? T By (1—8l4c*?) R s 3
After that, we fix Ni, Na, and N3 such that 2 — Ny > 0, 2 — N, > 0, and
Nps

22 — N3 > 0. Now the main goal is to choose the sets of pairs (a1,&1), (az,£2), and
(as, &3) such that

and

Obviously, for a;, i = 1,2, 3, small enough satisfying
N;e ™™ + (Npi/Q - Nz)

ai<af:min{ ,(Npi—QNi)}, i=1,2,3,
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there exists &;, ¢ = 1,2, 3 such that

NL
ai<1+ 5 )—2NZ‘€T§§i< (Npi—2Ni)—ai, 1=1,2,3.
€

From this, we infer 4; < 0 (i = 1,2,3) if (a,pu,y) — (0,0,0) or if (a,u,y) —
(00, 00,00), then (N, N;) — (0,0) (i = 1,2,3) and consequently a) goes to zero.

Then, from the above, we deduce that there exists a positive constant 7; > 0 such
that (3.27) becomes

TS o W R G+ (o U 10) (e — 1)) da
- fOL/ (?(x,8) 4+ 2 (x, 5) + w?(x,s)) dsdx for all t > 0,
t—T1

which implies from (3.1), that there exists also 72, such that
dL(t)
St
On the other hand, from (3.1), (3.5), (3.21), and (3.25), and for sufficiently small N, we

deduce that there exist two positive constants By and Bs depending on N, Ny, N, N3,
and L such that

< —mp&(t) for allt > 0. (3.29)

BE(t) < L(t) < B2&(t) for allt > 0. (3.30)
Now, by combining (3.29) and (3.30), there exists A > 0, such that
dL(t
flt) < —AL(t) for all t > 0. (3.31)
Consequently, integrating (3.31) and using once again (3.30), we obtain (3.2). O
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